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The best known methods for solving the scattering and radiation problems of acoustics are integral-equation methods.
However, it is also known that the simplest of these methods yield equations which are not uniquely solvable at certain
discrete sets of frequencies (the irregular frequencies). In this paper, we shall analyse an alternative method (the null-field
method, or T-matrix method). We prove that the infinite system of null-field equations always has precisely one solution,
i.e. the unphysical irregular frequencies do not occur with this method. Moreover, we also prove that the solution of the
original boundary-value problem can always be determined (at any point exterior to the scatterer) from the solution of the
null-field equations. We prove these results in two dimensions, for two radiation problems (the exterior Neumann problem
and the exterior Dirichlet problem) and two scattering problems (scattering by a sound-hard body and scattering by a
sound-soft body); similar results can be proved in three dimensions. We also prove some subsidiary results, concerning the
solvability of certain boundary integral equations and the completeness of certain sets of radlatmg wave-functions, and give

a discussion of related numerical techniques.

1. Introduction

The null-field method (or T-matrix method) is
used widely for obtaining numerical solutions to
various scattering and radiation problems. This
method was first devised by Waterman [1] for
electromagnetic scattering problems. Later, it was
developed for treating problems in acoustics [2-5],
elastodynamics {6, 7] and hydrodynamics [8]; for
a collection of papers on the null-field method,
see the conference proceedings edited by Varadan
and Varadan [9].

In this paper, we shall use the null-field method
to solve four basic boundary-value problems in
acoustics. For each problem, we derive the corre-
sponding infinite system of null-field equations.
We then prove the following theoretical results
for each problem:

(a) The null-field equations always have pre-
cisely one solution.

(b) The solution of the boundary-value prob-
lem can always be constructed from the solution
of the null-field equations.

These results are in marked contrast to the usual
integral-equation methods, which are known to
suffer from difficulties at the unphysical irregular
frequencies, corresponding to eigenvalues of cer-
tain interior problems; see, e.g. [10, 11], and Sec-
tions 3 and 4 of the present paper.

In the next Section, we formulate our four boun-
dary-value problems; two of these are radiation
problems (the exterior Neumann problem and the
exterior Dirichlet problem) and two are scattering
problems (scattering by a sound-hard obstacle and
by a sound-soft obstacle). Since our proofs of (a)
and (b) are based on integral-equation methods,
we give a description of these in Sections 3 and
4. In Section 4, we also prove some new results
on the solvability of certain integral equations
which arise in the study of scattering problems.
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Section 5§ includes our proof of (a) and (b) for the
two radiation problems (some of these results have
been stated previously in [5]). In this section, we
also prove certain completeness results which are
useful when solving the null-field equations (see
Corollaries 7.2 and 8.2). Section 6 includes our
proofs of (a) and (b) for the two scattering
problems.

In Section 7, we discuss the (numerical) solution
of the null-field equations. We describe two simple
methods, derive the well-known T-matrix (for
scattering problems), and examine the computa-
tional difficulties that can arise.

In summary, the purpose of this paper is to place
the null-field method on a firm, mathematical
foundation. In particular, the absence of irregular
frequencies is an important feature of the method,
since the location of these frequencies in the spec-
trum is unknown a priori for a given geometry.
However one difficult question still remains unan-
swered: can it be proved that any given numerical
implementation of the null-field method wiil yield
a sequence of approximations which converges to
the unique solution of the infinite system of null-
field equations?

2. Statement of the four problems

In this paper, we shall be concerned with finding
solutions of the two-dimensional Helmholtz
equation,

(V2 +kHu=0 (2.1)

in the infinite region D, exterior to a simple closed
Lyapunov curve 8D, such that u also satisfies
certain other conditions. If u satisfies (2.1), we
shall call 4 a wave-function. If u also satisfies the
radiation condition

ou
r}/z(—-——lku) >0 asrp—>00,
arp

we shall call u a radiating wave-function. We can
now state our four boundary-value problems:

Exterior Neumann problem A. Find a radiating
wave-function u (P) which satisfies

du(q)

on, =f(q) onaD. (2.2)

Exterior Dirichlet problem 9. Find a radiating
wave-function u (P) which satisfies

u(q)=g(q) onaD. (2.3)

Scattering problem &,. Find a wave-function u (P)
which satisfies

J

——:'fq) ~0 onaD, (2.4)
q

and is such that u —u®

tion.

is a radiating wave-func-

Scattering problem ¥,. Find a wave-function u(P)
which satisfies

u(@)=0 onaD, (2.5)

and is such that ¥ —u® is a radiating wave-func-

tion.

We shall use the following notation: capital
letters P, Q denote points of D ; lower-case letters
p, q denote points of aD ; the origin O is taken at
an arbitrary point inside D_, the complement of
D uaD (i.e. D_ denotes the interior of the body);
P_, Q_ denote points of D_; rp is the length OP;
and 9/dn, denotes normal differentiation at the
point g, in the direction from D towards D (if
no confusion can arise, we shall omit the subscript
q)-

The functions f(p) and g(p) are prescribed on
aD. Thus, # and & are radiation problems, where
the normal velocity and pressure, respectively, are
prescribed on the body.

%1 and &, correspond to the scattering of an
incident wave u®(P) by a sound-hard body and
a sound-soft body, respectively; u Disa prescribed
function, which satisfies (2.1) everywhere, except
possibly at a finite number of isolated points in
D, e.g. u® may correspond to an incident plane
wave, or a radiating line source.
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The usual approach for solving these four prob-
lems is to derive an integral equation of the second
kind, over the boundary aD. In the next two sec-
tions, we shall describe various ways of doing this.

3. Boundary integral equations for radiation
problems

Let G(P, Q) be any fundamental solution, i.e.
G (P, Q) is a radiating wave-function in D, with a
logarithmic singularity at P= Q. The simplest
choice for G(P, Q) is the free-space wave source,

Go(P, Q)=3iwHS (k|re —rol), (3.1)

where H'" (z) denotes the Hankel function of the
first kind and order n.

In order to obtain boundary integral equations,
we begin by applying Green'’s theorem to G, and
another radiating wave-function, v say, in the
region between dD and S, where S is a large
circle, of radius r» and centre O. Since G, and v
both satisfy a radiation condition, the contribution
from integrating over S, vanishes as r,~> 0.
Hence, we obtain the well-known Helmholtz for-
mulae [5]:

2o (P)= j ) {62, a) =—0@)
()G, ) ds.. (3.2
0@ 5o GolP. )} dsy, (32)
J
7v(p) = j D{Go(p,q);m—v(q)
9. q
0
—U(Q)EGO(PJI)} ds, (3.3)
d
0= {60 ;200

ad
~0(@) 5= GolP- )} ds,. (3.4

Similar formulae may be obtained when Gy(P, Q)
is replaced by any other fundamental solution,
G(P, Q).

