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SUMMARY

A familiar method for solving the exterior Neumann problem of acoustics in two
dimensions is to derive an integral equation of the second kind over the boundary
curve for the unknown potential, u, say. One way of doing this is to represent u as a
continuous distribution of simple wave sources over the boundary, leading to an
integral equation for the unknown source strength. Another way is to apply Green’s
theorem to u and a simple wave source (Helmholtz representation); when the field
point lies on the boundary, this gives an integral equation for the unknown boundary
values of u. It is well-known that both of these methods yield integral equations
which have unique solutions, except at the same discrete set of wave numbers (the
irregular values), corresponding to the eigenfrequencies of the interior Dirichlet
problem. The same methods can be modified to solve the exterior Dirichlet problem,
and both yield integral equations of the second kind which have unique solutions
except at the eigenfrequencies of the interior Neumann problem.

When the field point lies inside the boundary curve, the Helmholtz representation
gives an integral relation. Using the known bilinear expansion for the simple wave
source (in cylindrical polar coordinates), this integral relation may be reduced to an
infinite set of equations, called the ‘null-field’ equations; equations of this type were
first derived by Waterman, in 1965. In two dimensions, we show that the null-field
equations always have a unique solution—irregular values do not occur. This result is
proved here for both the exterior Neumann problem and the exterior Dirichlet
problem. Similar results may be obtained in three dimensions.

1. Introduction

IN the exterior boundary-value problems of acoustics, one is concerned
with finding solutions of the Helmholtz equation,

(V2 + k)¢ =0,

in the infinite region D, exterior to a simple closed Lyapunov curve 9D, such
that ¢ also satisfies certain boundary conditions. A general problem in two
dimensions is the following:
To find a potential u(P) satisfying the Helmholtz equation in D, the

radiation condition

d

r}. —E—iku)—>0 as rp—» o,

e
and a boundary condition on 3D; for the Neumann problem, this boundary
[Q. It Mech. appl. Math., XXXIIL, Pt. 4, 1980)
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condition is
du
a—(p)=f(p) on 4D, (1.1)
n,

whilst for the Dirichlet problem, it is

u(p)=g(p) on aD. (1.2)

The functions f(p) and g(p) are prescribed on dD. The notation is the same
as that used by Ursell (1, 2): capital letters P, Q denote points of D; small
letters p, g denote points of dD; the origin O is taken at an arbitrary point
inside D_, the complement of D UdD; P_, Q_ denote points of D_; rp is the
length OP; 3/an, denotes normal differentiation at the point p, in the
direction from D towards aD.

The usual approach for solving these two exterior problems of acoustics is
to derive an integral equation of the second kind, over the boundary aD.
One way of doing this is to assume that u(P) can be represented as a
distribution of sources (for the Neumann problem) or dipoles (for the
Dirichlet problem) over 4D, the source and dipole strengths are then found
to be solutions of Fredholm integral equations of the second kind. Alterna-
tively, integral equations of the second kind can be derived from Green’s
theorem (i.e. the Helmholtz formulae). It is well-known that both of these
methods (which will be described, briefly, in section 2) lead to boundary
integral equations of the second kind which are singular at a certain discrete
set of frequencies, corresponding to eigenvalues of the related interior
problems. This phenomenon is a consequence of the method of solution, for
it is known that the boundary-value problems have unique solutions at all
frequencies.

A different approach to this problem has been employed by Waterman
(3). His method is based on solving the Helmholtz formula in the interior,
D_, and leads to an infinite system of equations, rather than a single
(integral) equation; these equations, called the null-field equations, are
derived in section 3. In section 4, we show that the null-field equations
always have a unique solution, i.e. difficulties at interior eigenvalues do not
occur with this method. Finally, in section 5, we consider methods for solving
the null-field equations.

