L05: Subset Construction (Pre Lecture)

Dr. Neil T. Dantam

CSCI-561, Colorado School of Mines

Fall 2025

Introduction

Introduction

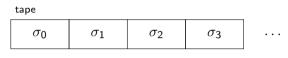
- ▶ DFA and NFA both represent Regular Languages
- ► Equivalent DFA using subsets of NFA states

Outcomes

- ▶ Understand ε -closures
- ► Understand NFA simulation
- Understand subset construction algorithm
- ► Understand equivalence proof of NFA and DFA

Determinism vs. Nondeterminism

Review

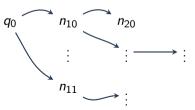


DeterministicTransition to single state

$$\delta_{\mathrm{dfa}}(q_i,\sigma)=q_j$$

 $d_0 \underbrace{\int_0^{\delta(q_0,\sigma_0)} d_1 \underbrace{\int_0^{\delta(d_1,\sigma_1)} \int_0^{\delta(d_2,\sigma_2)} d_3}_{\delta(d_3,\sigma_3)} \underbrace{\int_0^{\delta(d_3,\sigma_3)} \int_0^{\delta(d_3,\sigma_3)} d_3}_{\delta(d_3,\sigma_3)} \cdots$

$\begin{array}{l} \textbf{Nondeterministic} \\ \textbf{Transition to a multiple states} \\ \delta_{\text{nfa}}(q_i,\sigma) = \{q_j,q_k,q_\ell,\ldots\} \end{array}$



DFA vs. NFA

Review

Definition (DFA)

A deterministic finite automaton is a 5-tuple, $M = (Q, \Sigma, \delta, q_0, F)$, where

- ► *Q* is a finite set called the **states**
- \triangleright Σ is a finite set called the **alphabet**
- $\delta: Q \times \Sigma \mapsto Q$ is the transition function
- $ightharpoonup q_0 \in Q$ is the start state
- $ightharpoonup F \subseteq Q$ is the set of accept states

Definition (NFA)

A nondeterministic finite automaton is a 5-tuple, $N = (Q, \Sigma, \delta, q_0, F)$, where,

- Q is a finite set called the states
- $ightharpoonup \Sigma$ is a finite set called the **alphabet**
- ▶ $\delta: Q \times \Sigma \mapsto \mathcal{P}(Q)$ is the transition function
- $ightharpoonup q_0 \in Q$ is the start state
- ▶ $F \subseteq Q$ is the set of accept states

Equivalence of NFA and DFA

Proof Outline

Theorem

For any NFA N, there exists an equivalent DFA M that recognizes the same language: $\mathcal{L}(N) = \mathcal{L}(M)$.

Proof Outline.

- Each NFA transition results in set of states that could hold.
- 2. Thus, at each step we may be in a subset of the NFA states Q.
- 3. If the NFA has k states, then there are 2^k subsets.
- 4. There is an equivalent DFA whose states of those 2^k subsets.

NFA to DFA Overview

Input: NFA $N = (Q_N, \Sigma, \delta_N, q_{0,N}, F_N)$

Output: DFA $M = (Q_M, \Sigma, \delta_M, q_{0,N}, F_M)$,

such that $\mathcal{L}(M) = \mathcal{L}(N)$

Solution: DFA states are subsets of NFA states

	NFA	DFA
states	Q_N	$Q_{M}=\mathcal{P}\left(Q_{N} ight)$
alphabet	Σ	Σ
transition	$\delta_{\mathcal{N}}: \mathcal{Q}_{\mathcal{N}} imes \Sigma \mapsto \mathcal{P}\left(\mathcal{Q}_{\mathcal{N}}\right)$	$\delta_{M}(Q, \sigma) \triangleq \{ q \in Q_{N} \mid \sigma \text{-reachable from } q_{i} \in Q \}$
start	$q_{0,N} \in Q_N$	$q_{0,M} = \{ q \in Q_N \mid \varepsilon ext{-reachable from } q_{0,N} \}$
accept	$F_N\subseteq Q_N$	$F_M = \{ q_m \in Q_M \mid q_m \cap F_N \neq \emptyset \}$

Hey! That's exponential!

and thus wildly impractical

- Powerset is exponential
 - |Q| = k
 - $|\mathcal{P}(Q)| = 2^k$
- ▶ But typically, don't actually need every subset in $\mathcal{P}(Q)$

In practice, we can usually construct DFA with fewer states.