Suppose that u(P) solves A. Then, (3.2)
becomes

2wu(P)= J

oD

{ Go(P, q)f(q)

d
—u(q)EGo(P,q)} ds,. (3.5)

Similarly, if u (P) solves 9, we obtain

ou(q)
ong

2mu(P) = LD {Gopg)

d
~8(@)3,-GolP, q)} s, (3.6)

(3.5) ((3.6)) is a representation for the solution
of (%) in terms of a distribution of sources and
dipoles over aD. (Other representations are poss-
ible; see Section 4.) Such distributions have well-
known properties, e.g. a source distribution is
continuous across 3D, but its normal derivative is
discontinuous across aD; see, e.g. {11]. We shall
make use of these properties in deriving boundary
integral equations.

Suppose that u (P) solves A. From (3.3), we have

wu(p)+ LD u(q) £—Go(l?, q) ds,

- LD Golp, 0)f(@) dsa (3.7)

which is a Fredholm integral equation of the
second kind for the unknown boundary values of
u. This integral equation possesses a unique sol-
ution unless the corresponding homogeneous
integral equation,

mo(p)+

)

)
v(q)a—Go(p,q)dsq=0 (3.8)
D nq

has a non-trivial solution. It is known that (3.8)
does have non-trivial solutions if and only if k2
coincides with an eigenvalue of the corresponding
interior Dirichlet problem [10, 11]. We denote
the infinite discrete set of these eigenvalues by In.
Thus, if k*e Iy, there exists a non-trivial wave-
function in D_ which vanishes on aD. At these
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values of k? (called the irregular values), the
integral equation (3.7) does not have a unique
solution for general f(p).

So, if k* is not an irregular value, we can find
u{(q), the unique solution of (3.7), and then define
a function U (P) by

vP)=5- [ {GuP.ar@
~u(@) 5 ~GolP, @)} dsy. (3.9)
q ong olf’s 4 q: .

Does U(P) solve &? This (non-trivial) question
is answered affirmatively by

Theorem 1. If k* & I and u(q) is the unique sol-
ution of (3.7), the function U (P), defined by (3.9),
solves the boundary-value problem X

Proof. (A proof of this theorem has been given
by Kleinman and Roach [11]. We shall give their
proof here, since we shall wish to modify it in the
sequel.) It is clear that U (P) is a radiating wave-
function. It only remains to show that U (P) also
satisfies the boundary condition on 4D, namely

d
an, U (P)=1(P). (3.10)

If we differentiate (3.9) and let P approach 8D,
we see that U will satisfy (3.10) if u (q) also satisfies
the following compatibility condition :

d d
—_— —Golp,q)d
an, LD u(@) ang o(p, 9) dsq

= —mf(p)+ LD @) —a-,‘:—pc()(p, q) ds,.
(3.11)

(Note that a sufficient vcondition for the existence
of the left-hand side of (3.11) is that u be
differentiable on the Lyapunov curve D ; see, e.g.

[11})

Let us define a function in D_ by

UalP)= | {GolP-, a)r(@

d
—u(q);Go(P-,q)}dsq. (3.12)

q

Uy is a wave-function in D_ and, if we let P_
approach D, we find that

Uo(p) =—mu(p)+ LD {Go(p, q9)f(q)

]
~u(@) 57-Golp, )} &,

=0, by(3.7).

Since k2¢ Iy, it follows (by the definition of Iy)
that U, vanishes identically in D_ and, in par-
ticular, dUo(p)/dn, =0, where 8/dn, denotes the
normal derivative at p when p is approached from
inside D_. Differentiating (3.12), we find that

]

0=—
dnp

Uo(p)

= —mf(p)+ LDf(q) %Go(p, q) ds,

i) a
| (@) 5~Golp, @) ds,
8D Ng

on,
Thus, the compatibility condition (3.11) is
satisfied, and so (3.9) solves . This completes the
proof of Theorem 1.

Let us now consider the exterior Dirichlet prob-
lem, i.e. suppose that u(P) solves &. If we
differentiate (3.2), and then let P approach aD,
we obtain

au(p)_j du(q) o
™
9.

= Golp,
n, i ong om, op» q) dsg

d 2
=- L[ @ Gopa)dsy  (313)
np Jap ong

where we have used (2.3). This is a Fredholm
integral equation of the second kind for the
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unknown boundary values of du/on ; it possesses
a unique solution unless the corresponding
homogeneous equation,

ﬂv(p)—j

oD

3
v(q)a—Go(p,q)dsq=0, (3.14)
Rp

has a non-trivial solution. It is known that (3.14)
does have non-trivial solutions if and only if k>
coincides with an eigenvalue of the corresponding
interior Neumann problem [10, 11]. We denote
the infinite set of these eigenvalues by Ip. Thus,
if k2 Ip, there exists a nontrivial wave-function
in D_ whose normal derivative vanishes on aD.
At these values of k2, the integral equation (3.13)
does not have a unique solution for general g(p).
When &2 is not an irregular value, we can solve
9 by solving (3.13):

Theorem 2. If k*¢Ip, and du/on is the unique
solution of (3.13), the function V(P), defined by

1

ve)-5- | [Gup) B

ang

d
—g(q)EGO(P,q)} ds, (3.15)

solves the boundary-value problem 9.

Proof. (This proof has also been given by Klein-
man and Roach [11].) Since V is clearly a radiating
wave-function in D, we only need to show that
V(p)=g(p), i.e. du/on must satisfy

du(q)
ang

_[ Go(p, q) ds,
aD

=ﬁg(p)+IaD8(Q)£—Go(P,Q) ds,.

(3.16)
We define a wave-function in D_ by
" 9
voe)={ {Gur., 92
aD ong

ad
~8(4) 3,-Go(P-, q)} ds,. (3.17)

Differentiating, and letting P approach 3D, we
find that

9 ou(p)
—Vo(p) = —m——
an, VP =T
du(q) @
+ —Golp,q)d
LD on, o, o(p, q) ds,

) 3
-— —G
on, LD g(q) an, olp, q) ds,

=0, by(3.13).
Since k> £ Ip, it follows that V, vanishes identically

in D_ and, in particular, Vo(p)=0. Hence, from
(3.17),

0= Vo(p)
=—ﬂg(p)+IaD{Go(p,q)%@
~g@ 5;‘::60@, 9} ds,

i.e. the compatibility condition (3.16) is satisfied,
and V(P) solves 2.