2. Boundary integral equations

Let G(P, Q) be any fundamental solution, i.e. G(P, Q) satisfies the
Helmholtz equation in D and the radiation condition at infinity, and has a
suitably normalised logarithmic singularity at Q (see, e.g., (1)). The simplest
choice for G(P, Q) is the free-space wave source,

Go(P, Q) =zimHE (k [rp —1g)), (2.1)
where H."(z) denotes the Hankel function of the first kind. If we apply
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Green’s theorem in D, to u(P) and G4(P, Q), we obtain the following
equations:

2mu(P)= | {GO(P, q)&u@)—u(q)iaom q)} ds,  (H1)

mu(p)= | {Go(p, q)%u(q)—u(q)i Golp, q)}ds.., H2)

oD

and

.

0= [ {6oP_, @5 ut@) - u(@) 2= GolP., a}as, ®©3
n, an,

“aD

These equations are known as (Weber’s analogue of) Helmholtz’s formulae
(see, e.g., (4), §84.2, 6.2). Similar equations may be derived when G(P, Q)
is replaced by any fundamental solution, G(P, Q).

(H.1) 1s a representation for the radiated field in D as a distribution of
sources and dipoles over dD; this integral representation may be used to
evaluate u everywhere in D when both u and dufon are known on aD.

For the Neumann problem, use of (1.1) in (H.2) yields

‘rru(p)+J‘

oD

w(@) s Golp, @) ds, = | Golp.a)f@ds,  (22)
Ny aD

which is an integral equation of the second kind for the unknown boundary
values of u. This integral equation possesses a unique solution unless the
corresponding homogeneous integral equation,

mu(p)+ |

aD

u(q) ai Go(p, q) ds, =0, (2.3)
™

has a non-trivial solution. It is known that (2.3) does have non-trivial
solutions whenever k? is an eigenvalue of the interior Dirichlet problem. At
these values of k? (called the irregular values), the integral equation (2.2)
does not have a unique solution for general f(p). However, this difficulty
may be overcome by using a different fundamental solution in place of
Go(P, Q) (1,2, 5).

A different approach for solving the Neumann problem is to represent
u(P) by a distribution of sources over dD (single layer),

u(P)=J

(:]

w(@)GolP, q) ds, (2.4)

On applying the boundary condition (1.1), we find that the unknown source
strength n(q) satisfies the integral equation

Tru(p)+J

aD

#(@) 5 Golp, 4) ds, = (p). 29
n,
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This integral equation is of the same form as (2.2), except that the kernel of
(2.5) is the transpose of the kernel appearing in (2.2) (here, we have used
the symmetry of the fundamental solution (2.1)). Hence, (2.5) has the same
irregular values as (2.2).

When k? is not an irregular value, the unique solution of (2.5) is seen to
solve the exterior Neumann problem. For the boundary condition (1.1) is
automatically satisfied by (2.4) if w(p) satisfies (2.5). This is not the case with
the integral equation (2.2). If we substitute the unique solution of (2.2) into
(H.1), we can define a function U(P), say, by

27U(P)= j

8D

{Gouz D@ -u(g) 5‘% GolP, q)} ds,,

U(P) certainly satisfies the Helmholtz equation in D, and the radiation
condition, but there is no a priori guarantee that U(P) satisfies the boundary
condition (1.1). However, it can be shown that, provided k? is not an
irregular value, U(P) does indeed satisfy (1.1) and hence U(P) is the
solution of the exterior Neumann problem (see Kleinman and Roach (6),
who review the corresponding problems in three dimensions).

For the Dirichlet problem, use of (1.2) in (H.2) yields an integral equation
of the first kind for the unknown boundary values of du/dn. To obtain an
integral equation of the second kind, we take the normal derivative of (H.1),
let P approach aD and then use (1.2) to give (6)

ou du(q) @ 3 d
w2 () | 2 Golp, ) dsy =~ | 8(a) 5= Golp, @) s,
ain o on, an, olD, q) as, 6np,,ng6nq o\P; q) ds,
(2.6)
{(Note that a sufficient condition for the existence of the right-hand side of
(2.6) is that g{(q) should be differentiable on the Lyapunov curve, dD; see

(6), §2.) This integral equation for du/dn possesses a unique solution unless
the corresponding homogeneous integral equation,

m»(p)—J

oD

)
U(Q) a_"l; Go(P’ q) dsq = O’ (27)

has a non-trivial solution. It is known that (2.7) does have non-trivial
solutions whenever k? is an eigenvalue of the interior Neumann problem.
As before, the difficulty of non-uniqueness at irregular values of k? may be
overcome by using a different fundamental solution in place of Gy(P, Q) (1).

