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A train of regular surface waves is incident upon a fixed, half-immersed, circular cylinder; the waves
are partially reflected and partially transmitted, and also induce hydrodynamic forces on the cylinder.
In order to give a theoretical study of this problem, we make the familiar assumptions of classical
hydrodynamics and then solve the linear, two-dimensional, diffraction boundary-value problem,
using Ursell’s multipole method. Accurate numerical results are presented (in the form of tables) for
four important (complex) quantities; these are the reflection and transmission coefficients, and two
dimensionless coefficients which describe the horizontal and vertical forces on the cylinder. We have
also made an experimental study, in which we measured the forces on the cylinder, and the reflection
coefficient. These measurements are compared with the linear theory, and also with other experi-
mental data; discrepancies are noted and an attempt to analyse them is made. We have also measured
the mean horizontal forces on the cylinder; these results are compared with the predictions of a

simple formula obtained by Longuet-Higgins.

1. INTRODUCTION

Consider a rigid horizontal circular cylinder, of radius a,
which is immersed in water. We suppose that the cylinder is
fixed, and that a train of regular surface waves is incident
upon it. How is such a wave train modified by the cylinder?
What are the resulting hydrodynamic forces acting on the
cylinder? There is a vast literature which addresses these
questions, from both theoretical and experimental view-
points; for a review, see, e.g. Shaw! or Hogben.? However,
in much of this work, it is assumed that the cylinder is
totally submerged; we shall assume that it is only partially
immersed. Moreover, we shall only consider the two-
dimensional problem, corresponding to beam seas, i.e.
waves whose crests are parallel to the axis of the cylinder.
Thus, the fluid motion is supposed to be independent of
the axial coordinate.

Let d be the vertical distance that the axis of the
cylinder is below the undisturbed free surface. Thus, when
|dl <a, the cylinder is only partially immersed. For this
configuration, the published experimental data are scarce:
Dean and Ursell® measured the exciting forces on a half-
immersed cylinder (d = 0), and also the reflection and
transmission coefficients; we shall examine their results in
more detail in Section 5. Jeffrey et al* have presented
many graphs showing the variation of the measured forces
(over one cycle) with the frequency and amplitude of the
incident wave, and with the depth of immersion (0.6 <
(d/a)< 1.6); they do not consider the case d = 0. Dixon
et al.’ have measured the vertical force on a cylinder for
0<(d/a)<1.2. In order to analyse their data, they de-
veloped a modified form of Morison’s equation, contain-
ing a single ‘inertia coefficient’ Cys. Cpy was determined by
fitting their equation to the measured values of the force,
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over one wave period, and was shown to depend on the
frequency and amplitude of the incident wave (and also on
d/a). However, it was also shown that a constant value of
Cyr (Cpr= 2.0) could be used to predict the (vertical) force
on the cylinder, with quite good results. For a review of the
use of Morison’s equation, see, e.g. Hogben et al.®

In the analysis leading to Morison’s equation, it is
assumed that the presence of the cylinder does not affect
the incident wave, i.e. diffraction effects are ignored.
Hogben? suggests that Morison’s equation is applicable if
the diameter of the cylinder (24) is less than 0.2 x wave-
length; in our notation (see Section 2), this criterion
becomes Ka < 0.27 == 0.6; at such values of Ka, diffraction
effects are significant (see Table 1), i.e. a modified criterion
is required for horizontal, surface-piercing cylinders.