4. Boundary integral equations for scattering
problems

Consider the boundary-value problem %, (scat-
tering by a sound-hard body). Write

u®P)=u@P)-u®P), 4.1)

where u(P) solves &;. Thus u®(P) is a radiating
wave-function which satisfies

0 (s) 0 [6)]
— _—u 4.2
3 ) u (P) 3 ) (p) ( )

on aD. Hence, u®(P) solves A, with boundary
data (i.e. f) given by (4.2). It follows that we can
solve &, by using the method described in Section
3 for solving W, i.e. if k> & Iy, we determine u “q),
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the unique solution of

ﬂu(s)(p)+j

aD

o 9
u®(q) 2 Go(p: @) dsg
Nq

LG
- [ Gupa)mu®@ds, @3
aD anq
and then, by Theorem 1,

(s) _:_1_
us ()= 27 I

oD

{Go®,0) %u“’(q)

+ug) S GolP, )] ds, 4.4)
Ry

(4.3) is an integral equation of the second kind
for u®(p). We shall now derive an integral
equation of the second kind for u(p)=
u(s)(p)+u(i)( p); this equation is of the same form
as (4.3), but has a much simpler right-hand side.

Apply Green’s theorem in D_ to Go and u®.
Since # is a non-singular wave-function in D_,

we obtain

- 9 ®
0=] {cur.a);ua
OPN
~u¥q) =GP, 9)| dsy (4.5)
Rq

N

)
" {Go(p, q) an, u(q)

~u@) ;- Golp. )} dsy, (4.6

and

e =

oD

{Goe-0) %u“kq)

~u®g) =-Go(P-, O)ds. @7
g

Also, since u®(P) is a radiating wave-function, it
satisfies (3.2-4); adding these to (4.5-7), and using
the boundary condition (4.2), we obtain

2mu®(P) = — J'

8

d
b u(q) EGO(P’ Q) dsq’
(4.8)

wu(p)+ID u(q) %GO(Pa q) ds,
9. q

=2mu®(p), 4.9)

and

J u(q) ——GolP_, q) ds, = 2mu(P_),
oD anq
(4.10)

(4.8) is an integral representation for u®(P) as
a distribution of dipoles over aD, whilst (4.9) is a
Fredholm integral equation of the second kind for
u(q). This equation is of the same form as (4.3)
(and (3.7)), and hence has the same irregular
values. (Although (4.9) has a very simple right-
hand side, it does not seem to have been used
widely for solving #;.) Moreover, in Theorem 3,
we shall prove that if k2 is not an irregular value,
then (4.8) gives the solution of &, when u(q) solves
(4.9).

It is interesting to compare our integral rep-
resentations (4.4) and (4.8) with another standard
form, obtained by writing

u®(p) =I (4.11)

a

K (q@)Go(P, q) ds,.

This is an integral representation for u(P) as a
distribution of sources over aD; if we use the
boundary condition (4.2), we find that the
unknown source strength u(g) satisfies

Tm(p)+_[

)

)
—Golp, q)d
D"(q)anp o(p, q) dsq

=2 L0p). (4.12)

an,
(This method may also be used for solving &)
This integral equation has a kernel which is
the transpose of the kernel in (4.9), and hence
has the same irregular values. (Here, we have used
the symmetry of the fundamental solution (3.1).)
Also, when k? is not an irregular value, we may
substitute the unique solution of (4.12) into (4.11),
and this will solve &, since the boundary condition
(4.2) is automatically satisfied if u satisfies (4.12).
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In summary, we have three different integral
representations for u®(P), where u =u®+u® is
the solution of &;; these representations are listed
in Table 1, together with the corresponding
integral equations of the second kind.

Table 1

Representations and integral equations for scattering problem
&

Representation for u(’)(P) Integral equation

Sources +dipoles, (4.4) 4.3)
Dipoles only, (4.8) 4.9)
Sources only, 4.11) (4.12)

Let us now prove

Theorem 3. If k¢ Ix and u(q) is the unique sol-
ution of (4.9), the function U(P), defined by

U®) =u®Pp)
1

)
~ A ~ P’ +
e LD u(q) an, Go(P, q) ds,

(4.13)
solves the boundary-value problem &,.
Proof. Clearly, U —u® is a radiating wave-func-

tion in D. U will also satisfy the boundary condi-
tion (2.4) if u satisfies

N0)
_an,," (p)
1 9 )
== — . (414
2 on, LDu(q)aano(p,q)dsq 4.14)

If we now define a wave-function in D_ by

UoP)= |

aD

—27u®(P),

d
u(q) EGO(P_’q) ds,

we can use exactly the same arguments as used in
the proof of Theorem 1 to prove that u(q) satisfies
(4.14), i.e. U (P) solves &;.

Let us now consider &, (scattering by a sound-
soft body). We can solve &, for u(P) by solving
P for u®(P), where (4.1) is satisfied in D and

u®(p)=~u"(p) (4.15)

on aD. Thus (from Section 3), if k> & Ip, we deter-
mine du®/an, the unique solution of

0
m—u“(p)
an,

d (s) d
-| — —Go(p,q) d
LD ang (@) an, o(p, q) dsq

__9 Y
o LD u"@) 5-Golp ) dsy (416

and then, by Theorem 2,

(s) __1_
u(P)= 211'J

3D

{Gop,0) %u‘“(q)
q

+u®%q) -G, q)} ds, (4.17)
ong

Alternatively, we could represent u®(P) as a dis-
tribution of dipoles over dD,

4O (P) = J 4.18)

oD

d
v(q) a—';:Go(P, q) dsg;

if we use the boundary condition (4.15), we find
that »(q) satisfies

wv(p)— J;D v(q) %GO(P, q) ds,

=u®p). 4.19)

Finally, we can obtain a representation as a
distribution of sources over aD, as follows. u®
satisfies (3.2-4) and u® satisfies (4.5-7). If we add
(3.2) and (4.5), differentiate, let P approach aD,
and then use (4.15), we obtain

au(p)_J‘ du(q) o8
™

Go(p,q) ds
on, o on, on, olp, q) dsq

2
an,

=2 —u®(p). (4.20)
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Similarly, if we add (3.2) and (4.5), we obtain

ou(q)
ong

== [ Gop g2 Las, @21
2w oD

whilst from (3.4) and (4.7),

du(q)
ong

J' Go(P_, q) ds, = —2mu®(P.).