An alternative approach for the Dirichlet problem is provided by repres-
enting u(P) as a distribution of dipoles over 3D (double layer). This leads to
an integral equation of the second kind for the unknown dipole strength.
This equation is of the same form as (2.6), except that the kernel is
transposed, and hence has the same irregular values. Again, it can be shown
that the solution of (2.6) does lead to a solution of the exterior Dirichlet
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problem, provided that k? is not an irregular value. For further details, see
the papers by Ursell (1) and Kleinman and Roach (6). )

The integral relation (H.3) asserts that the field induced in D_ by the
sources on dD is exactly cancelled by the field induced by the dipoles on aD.
In other words, although the continuation of the actual exterior field (i.e. the
solution of the boundary-value problem), across dD, does not vanish in D_
(otherwise, it would vanish everywhere), the field generated by the source
and dipole distributions over dD (which are used to represent the actual
field in D) does vanish throughout D_. Waterman (3,7) calls this the
‘extended boundary condition’, and (H.3) the ‘extended integral equation’.
In the next section, we shall derive, from the interior integral relation (H.3),
the infinite system of null-field equations.

3. The null-field equations
The free-space wave source, (2.1), may be written as (1, 3)

o

Go(P, Q)=3}im ). Y e do(Q(P), (3.1)

m=0o=1
for rq >rp, where
Ym(Q)= H(r:)(k’o)E:.(eo),
§(Q) = J(krg)Ex(6o),
El(8)=cos mé, E2(6) =sin m#,

and ¢,, is the Neumann factor defined by ¢,=1, ¢,, =2 for m >0.

Let C_ be the inscribed circle to 4D, which is centred on O. Similarly, let
C. be the escribed circle to aD. Denote the interior of C_ by Dy. When P_
lies in Dy (where r, <r,), we may substitute (3.1) into (H.3) to give

oo

L3 endaP] {ut@ s una-

m=0o=1

2utd) w"(q)} ~0. (32)

Since the regular functions 2, are orthogonal, it follows that each term in
(3.2) must vanish and so we obtain the following set of equations:

LD{ (q)—df"(q) uta) wf'(q)}
o=1,2, m=0,1,2,.. (N.F)

These are the so-called “null-field equations’ of acoustics (8, 9). Equations of
this type were first derived by Waterman (7) for electromagnetic scattering
problems and later, for acoustic scattering problems (3). More recently,
several authors have derived corresponding equations for elastodynamic
problems (10, 11).
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For the Neumann problem, use of (1.1) in (N.F) results in an infinite set of
equations for the bouridary values of u, whilst for the Dirichlet problem, use
of (1.2) in (N.F) leads to an infinite set of equations for the boundary values
of du/dn. Once u and du/on are both known on 4D, we may use the integral
representation (H.1) to evaluate u everywhere in D. In particular, if P lies
outside C,, we can use (3.1) in (H.1) to obtain

u(P)= Y ) coua(P), (3.3)

m=0oc=1

where the coefficients cg, are given by

ou(q)
on,

Jf‘:.(q)} ds,,
=12, m=0,1,2,...  (3.4)

The representation (3.3) implies that u(P) corresponds to outgoing waves,
everywhere exterior to C,. If we assume that u(P) may be represented in
this way, then we can derive the nuli-field equations more simply, as follows
(11). Apply Green’s theorem to u(P) and ¢Z(P) in the region bounded by
aD and S, where S is a large circle enclosing dD and centred on O. The
contribution from integrating over S may be evaluated by using (3.3) and
noting that, on S, 8/dn, = 3/dr,. Hence, using the orthogonality of Eg,(6), it
follows that this contribution must be zero. Choosing appropriate values for
m and o yields the complete set of null-field equations, (N.F). If we also
apply Green’s theorem in the same region to u(P) and §2(P) (i.e. the real
part of Yo (P), for k real), and then use asymptotic properties of ¢ (r, 8)
and §2(r, 6), for large r, we obtain (3.4).