Outline

 ε Closures ε -closure move- ε -closure

NFA Simulation

Subset Construction Algorithm

Outline

 ε Closures ε -closure move- ε -closure

NFA Simulation

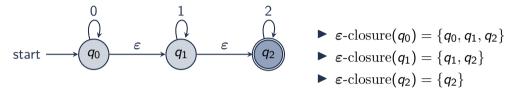
Subset Construction Algorithm

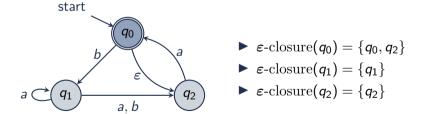
ε Closure Subroutines

 $\varepsilon\text{-closure}(q) \ \ \text{States reachable from} \ \ q \ \ \text{on} \ \ \varepsilon \ \ \text{transitions}$ $\ \text{move-}\varepsilon\text{-closure}(q,\sigma) \ \ \text{States reachable from state} \ \ q \ \ \text{after reading symbol} \ \ \sigma$

Construct the reachable subsets of NFA states

Example: ε -closure





States reachable from initial state on only ε transitions

11/30

ldea: *e*−closure

- ► Input: Initial set of states
- **Output:** Set of states (the closure) reachable only on ε transitions
- **Approach:** Recursively visit states and "accumulate" the ε -closure

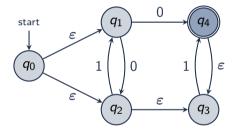
Base case: Visiting a state already contained in the ε -closure (set of states)

Recursive case: Add the current state and recurse on all its ε -neighbors

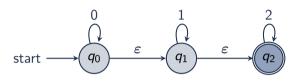
Algorithm: ε -closure

```
Algorithm 1: \varepsilon-closure(NFA,S,C)
  Input: NFA. S. C: // NFA, unvisited states, initial closure
  Output: C':
                                                                  // final closure
1 function visit(c,q) is // \mathcal{P}(Q) \times Q \mapsto \mathcal{P}(Q)
      if q \in c then // base case, state q already in closure c
           return C:
4
      else // Recursive case, visit all \varepsilon-successors of state q
5 return \varepsilon-closure NFA, \delta(q, \varepsilon), \{q\} \cup c;
6 C' \leftarrow \text{fold-left}(\text{visit}, C, S); // Visit all states in S
```

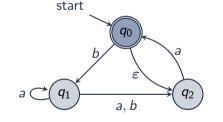

Exercise 1: ε -closure



Example: move- ε -closure



- ▶ move- ε -closure $(q_0, 0) = \{q_0, q_1, q_2\}$
- ► move- ε -closure $(q_0, 1) = \{q_1, q_2\}$
- ▶ move- ε -closure $(q_0, 2) = \{q_2\}$



- ▶ move- ε -closure $(q_0, a) = \{q_0, q_2\}$
- ► move- ε -closure $(q_1, a) = \{q_1, q_2\}$
- ▶ move- ε -closure $(q_2, a) = \{q_0, q_2\}$

States reachable from initial state after reading one symbol

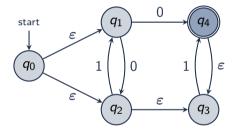
Idea: move- ε -closure

- **Input:** Initial state set Q and input symbol σ
- **Output:** Set of states reachable from Q after reading σ (any number of ε -transitions are allowed)
- ► Approach:
 - 1. Find ε -closure of initial set Q
 - 2. Find set of states after reading the symbol σ
 - 3. Find ε -closure of resulting set

Algorithm: move- ε -closure

```
Algorithm 2: move-\varepsilon-closure(NFA,Q,\sigma)
    Input: NFA, Q. \sigma:
                                                                                              // NFA, initial states, token
    Output: C':
                                                                                                                // reachable states
1 function visit(c,q) is // c: closure (post-move), q: initial state (pre-move)
      return \varepsilon-closure \left( \text{NFA}, \begin{pmatrix} \sigma \text{ reachable from } q \\ \delta(q, \sigma) \end{pmatrix}, c \right);
                                           \varepsilon-reachable after move
3 C' \leftarrow \text{fold-left}\left(\text{visit}, \emptyset, \underbrace{\varepsilon - \text{closure}(\text{NFA}, Q, \emptyset)}_{\varepsilon - \text{reachable from Q}}\right);
```


Exercise 2: move– ε –closure



Outline

 ε Closures ε -closure move- ε -closure

NFA Simulation

Subset Construction Algorithm

DFA Simulation

Review

- ▶ Input: DFA M and Input String ω
- ▶ Output: Does M accept ω ?
- ► Algorithm Outline:
 - 1. Evaluate the extended transition function on input string ω .
 - 2. At the end of the input string:
 - ► If the resulting state is an accept state, return accept
 - Otherwise, return reject

```
Algorithm 3: DFA-Simulate
   Input: M = (Q, \Sigma, \delta, q_0, F);
   Input: \omega:
                                     // input string
   Output: {accept, reject}
1 function \hat{\delta}(q,\omega) is
2
        if \omega = \varepsilon then return q;
        else
                   f \leftarrow \text{first}(\omega);
r \leftarrow \text{rest}(\omega);
6
              in return \hat{\delta}(\delta(q, f), r);
7
```

- 8 if $\hat{\delta}(q_0,\omega) \in F$ then return accept;
- 9 else return reject;