” (4.22)

We can prove

Theorem 4. If k*¢ Iy and ou/dn is the unique

solution of (4.20), the function V(P), defined by
v(P)=u®(P)

du(q)
ong

1
+——j GoP,q) 2V 45, (4.23)
oD

2%
solves the boundary-value problem &,.
Proof. Clearly, V —u" is a radiating wave-func-

tion in D. V will also satisfy the boundary condi-
tion (2.5) if u/on satisfies

i 1 ou(q)
@ =
wp) =3[ Golpa) P ds,  424)
If we now define a wave-function in D_ by
)
Vo(P_)= I Go®_, ) 2D 4
aD anq

we can use exactly the same arguments as used in
the proof of Theorem 2 to prove that du/dn
satisfies (4.24), i.e. V(P) solves ¥>.

Thus, we have three different integral rep-
resentations for u®(P), where u =u®+u® is the
solution of &,; these representations are listed in
table 2, together with the corresponding integral
equations of the second kind.

When ke In(Ip), all of the integral equations
listed in Table 1 (2) are not uniquely solvable.
This difficulty may be overcome by using a
different fundamental solution in place of
Go(P, Q) (see the next section and [10, 12, 13)),
by taking a suitable linear combination of the

Table 2

Representations and integral equations for scattering probiem
%2

Representation for u(s)(P) Integral equation

Sources +dipoles, (4.17) (4.16)
Dipoles only, (4.18) (4.19)
Sources only, (4.21) (4.20)

Helmholtz formula (3.2) and its normal-derivative
form (cf. (3.13)) (see, e.g. [14]), or by using a
different integral representation for u®(P) (see
[11] for references). However, the irregular
frequencies are unphysical (i.e. they are a con-
sequence of the method of solution), since it is
well known that the original boundary-value prob-
lems always possess unique solutions; see [10] for
references. In the remainder of this paper, we shall
describe an alternative method (the null-field
method) which always yields (theoretically) the
unique solution of the boundary-value problem,
i.e. irregular values do not occur with this method.

5. The null-field equations for radiation problems

Consider the interior integral relation (3.4). This
asserts that the field induced at any point in D_
by the sources on aD is exactly cancelled by the
field induced by the dipoles on 4D. Waterman [1,
3] calls this the ‘extended boundary condition’,
and (3.4) the ‘extended integral equation’. We
shall use (3.4) to derive the null-field equations
for radiation problems.

We begin by noting that the free-space wave
source (3.1) may be written as [3-5, 10]

=] 2
Go(P, Q) =3im ¥ zlw::,(ow?m’) (5.1)

m=0 o=
for rp <rg, where
¥m(Q)=H} (kro)Er(6a),
$m(Q) =T (kra)E7(60),
Er(0)=2"cosmé form >0,

Ef,,(¢9)=21/2 sinmé form=0,
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E¢ =1 and (r, ) are cylindrical polar coordinates
centred on O. (Note that our definition of Ej,
differs from that used in [5].)

Let C_ be the inscribed circle to 3D, which is
centred on O. Similarly, let C. be the escribed
circle to aD. Denote the interior of C. by Dy.
When P_ lies in Dy (where r, <r,), we may sub-
stitute (5.1) into (3.4) to give

© 2, . 3
Sy «pm(P_)LD{u(q)awm(q)

m=0co=1

a“(‘”w @} ds,=0. (52

Since the regular wave-functions ¢, are
orthogonal over any circle centred on O, it follows
that each term in (5.2) must vanish, i.e.

ou(q)

L {u(q)—""ﬁm(CI)— '/lm(q)}dsq—o

(c=1,2;m=0,1,...). (5.3)

These are the null-field equations of acoustics
[3-5].

For the exterior Neumann problem (X&', use of
the boundary condition (2.2) leads to

9 . ~
Lbu(qm;wm(q)dsq—f;

(c=1,2;m=0,1,...), (5.4a)

where

fo= LDf(qw;(q) ds, (5.4b)

are known constants. If X denotes the infinite set
of functions {d¢./on}, then the null-field
equations simply give the ‘moment’ of u(g) with
respect to each function in X. Thus, u(q) is to be
determined from the infinite set of moment-like
equations, (5.4). (Note that these are not integral
equations.)

For the exterior Dirichlet problem (2 ),‘use of
the boundary condition (2.3) in (5.3) leads to

du(q)
J,, S ds, =

e=1,2;m=0,1,...), (5.5a)

where

gn=| 8@ v ds, (5.50)
oD nq

are known constants, and du/on is to be deter-

mined.

If we know both « and du/dn on aD, then we
can find u(P) everywhere in D from the integral
representation (3.2). In particular, if P lies outside
C.,, we can use (5.1) in (3.2) to give

u(P)= Z Z Cmm(P)

m=0o=1

(5.6a)

where

=g | (@2

~u(@) 3G (@} ds,. (5.6b)
Rq

Since u(P) is a radiating wave-function, we can
assume that (5.6a) holds exterior to some large
circle S, centred on O, and then proceed to derive
the null-field equations more simply; see [5, 15]
for details.

Let us now prove that the null-field equations
are always uniquely solvable. To do this, we show
that v(q) solves the null-field equations if and only
if v(q) solves an integral equation of the second
kind which is known to possess a unique solution.

Consider . Initially, we multiply each of (5.4)
by 2% (P_), where P_e Dy, and then sum, using
(5.1), to give

Uo(P-)=0, P_eDn, (5.7

where U is defined by (3.12). However, since Up
is a wave-function which vanishes in Dy, we can
use continuation arguments to assert that U
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vanishes everywhere in D_. In particular, if we let
P_ approach aD, we obtain (3.7), which is an
integral equation of the second kind for u(g). As
we have already remarked (Section 3), (3.7) has
a unique solution, except when ke ly. Con-
versely, if k% & I'y, it follows that the unique solution
of (3.7) also solves the null-field equations, (5.4).
For, if u(q) solves (3.7), we can define a function
Uo(P-) by (3.12), which, by the arguments used
in the proof of Theorem 1, vanishes everywhere
in D_, and so u(q) satisfies (5.4).

At the irregular values of k2, this argument must
be modified. Multiply each of (5.4) by a ¢ (P-),
where P — € DY = D\\{O}and the constants a3, are
unspecified at present. Adding the resulting
equations to (5.7) gives

UP)=|

9.