This derivation is illuminating, for it demonstrates that the null-field
equations do not depend, essentially, on the bilinear expansion of the
free-space wave source (3.1), or on the interior integral relation (H.3), but
on the expansion of fields, which satisfy a radiation condition, as (3.3).

4ic:=j

aD

{u(q) 5% bo(q) -

4. Solvability of the null-field equations

In this section, we shall prove that the set of null-field equations, (N.F),
possesses a unique solution, v(q), for all real values of k?, where v(q) = u(q)
for the exterior Neumann problem and v(q)=du(q)/dn, for the exterior
Dirichlet problem. To do this, we show that v(q) satisfies (N.F) if and only if
v(q) satisfies an integral equation of the second kind, which is known to
possess a unique solution.

As an initial approach, we might try to reverse the (first) derivation of the
null-field equations: multiply each of (N.F) by ¢%(P-), where P_e Dy, and
then use (3.1) to yield (H.3), i.e.

wo(P_)= I Julq)

d
{“(q)i GolP- ) -2 6P, g)} as, =0. (a1

D ang
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This equation is valid for all P_e Dy. However, w, is a solution of the
Helmholtz equation in D_ which vanishes in Dy. Thus, we can assert that
(4.1) holds for all P_e D_ (continuation arguments of this type were also
used by Waterman (3, 7)).

Let us now consider the Neumann problem. Using (1.1) in (4.1) and
letting P_ approach aD, we obtain (2.2), which is an integral equation of the
second kind for u(q). As we have already remarked, (2.2) has a unique
solution, except at the irregular values of k* (i.e. at the eigenfrequencies of
the interior Dirichlet problem). Conversely, if we are not at an irregular
value, it follows that the unique solution of (2.2) also solves the null-field
equations. For wy(P_) satisfies the Helmholtz equation in D_ and, by (2.2),
w, vanishes on dD. Hence, w, vanishes everywhere in D_ and so u(q)
satisfies (4.1), i.e. u(q) satisfies (N.F), together with the boundary conditions
(1.1). )

At the irregular values, this argument must be modified. There are, in
fact, infinitely many integral equations satisfied by u(q), each one corres-
ponding to a different choice of fundamental solution, G(P, Q). In order to
derive a different integral equation of the second kind for u(q), we need
only take a different linear combination of the null-field equations. Suppose
we multiply the first N+1 of (N.F) by a%yo(P_), where the ag, are
constants. Adding the resulting equations to (4.1) gives

_du(q)

on, G,(P, q)} ds,=0, (4.2

wi(P.)= I

aD

{ut@ 5 Gi(P-g

where G,(P, Q) is a new (symmetric) fundamental solution, defined by

G\(P,Q)=Go(P,Q)+ Y Y alds(P)a(Q). (4.3)

m=0cgw=l

Proceeding as before, we let P_ approach 4D and use (1.1) to obtain

mup)+ [ u@) 2= Gi(p. ) ds, = |

3D q 3.

G.(p, 9)f(q) ds,, (4.4)

which is another integral equation of the second kind for u(q).
Fundamental solutions of the form (4.3) have been considered by several
authors. Ursell (1) found certain values for a2, o=1, 2, m=0, 1, 2,...,
which ensured that G,(P, Q) satisfied a dissipative boundary condition on a
circle lying inside D_; the corresponding integral equation (4.4) was then
shown to possess a unique solution for all real values of k2. More generally,
Jones (5) has considered (4.3) with a2, o=1,2, m=0, 1,..., N, all real and
non-zero. By choosing N large enough, he showed that any given value of
k? was not an irregular value for the fundamental solution, G,(P, Q), i.e. at
any given value of k?, we can always ensure that (4.4) has a unique solution.
The restrictions on af, have been further relaxed by Ursell (2), who showed
that the conditions |aZ +3im| >3 are sufficient for Jones’s results to hold.
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In summary, if u(q) satisfies the null-field equations, then, by taking a
suitable linear combination of these equations, we can see that u(q) also
satisfies an integral equation of the second kind, (4.4), which always has a
unique solution. Moreover, the solution of this integral equation also solves
the null-field equations and so we have proved the following theorem.