Idea: NFA Simulation

- ▶ Input: NFA N and Input String ω
- ▶ Outline: Does N accept the input string ω ?
- ► Algorithm Outline:
 - 1. Compute ε -closure of start state as the current state (subset)
 - 2. While the input string contains more symbols:
 - 2.1 Read the next input symbol
 - 2.2 Compute the move- ε -closure from the current state (subset)
 - 2.3 Update the current state (subset)
 - 3. At the end of the input string:
 - ▶ If the current state (subset) contains an accept state, return accept
 - Otherwise, return reject

Algorithm: NFA Simulation

Algorithm 4: NFA-Simulate

```
Input: N = (Q, \Sigma, \delta, q_0, F);
                                                 // states,alphabet,transition,start,accept
   Input: \omega;
                                                                                        // input string
  Output: {accept, reject}
1 function \hat{\delta}(u,\omega) is
        if \omega = \varepsilon then return u; // Base case at empty string
       else // Recurse on rest of string
             let u' \leftarrow \text{move-}\varepsilon\text{-closure}(N, u, \text{first}(\omega)) in
             return \hat{\delta}(u', \mathtt{rest}(\omega))
6 let u ← \varepsilon-closure(N, q_0, \emptyset) in
       if \hat{\delta}(u,\omega) \cap F \neq \emptyset then return accept;
       else return reject;
```

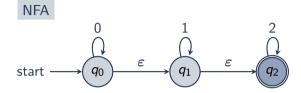

Outline

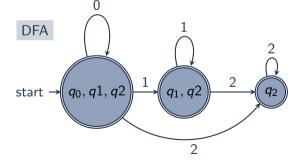
 ε Closures ε -closure move- ε -closure

NFA Simulation

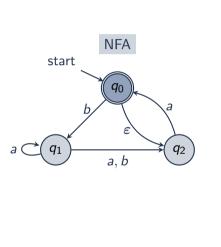
Subset Construction Algorithm

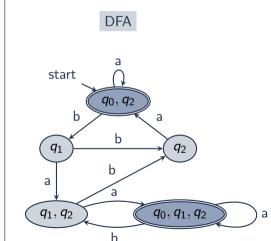
Example 0: NFA to DFA





Example 1: NFA to DFA





Idea: NFA to DFA Subset Construction

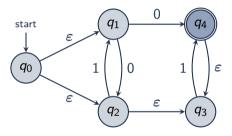
- ► Input: NFA
- ► Output: Equivalent DFA
- ▶ Algorithm Outline: Recursively visit subsets, beginning with ε -closure of the start state,
 - 1. If the current subset was already visited, return.
 - 2. For each symbol σ in alphabet Σ , find move- ϵ -closure from the current subset on σ .
 - 3. Add the resulting subset and edges, then recursively visit

Algorithm: NFA to DFA Subset Construction

Algorithm 5: NFA-to-DFA

```
Input: N = (Q, \Sigma, E, q_0, F):
                                             // NFA states, alphabet, edges, start, accept
    Output: M = (Q', \Sigma, E', q'_0, F'); // DFA states, alphabet, edges, start, accept
 1 function visit-symbol(Q', E', u, \sigma) is
         let u' \leftarrow \text{move-}\varepsilon\text{-closure}(u,\sigma) in // Find successor subset: u \xrightarrow{\sigma} u'
            if u' then return <code>visit-subset</code> \left(Q', E' \cup \left\{u \stackrel{\sigma}{	o} u'\right\}, u'\right) ;
             else return (Q', E');
 5 function visit-subset(Q', E', u) is
         if u \in Q' then return (Q', E'); // Subset already constructed
 7
         else
             let Q' \leftarrow Q' \cup \{u\} in
                   function h(E', \sigma) is return visit-symbol (Q', E', u, \sigma);
                   return fold-left(h, E', \Sigma \setminus \{\varepsilon\})
10
11 q_0' \leftarrow \varepsilon-closure(q_0);
12 (Q', E') \leftarrow \text{visit-subset}(\emptyset, \emptyset, q'_0);
13 F' = \{ a \in Q' \mid a \cap F \neq \emptyset \}:
```


Exercise 3: NFA to DFA



Practical usage of DFAs vs. NFAs

- ► Should we use DFA or NFA?
- ► If we already have an NFA:
 - 1. Simulate NFA by tracking all possible current states (subsets)
 - 2. Convert NFA to DFA by constructing the subsets of NFA state set
- ► Why use NFA at all? Stay tuned!

References

- Textbook: Sipser, 3rd ed.
 - ► Ch 1.1 Finite Automata
 - ► Ch 1.2 Nondeterminism
- Alt. Textbook: Hopcroft, 3rd ed.
 - ► Ch 2.3 Nondeterministic Finite Automata
 - ► Ch 2.5 Finite Automata with Epsilon-Transitions
- Alt. Textbook: Aho. 2nd ed.
 - ► Ch 3.6 Finite Automata
 - ► Ch 3.7 From Regular Expressions to Automata