R {Gl(P-,q)f(q)

-u(q) %Gl(P_, q)} ds; =0, (5.8)

where G((P, Q) is a new (symmetric) fundamental
solution, defined by

Gi(P, Q)=Go(P, Q)

o 2
+ X X an¥m(PWn(Q). (5.9)

m=0coc=1

Proceeding as before, we let P_ approach dD and
obtain

'rru(p)+LDu(q) b—Z—Gx(P, q) ds,

- Gip 0@ dss (5.10)
aD

which is another integral equation of the second

kind for u(q).

Ursell [10] has considered a fundamental sol-
ution of the form (5.9). He found certain (complex)
values for a{, which ensured that G,(P, Q)
satisfied a dissipative boundary condition on a
circle lying inside Dy; he proved the following
theorem.

Theorem 5. (Ursell [10].) Let the function F(p)
be prescribed on dD. Then, the integral equation of
the second kind

mwu(p)+ LD u(q) —Gi(p, q) dsg

9
ang

=F(p) (5.11)

is uniquely solvable for all real values of k.
Similarly, the equation

mu(p)- |

)

ui(q) Ba—Gl(p, q) ds,
D np
=F(p) (5.12)

is also uniquely solvable for all real values of k.

Jones [12] and Ursell [13] have considered
fundamental solutions of the form (5.9), but with
only a finite series added to Go. The following
theorem is typical:

Theorem 6. Let F(p) be prescribed on 3D and let
GV (P,Q)=Go(P, Q)

N 2
+ 3 Zl amlm(P)Ym(Q).

m=0og=
(5.13)
Then, the integral equation
d
wu(p)+I u(q) —G{(p, q) ds,
aD anq
=F(p) (5.14)

is uniquely solvable at any given real value of k>,
provided that (i) N is sufficiently large, and (ii) the
constants a, satisfy
[2a 5, +3iw| >3, (5.15)
for 0=1,2 and m=0,1,...N. (Actually, the
theorem is true if the inequality in (ii) is replaced by

12ay, +3in| <3, (5.16)

forc=1,2and m=0,1,...N.)
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Notice that, although Theorem 6 only applies
to the integral equation (5.14) (which arises in
the solution of ), it is straightforward to modify
Ursell’s proof [13] in order to prove this theorem
when (5.14) is replaced by the equation

wu(p)—j

[:)

3
u(q) a—Gﬁ”’(p, q)ds, =F(p)
D np

(which arises in the solution of &). However, in
the sequel, we shall only use Theorem 5, i.e. we
shall suppose that the coeflicients a;, take on the
particular values found by Ursell [10]; these values
are given in an appendix.

Returning to our problem, we see that if u(q)
satisfies the null-field equations (5.4), then, by
taking a suitable linear combination of these
equations, we see that u (q) also satisfies an integral
equation of the second kind (5.10), which is always
uniquely solvable, by Theorem 5. Let us now
prove the converse.

Suppose that u(q) is the unique solution of
(5.10). Then, we can use (5.8) to define a wave-
function U,(P_) which, by (5.10), vanishes on aD.
We cannot immediately assert that U/; vanishes
everywhere in D_, since G, is singular at O.
However, if P_e Dy, we can use (5.1) and rewrite
(5.8) as

UxP)= 5 3 AZxo(P.) (5.17)

m=0co=1

where

an=[ {ra@vna

4 o
—u(q)—anqwm(q)} ds, (5.18)
and

XmP)=3imgn(P)+amgmP).  (5.19)
Now, we wish to show that u(q) satisfies (5.4), i.e.
that A, =0 for 0=1,2 and m=0,1,.... This
can be proved by using an argument given by

Ursell [13]. Consider the integral
I= {UI_UI -Uj —Ul}ds, (5.20)
c_ on on

where the asterisk denotes the complex conjugate.
Since U; and U vanish on 4D, an application of
Green’s theorem in D_\Dyx shows that I =0.
Ursell [13] then proved that if (5.15) (or (5.16))
holds for 0=1,2 and m=0,1,..., then I can
only vanish if

An=0 foroc=1,2andm=0,1,....

In the appendix, it is shown that the inequality
(5.16) is satisfied by the particular coefficients
obtained by Ursell [10]. It follows from (5.17) that
U1(P-) vanishes everywhere in D_ and that u(q)
satisfies the null-field equations. We have thus
proved the following theorem.

Theorem 7. The null-field equations for the
exterior Neumann problem of acoustics (in two
dimensions), (5.4), possess a unique solution for all
real values of k.

Corollary 7.1. If u(q) satisfies the null-field
equations (5.4) (or the integral equation (5.10)),
the solution of N is U (P), defined by (3.9).

Proof. We simply replace U, and G, by Uy and
G,, respectively, in the proof of Theorem 1. In
that proof, the restriction to regular values of k>
(i.e. k% I) was needed to ensure that Uy(P_)=0.
Here, we have already shown that U,(P-)=0 for
any real value of k2, and so the solution of & is
seen to be

WP)=5- LD (G, a)r(@)

~u(g) 5= Ga(P, @)} dse

We now substitute for G, from (5.9) to give

o 2
WE)=UP®)+5- 3 T aZATwia®),
T m=0oc=1
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where Ay, is defined by (5.18). But we also know
that A}, = 0 (these are just the null-field equations)
and so W(P) = U(P), as required.

We shall now state and prove another coroliary
to Theorem 7. Let L,(dD) denote the class of
complex-valued, square-integrable functions,
defined on aD. Then, we have

Corollary 7.2. The set of functions
X={m/on} (c=1,2,;m=0,1,...)

is complete in L,(0D).

In this corollary, X is complete in the mean-
square sense. Thus, if we are given a function F(q)
in L,(aD), then Corollary 7.2 states that there
exist coefficients ap, such that

L IF(@)—~Fu(@) ds, >0

as M - oo, where

M 2 9

Fu@)= Y Y anM)_—d¢n(@q)
m=0oc=1 anq

and the coefficients a,, (M) depend on M. Note

also that the functions in X are notr orthogonal

over oD.

Proof of Corollary 7.2. Let h(q) be an arbitrary
function in L,(3D). If the orthogonality of & to
every member of X,

9

[ h*@)-—vn@ ds, =0

D nq
c=1,2,m=0,1,...),

implies that h(q)=0 almost everywhere on 8D,
then X is said to be closed in L,(3D), and is hence
complete in L,(3D) (see, e.g. [16] or pp. 90-95
of [17]). But, from Theorem 7, we know that the
null-field equations (5.4) are uniquely solvable for
any given f(q). In particular, when f(q)=0 (i.e.
fm = 0), the only solution is u (g) = 0, and the result
follows.

Corollary 7.2 has been proved (in three
dimensions) by Miiller and Kersten [18], using a
different method; Millar [16] has also given a proof
(in two dimensions), but his arguments fail when
kzelﬁ.