THEOREM 1. The null-field equations for the exterior Neumann problem of
acoustics (i.e. (N.F), together with the boundary condition (1.1)) possess a
unique solution for all real values of k.

Let us now consider the Dirichlet problem. If we take the normal
derivative of (4.2), use the boundary condition (1.2) and then let P_
approach 4D, we obtain

ulp) [ ula) 2 [
™ on, ho ang om G,(p,q) ds, = o o g(q)anq Gi(p, q) ds,,
(4.5)

which is an integral equation of the second kind for du(q)/on,  The same
argument as before now shows that (4.5) always has a unique solution, when
the coefficients appearing in (4.3) take on suitable values. Although Jones
(5) did not consider the exterior Dirichlet problem, the particular fundamen-
tal solution constructed by Ursell (1), for the Neumann problem, also solves
the Dirichlet problem. Using this particular fundamental solution, we see
that any solution of the null-field equations, for the Dirichlet problem, also
satisfies (4.5), an integral equation with a unique solution. Moreover, this
unique solution also satisfies the null-field equations. For w,(P_) satisfies the
Helmholtz equation in D_ and, by (4.5), dw,/dn vanishes on dD. Applying
Green’s theorem in D_ to w, and G,, we obtain

d
2w (P)= [ wi(a) s Gu(P_,a) ds, .6)
5D n,
Letting P_ approach 3D, (4.6) gives
d
()= | W) 5= Gu(p, 4) ds, =0, (4.7)
aD ng

Ursell (1) has shown that the only solution of (4.7) is the trivial one,
w,(g)=0, whence (4.6) shows that w,(P_)=0 and so du(q)/on, satisfies
(N.F), together with the boundary condition (1.2). Hence, we have proved
the following theorem.

THEOREM 2. The null-field equations for the exterior Dirichlet problem of
acoustics (i.e. (N.F), together with the boundary condition (1.2)) possess a
unique solution for all real values of k2.

As a corollary to Theorems 1 and 2, we can see that the interior integral
relation (H.3) always has a unique solution. For example, consider the
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exterior Neumann problem. Use of (1.1) in (H.3) gives

[ u(q);f;;co(P_, ds,= [ f@GUP_,a)ds, @.38)

If (4.8) is satisfied at all points P_e D_, then it is equivalent to the set of
null-field equations, and hence has a unique solution. In fact, if (4.8) holds in
a finite region of D_, then continuation arguments ensure that it holds
throughout D_. Similar results can be obtained for the exterior Dirichlet
problem.

5. Solution of the null-field equations

In the previous section we showed that the set of null-field equations and
the interior integral relation are equivalent, in the sense that any solution of
one is also a solution of the other. In fact, solving the null-field equations
could be interpreted as an indirect method of solving the interior integral
relation. So, before considering the solution of the null-field equations, it
may be worthwhile to examine what might happen if we attempted to solve
the interior integral relation, directly.

A simple method for solving the interior integral relation (for the
Neumann problem) is to satisfy (4.8) at a finite number of points in D_.
Choosing N points, P,e D_, we find that

| w@s=Gupy @ ds,= | @GP ds, i=1,2..N. (5.1
aD ng aD

This is a system of N equations from which an approximation to u(q) may
be found. Since we have only satisfied (4.8) at a discrete set of points,
continuation arguments are not applicable, and so we cannot use Theorem 1
to say anything about the solution of (5.1). Indeed, if k? is an eigenvalue of
the interior Dirichlet problem, and all the points P, lie on the nodal lines of
the corresponding eigenfunction (v(P_), say), then (5.1) will not have a
unique solution (12). This result follows by noting that v(P.) can be
represented as a dipole distribution over 4D, namely

v(P)= J

oD

d
V(Q) E GO(P—’ q) dsq7

where v(q) is a non-trivial solution of

m(p)+ |

;18]

d
¥(@) 5, Golp. @) ds, =0.