Corollary 7.2 has been assumed by many
authors, since it has obvious applications to the
numerical solution of the null-field equations; we
shall discuss this procedure in Section 7.

Let us now consider the exterior Dirichlet prob-
lem, &, and prove

Theorem 8. The null-field equations for the exterior
Dirichlet problem of acoustics (in two dimensions),
(5.5), possess a unique solution for all real values
of k2.

Proof. Multiply each of (5.5) by xm(P-), where
P_e Dy, and sum to give

ou(q)

lewp,a) e

Vi(Po)= J;

D
iG P ds, =0 5.21
~£@) ;-G L@} ds,=0. (5.21)

V. is a wave-function which vanishes in Dy, and
hence vanishes in D_. In particular, 0V,/on =0
on dD. Differentiating, and letting P_ approach
oD, we obtain

1T1914(10)_"’ du(g) 8
on, bp Ong on,

Gi(p,q) ds,

=]t G0 ds.  522)
This is an integral equation for du/en which, by
Theorem 5, possess a unique solution for all real
values of k. Conversely, suppose that du/on is
the unique solution of (5.22). Then, we can use
(5.21) to define a wave-function Vy(P_) which,
by (5.22), has a vanishing normal derivative on

aD. Now, if P_e Dy, we can use (5.1) and rewrite
(5.21) as

ViP)= 5 ¥ Boxa(P.)

m=0o=1
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where

Br=| {un ()a"(q)

~5@; ¢,..(q)} ds,.

By considering the integral (5.20), with U,
replaced by Vi, we can show that B, =0 for
o=1,2 and m=0,1,.... Hence, V; vanishes
everywhere in D_, and du/dn satisfies the null-
field equations, (5.5). This completes the proof of
Theorem 8.

The following two corollaries can be proved by
modifying the proofs of Corollaries 7.1 and 7.2 in
a straightforward way.

Corollary 8.1. If du/on satisfies the null-field
equations (5.5) (or the integral equation (5.22)),
the solution of @D is V(P), defined by (3.15).

Corollary 8.2. The set of functions
fwn} (@=1,2,m=0,1,...)
is complete in L,(8D).

This result has been proved by several authors;
see, e.g. [16, 18, 19].

6. The null-field equations for scattering
problems

Consider the boundary-value problem ¥, cor-
responding to scattering by a sound-hard body.
There are two ways of obtaining null-field
equations for &;. We could specialise the analysis
of the previous section (put f = —au®/on, as pre-
scribed by the boundary condition (4.2)), leading
to an infinite set of null-field equations for u®(q),
namely (5.4). Alternatively, we can obtain null-
field equations for u(q) as follows.

Suppose P_eDy. Then, using (5.1) in the
interior integral relation (4.10), we obtain

—

o 2 -
iT Y X ¢
m=0o=1

b

®.) jD u(@) 5% () dsq
a. q

=2mu(P.).

But, since u “(P_) is assumed to be regular in Dy,
there exist coefficients d ., such that

. st 2 -~
w’P)= L L didnP) 6.1)
for P_ € Dy; we have
1 oA
ds, =——J u®§g, ds, (6.2)
2n

since ¢3, are orthogonal over C_. (In (6.2), C-
can be replaced by any smaller, concentric circle.)
Equating coefficients, we obtain

o .
j u(@) 5 —¥m(q) dsq = ~4id,
oD Ng

(c=1,2;m=0,1,...). (6.3)

These are the null-field equations for a sound-hard
body; they were first obtained by Waterman (31
We can prove

Theorem 9. The null-field equations for a sound-
hard body, (6.3), possess a unique solution for all
real values of k°.

Proof. Multiply each of (6.3) by x . (P-), where
P_e Dy and xv, is given by (5.19), and sum to give

UI(P_)ELDu(q)a—j—cl(P-,q)dsq

—2mi(Py=0, (6.4)
where

ﬁ(i)(P_) = u(i)(P__) _= Z Z

m=0o=1

@d i (P-).
(6.5)

Proceeding as in the proof of Theorem 7, we see
that U; must vanish on 8D, whence, from (6.4),
u{q) must satisfy

1'ru(p)+j- u(q)%GKP,Q) ds,

- =2ma%p), (6.6)

which is uniquely solvable, by Theorem 5. Con-
versely, suppose that u(q) is the unique solution
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of (6.6). Then, we can define a wave-function U,
by (6.4), which vanishes on aD, by (6.6). For
P_e Dy, we may use (5.9), (6.1) and (6.5) in (6.4),
i.e. Uy(P-) can be expanded as (5.17), with

9
A= I u(@) —yn(q) dsq, +4id.
oD Bnq

It can then be shown that A, =0foroc=1,2 and
m=0,1,..., and the result follows.

Corollary 9.1. If u(q) satisfies the null-field
equations (6.3) (or the integral equation (6.6)), the
solution of &1 is U(P), defined by (4.13).

Proof. As for Corollary 7.1.

Let us now discuss the null-field method for &,.
From (4.22), we can show that

[ 24)ys () as, = dids,
aD anq
c=1,2;m=0,1,...); 6.7

these are the null-field equations for a sound-soft
body. We have

Theorem 10. The null-field equations for a sound-
soft body, (6.7), possess a unique solution for all
real values of k.

Proof. In the proof of Theorem 8, replace V; by

V1(P~)Ef du(q)

oD anq

G1(P_, q) ds, +2wii (P_);

it follows that du/on is the unique solution of

du(p) J dulq) 9
- — ,q)d
™ on, ) am, o, 1P D dsa
3 .
=2m—u(p). (6.8)
on

4

To prove the converse, we again follow the proof
of Theorem 8; here, B}, is defined by

Bo=| D yr g as,—didz,
oD 6nq

Finally, we can modify the proof of Corollary
8.1 to prove

Corollary 10.1. If du/on satisfies the null-field
equations (6.7) (or the integral equation (6.8)), the
solution of & is V(P), defined by (4.23).

7. Solution of the null-field equations

In this section, we shall discuss methods for
solving the null-field equations. As a representa-
tive example, we shall consider the null-field
equations for the scattering by a sound-hard body
(6.3). Suppressing the dependence on o, we may
write these as

5 .
L 4@ 5 nla) dsy = ~did,

(m=0,1,...). (7.1)

These are an infinite set of equations from which
u(q) is to be determined; the constants d,, are
known (they are given by (6.2)).

If oD is a circle, centred on O, the system (7.1)
decouples, yielding the Fourier components of
u(q). This suggests a generalization of the null-
field method, which has been developed by Bates
and Wall [4]: replace ¢, (which is a radiating
wave-function in circular polar coordinates) by the
corresponding radiating wave-function in elliptic
coordinates; the resulting system of null-field
equations will then decouple if aD is an ellipse.

For any other geometry, the null-field equations
(7.1) must be solved numerically. One approach
(which is suggested by the ‘quadrature method’
for solving integral equations) is to replace the
integral by a finite series. Thus, choose a quad-
rature rule of the form

go WiF (qn) (7.2)

for approximating the integral

IaDF(q) ds,;
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here, w, and q,, € D are the weights and abscissae,
respectively, associated with the quadrature rule
(7.2). If we use (7.2) to approximate the integral
in the first N +1 of (7.1), we obtain

N
Kt = —4id,,
=0

(m=0,1,...N), (7.3)

where
d
Kmn =Wn a_'_‘pm(qn)
Ng

and v, may be regarded as an approximation to
u(gs).(7.3)isasystem of N + 1 simultaneous linear
algebraic equations for v,. However, there is no
proof that this system is non-singular. Indeed,
there do not seem to be any reported attempts at
using the quadrature method to solve the null-field
equations.

A second approach is to choose a complete set
of functions {¢,.(q)}, and then to write u(q) as

u@= 5 wdala), (7.4)

where u,, are unknown coeflicients. Substituting
this representation into (7.1) yields

2 anun = '"4idm
=0

(m=0,1,..), (7.5)

where

J
Qun = LD 82(a) @) ;. (7.6)

(7.5) is an infinite system of linear algebraic
equations for u,; truncating this system leads to a
numerical method for solving the null-field
equations. To proceed further, we must choose a
set {¢,}. In theory, we can choose any set, pro-
vided it is complete over aD. However, in practice,
the choice may be crucial, if the truncated system
of equations is to yield a good approximation to
u(q).

The ideal choice would be ¢, = ¥,, where ¥,
satisfies

j V@) st (@) 5y = B (1.7)
aD nq

for then the system (7.1) will decouple, yielding
U, = —4id,.. However, we do not know a priori
which functions { ¥, } satisfy the orthogonality rela-
tion (7.7), for a given boundary 4D ; for each value
of n, the determination of ¥, is equivalent to
solving the null-field equations (with —4id,,
replaced by §,..). Computationally, it is probably
not worth while to determine ¥, ; see [4], p. 57.
However, it may be possible to choose {¢,} so that
(7.7) is almost satisfied, i.e. so that the system of
equations (7.5) is diagonally-dominant.

Several authors have advocated simple choices
for {¢,}, e.g. trigonometric functions or orthogonal
polynomials. However, most authors use wave-
functions; there are six obvious choices for ¢,,:

Uy Gy U,
) (7.8)
OYm/On, m/on, h/on.

Note that {8y../on} and {y,.} are complete, by
Corollaries 7.2 and 8.2, respectively. Similarly,
{8y /on} and {y}} are also complete. But,
{8m/3n} and {{..} are not complete when k2e Ip
and ke Iy, respectively [3, 19]; thus, use of one
of these two sets will reintroduce the difficulties
at irregular frequencies. A good discussion of the
relative merits of the six sets (7.8) (for the corre-
sponding electromagnetic scattering problems)
has been given by Waterman [20].

Several authors have solved scattering problems
for polygonal cylinders, using the null-field
method and different choices for {¢,}. For
example, Wall et al. [21] used piecewise-smooth
functions which had the correct analytical form
near each corner, whilst Bates and Wall [4] used
&n(q)=w(q)E,.(®), where w =1 for sound-hard
bodies, w = 1/h for sound-soft bodies, and h and
@ are related to the conformal mapping between
4D and the unit circle; for square and triangular
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cylinders, Bates and Wall [4] found good agree-
ment between their numerical results and some
experimental results of Iizuka and Yen [22].
However, we should remark that our theory is not
immediately applicable to cylinders with corners,
since dD is not a Lyapunov curve for such
cylinders.

In many scattering problems, the quantity of
interest is the far-field scattered wave, u®(P).
From Corollary 9.1, (4.1) and (5.1), we have (cf.
(5.6))

© 2
u®P)= ¥ T crbm(P) (7.9)

m=0o=1

with

e, =1‘jDu(q)£.ﬁ:,(q)dsq. (7.10)

(In the far field, we can replace ¢,.(P) by its
asymptotic form for large |kr,|.) Suppressing the
dependence on o, and using (7.4), we have

—-i

Cm=— E O panth (7.11)
4 n=0
where
~ 9 A
Q= | 60(@) 5 Gm(a) dse (1.12)
oD nq

Let us now use an obvious matrix notation, and
rewrite (7.5) and (7.11) as

Qu = —4id (7.13)

¢ =—3i0u, (7.14)

respectively. (7.13) is equivaient to the system of
null-field equations, and is therefore uniquely
solvable, i.e. Q7, the inverse of (the infinite
matrix) Q exists. Thus,

u=-4iQ7'd.
Substituting this expression into (7.14), we obtain
c=Td, (7.15)
where
T=-0Q" (7.16)

is called the transition matrix or T-matrix. f T
can be computed, we can then determine the scat-
tered field outside C. (i.e. ¢) for any given incident
wave (i.e. d), without computing the values of u
on oD. Note that T depends on {¢,}; if we make
one of the choices (7.8), then Q (or 0) may have
certain desirable properties, e.g. symmetry [20].

The T-matrix formulation has been used widely
for solving acoustic scattering problems [9]. The
numerical procedure consists of

(i) choosing the set {¢,}, usually one of (7.8);
(ii) truncating the infinite system of equations
(7.15);

(iii) computing the elements of the (finite)
matrices Q and Q (the integrals may be evaluated
using any suitable quadrature rule, since the
integrands are non-singular);

(iv) computing Q7' and

(v) computing the (finite) T-matrix, from
(7.16).

It is hoped that this procedure will yield a good
approximation to ¢. However, convergence as the
number of equations becomes larger has not been
proved, even though the infinite system of null-
field equations has been shown to be uniquely
solvable.

8. Conclusions

In this paper, we have analysed the null-field
method, as it is used to solve radiation and scatter-
ing problems in acoustics. This method, which was
first proposed by Waterman [1, 3], consists of solv-
ing an infinite system of null-field equations. We
have shown that this system always has precisely
one solution. Moreover, this solution may then be
used to determine the solution of the original
boundary-value problem, at any point in the
exterior, D. (It may be worth remarking here that
the so-called Rayleigh hypothesis [16] plays no
part in the null-field method.) Thus, irregular
frequencies do not occur with the null-field
method. This contrasts strongly with the more
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familiar integral-equation methods (as described
in Sections 3 and 4).