(v(P_) can also be represented by a distribution of sources over aD; see (6),
§4.) Thus, when all the points P, lie on the nodal lines of v, there exists a
non-trivial function v(q), which satisfies

d
0= j v(a) 5 GolP, @) dsy;
oD n,
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such a function can then always be added to any solution of (5.1). Since the
eigenfunctions of the interior Neumann problem can also be represented as
a dipole distribution over aD, it follows that the solution of (5.1) is also
non-unique whenever k2 is an eigenvalue of the interior Neumann problem
and all the points P, lie on the nodal lines of the corresponding eigenfunc-
tion.

In general, the position of the nodal lines in D_ is not known, a priori, and
so the choice of the points P, must be based largely on experience and
intuition. It is also not known what would happen if only some of the points
P, were to lie on nodal lines. Finally, it can also be shown that this method
of solution exhibits the same difficulties when applied to the exterior
Dirichlet problem. Consequently, we see that this simple method for solving
the interior integral relation may not yield the correct solution, and so we
shall now briefly describe how the null-field equations can be solved.

The null-field equations for the exterior Neumann problem may be
written as

0
| w@vr@ds=fe, o=12 m=012., 2
aD an,
where u(q) is to be determined and the known constants fg, are given by
fam | fawa@ ds,
aD

For the exterior Dirichlet problem, the null-field equations may be written as

d
I M.p';:(q)a!.sq=g;:, c=1,2, m=0,1,2,., (5.3)
hp ONg

where du(q)/an, is to be determined and
d
gm= J g(q)a—— P(q) ds,.
aD n,

If 3D is a circle, centred on O, then (5.2) and (5.3) simply give the Fourier
components of u(q) and du(q)/on,, respectively. For any other geometry, the
null-field equations must be solved numerically.

One approach is to expand the unknown function as a series of basis
functions. For example, consider the Neumann problem and expand u(q) as

u(q)= i u,$.(q), (5.4)

n=0Q

where the set of functions {¢,(q)} is required to be complete over aD.
Substituting (5.4) into (5.2), we obtain

S -——a a = fO = =
P unL h@g @ ds, = 0=12 m=012.,
(5.5)
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which is an infinite system for the unknown coefficients u,; truncating this
system leads to a numerical method for solving the null-field equations.

Different authors have advocated different choices for ¢.(q). For exam-
ple, Waterman (3) chose ¢, = ¢, and thus reintroduced the difficulties at
irregular values, for the set {/2} is not complete at these values (3). Bates
and Wall (9) have considered some other choices for ¢,(q). However, at
present there does not appear to be a satisfactory criterion for choosing the
(complete) set of functions {¢,(q)}; it is reasonable to hope that a judicious
choice may lead to an efficient numerical method for solving the null-field
equations. We shall not give any further discussion of the numerical aspects
here, but simply remark that many successful computations, based on the
null-field equations, have been reported in the literature since Waterman’s
first paper, in 19635.

6. Condusions

Until recently, the exterior problems of acoustics were generally treated
by solving an integral equation of the second kind over the boundary curve;
it is well-known that the usual boundary integral equations are not uniquely
solvable at the irregular values of k2. An alternative method, which was first
proposed by Waterman (3, 7), is to solve the infinite system of null-field
equations. In this paper, we have shown that the null-field equations always
have a unique solution—the unphysical irregular values do not occur.
Moreover, this solution may be used to solve the original boundary-value
problem. We have proved these results in two dimensions, for both the
exterior Neumann problem and the exterior Dirichlet problem. Similar
results can be proved in three dimensions.

In section 5, we described a simple exact method for reducing the
null-field equations to an infinite system of linear algebraic equations. This
method may be used to solve the null-field equations, numerically, by
making two approximations: the infinite set of equations must first be
truncated and then the unknown function must be approximated by a finite
combination of the chosen basis functions. In the future, it is hoped to
examine these approximations and to discuss other numerical aspects of the
null-field method.
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