We have proved our results in two dimensions,
for four standard boundary-value problems in
acoustics; the extension to three dimensions is
straightforward. Similar results can also be proved
for water-wave problems [8].

In Section 7, we discussed several methods for
solving the null-field equations. One method (the
quadrature method) consisted of replacing the
necessary integrations by finite series, leading to
a (finite) system of linear algebraic equations,
which may be solved numerically. We then
described an exact procedure for reducing the
null-field equations to an infinite system of linear
algebraic equations. When this system is trun-
cated, we obtain another method for solving the
null-field equations, numerically. Suppose we
choose N equations in N unknowns. Then, it has
not been proved that the solution of these
equations approaches the solution of the infinite
system, as N - o0, Indeed, it is well known that
numerical instabilities can occur, especially when
the body is elongated [4]. However, several
methods have been devised for overcoming these
difficulties [4, 21, 23].

Many scattering and radiation problems have
been solved successfully using simple numerical
implementations of the null-field method. In the
future, it is hoped that the development of more
sophisticated numerical techniques will enhance
the versatility and usefulness of the null-field
method.

Appendix. Ursell’s fundamental solution [10]

Ursell [10] has considered a fundamental sol-
ution of the form (5.9), with

1
dm=4a

—Sim{ks (ka)+ KT (ka)}/4, (A1)

3N

where

A=kHY (ka)+KHY (ka),

K =|K|e® is a constant such that 0<8 <, and
a is the radius of a circle, which is smaller than,
but concentric with C_; on this smaller circle (7, =
a), G, satisfies the dissipative boundary condition

(5‘;;+K)G1(P, Q)=0.

Henceforth, we shall write H,,, and J,,, for H D (ka)
and J,,(ka), respectively.

We shall prove that the coefficients (A.1) satisfy
the inequality (5.16). We have

2a5 +3im=~5in{2(kJ ), +KJ,y)
—(kH !, +KH,,)}/A
= —din(kH'* +KH})/A,
whence
2ay, +3in|* = in*(kH ¥ + KH?,)
- (kH' +K*H,)/|AP
=n{A*+ (K -K¥H 7}
{4 +(K*-K)H,}/|A]
=im (AP + k(K —K*)
(HwmH % — HAH YA
=4m*{1-8|K|sin §/(wal4[)}
<%‘n’2,

as required, if 0 <8 <.

References

[1] P.C. Waterman, “Matrix formulation of electromagnetic
scattering”, Proc. IEEE 53, 805-812 (1965).

[2] R.H.T. Bates, “Modal expansions for electromagnetic
scattering from perfectly conducting cylinders of arbitrary
cross-section”, Proc. IEE 115, 1443-1445 (1968).

[3] P.C. Waterman, “New formulation of acoustic scatter-
ing”’, J. Acoust. Soc. Amer. 45, 1417-1429 (1969).

[4] R.H.T. Bates and D.J.N. Wall, “Null field approach to
scalar diffraction, I. General method”’, Phil. Trans. R.
Soc. Lond. A287, 45-78 (1977).

[5] P.A. Martin, “On the null-field equations for the exterior
problems of acoustics”, Quart. J. Mech. Appl. Math. 33,
385-396 (1980).



408 P.A. Martin /| The null-field method in acoustics

[6] P.C. Waterman, ‘“‘Matrix theory of elastic wave scatter-
ing”, J. Acoust. Soc. Amer. 60, 567-580 (1976).

[7] V. Varatharajulu and Y-H. Pao, “‘Scattering matrix for
elastic waves, I. Theory”, J. Acoust. Soc. Amer. 60, 556
566 (1976).

[8] P.A. Martin, “On the null-field equations for water-wave
radiation problems”, J. Fluid Mech. 113, 315-332 (1981).

(9] V.K. Varadan and V.V. Varadan, Eds., Acoustic, Elec-
tromagnetic and Elastic Wave Scattering-Focus on the
T-matrix Approach, Pergamon Press, New York
(1980).

[10] F. Ursell, “On the exterior problems of acoustics”, Proc.
Camb. Phil. Soc.74,117-125 (1973).

[11] R.E. Kleinman and G.F. Roach, “Boundary integral
equations for the three-dimensional Helmholtz
equation”, SIAM Rev. 16, 214-236 (1974).

{12] D.S. Jones, “Integral equations for the exterior acoustic
problem”, Quart. J. Mech. Appl. Math. 27, 129-142
(1974).

[13] F. Ursell, “On the exterior problems of acoustics, II”,
Math. Proc. Camb. Phil. Soc. 84, 545-548 (1978).

[14] T. Terai, “On calculation of sound fields around three
dimensional objects by integral equation methods™, J.
Sound Vib. 69, 71-100 (1980).

[15] Y.-H. Pao, “The transition matrix for the scattering of
acoustic waves and for elastic waves”, in: J. Miklowitz
and J.D. Achenbach, Eds., Modern Problems in Elastic

Wave Propagation, Wiley-Interscience, New York
(1978), 123-144,

[16] R.F. Millar, “The Rayleigh hypothesis and a related
least-squares solution to scattering problems for periodic
surfaces and other scatterers”, Radio Sci. 8, 785-796
(1973).

[17] F.G. Tricomi, Integral Equations, Interscience, New York
(1957).

[18] C. Miiller and H. Kersten, “Zwei Klassen vollstandiger
Funktionensysteme zur Behandlung der Randwertauf-
gaben der Schwingungsgleichung AU +&>U = 07, Math.
Meth. in the Appl. Sci. 2, 48-67 (1980).

[19] A. Hizal, “Scattering from pérfect conductors and layered
dielectrics using both incoming and outgoing wave func-
tions”, in: [9], 169-190.

[20] P.C. Waterman, “Survey of T-matrix methods and sur-
face field representations”, in [9], 61-78.

[21]) D.J.N. Wall, V.V, Varadan and V K. Varadan, “Dynamic
stress concentrations of cylindrical cavities with sharp and
smooth boundaries: 1. SH waves”, Wave Motion 3, 203—
213 (1981).

[22] K. Lizuka and J.L. Yen, “Surface currents on triangular
and square metal cylinders”, IEEE Trans. Antennas
Propag. 15, 795-801 (1967).

[23] D.J.N. Wall, “Methods of overcoming numerical
instabilities associated with the T-matrix method”, in:
[9], 269-286.