In this paper, we shall consider only the case of a fixed,
half-immersed circular cylinder, in regular waves. In the
next section, we idealise the actual physical problem, and
formulate the well-known linear boundary-value problems
of classical hydrodynamics. For deep water, the scattering
problem depends on a single dimensionless parameter, Ka.
We have solved this problem, numerically, for 0 <Ka <10,
and shall present our results in the form of tables of four
important (complex) quantities. These are the reflection
coefficient, the transmission coefficient, and two
dimensionless coefficients which describe the horizontal
and vertical hydrodynamic forces on the cylinder. Although
other authors have computed these quantities before, their
results .(i) are not readily available, (ii) are not all correct,
and (iii) are usually presented as graphs — in our opinion,
tables are more useful when alternative computer programs
(perhaps based on different mathematical methods, or
designed to solve more complicated problems) are to be
tested and evaluated.
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Table 1. Theoretical values for R and T
Ka IRI arg R KAl arg T
0.01 1.965 (-2) -1.5898 9.998 (- 1) -0.0190
0.02 3.896 (-2) —1.6073 9.992 (- 1) —-0.0365
0.03 5.816 (-2) - 1.6235 9.983 (- 1) 0.0527
0.04 7.734 (-2) —1.6385 9.970 (- 1) -0.0677
0.05 9.656 (- 2) -1.6524 9.953 (- 1) -0.0816
0.06 1.159 (-1 ~1.6653 9933 (-1) -0.0945
0.07 1.353 (-1 -1.6773 9.908 (- -0.1065
0.08 1.548 (- 1) —1.6884 9.880 (1) -0.1176
0.09 1.744 (- 1) —1.6987 9.847 (- 1) -0.1279
0.1 1942 (- D) —1.7081 9.810 (- 1) -0.1373
0.2 3.958 (1) —1.7678 9.183 (- 1) -0.1970
0.3 5.857 (1) -1.7906 8.105 (- 1) ~-0.2198
0.4 7.369 (- 1) —1.8118 6.760 (— 1) -0.2410
0.5 8.403 (- 1) —1.8550 5421 (-1 -0.2842
0.6 9.046 (— 1) -1.9277 4,263 (- 1) -0.3569
0.7 9427 (-1 -2.0276 3337 (-1) —0.4568
0.8 9.650 (—1) —2.1495 2,621 (1) -0.5787
0.9 9.783 (- 1) —2.2878 2,073 (- 1) -0.7170
1.0 9.862 (- 1) —2.4385 1.655 (- 1) —0.8677
2.0 9.996 (- 1) 2.0608 2,663 (-2) —2.6516
3.0 1.000 0.1315 7.132(-3) 1.7023
4.0 1.000 —1.8325 2.565 (- 3) -0.2617
5.0 1.000 24728 1117 (-3) —2.2396
6.0 1.000 0.4877 5.563 (—4) 2.0585
7.0 1.000 -1.5016 3.053 (-4 0.0693
8.0 1.000 2.7898 1.805 (—-4) —1.9226
9.0 1.000 0.7962 1.131 (-4) 2.3670

10.0 1.000 —1.1986 7.428 (-5) 0.3722

We shall also compare the linear theory with experiment;
this is done in Section 5. The details of the experimental
techniques and equipment are given in Section 4. We
compare the reflection coefficient and the force coeffi-
cients, with those predicted by linear theory; various dis-
crepancies are noted, and an attempt is made to analyse
them. Finally, we have also measured the mean horizontal
forces on the cylinder; we compare these measurements
with a simple formula obtained by Longuet-Higgins.”

2. MATHEMATICAL FORMULATION

Consider a train of regular surface waves which is incident
upon a fixed, half-immersed circular cylinder. We define
Cartesian coordinates (x, y) such that the origin is at the
centre of the circle, the x-axis is horizontal and points
towards the incident wave, and the y-axis is vertical and
increases with depth. We suppose that the water is inviscid
and incompressible, and neglect the effects of surface
tension. For simplicity, we also suppose that the water is of
infinite depth. We assume that the motion of the water is
irrotational, whence a velocity potential exists. If we
further assume that the motion has a harmonic time-
dependence (with circular frequency w), then we may write
the velocity potential as the real part of ¢(x, y) exp(—iwt);
henceforth, we shall suppress the factor exp(—iwt). For
waves of small amplitude, ¢ solves the following well-
known, linear, two-dimensional boundary-value problem.

Scattering boundary-value problem o

Determine the complex-valued total potential ¢, such
that ¢ satisfies Laplace’s equation,

2 2
—+ —=J¢(x,y) =0 inthe water
(ax2 aﬁ)d)( »)
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the linearised free-surface condition

o¢
K¢+ —=0 on vy=0,|x|>«a (2.1)
oy
the boundary condition on the cylinder
09
—=0 on r=a,~ir<o<in (2.2)

or

and ¢ — ¢; satisfies a ‘radiation’ condition, which ensures
that ¢ — ¢, represents outgoing waves at infinity. Here,
K = /g, where g is the acceleration due to gravity, (r, )
are circular polar coordinates defined by

x =rsin@, y =rcosf
and ¢; is the velocity potential of the incident wave, i.e.
Ag
¢r=—exp(—Ky — iKx) (2.3)
w

Since the downward surface elevation is given by

n(x) = —iwd(x,0)/g 2.4
we see that the incident wave has amplitude 4.
Let us write the total velocity potential as
=01+ ¢p (2.5)

Then ¢p solves the

Diffraction boundary-value problem %

Determine the complex-valued diffraction potential ¢p,
such that ¢p satisfies Laplace’s equation in the water, the
free-surface condition (2.1), the boundary condition

9@2—% on r=a,—in<0<in
or or
and a radiation condition at infinity.

Thus, ¢p is a radiation potential, corresponding to a
certain prescribed normal velocity on the cylinder. More-
over, the existence and uniqueness theorems of John®
assure us that there is precisely one function ¢, that solves
2. We should remark that John’s theorems are not applic-
able when the cylinder is partially immersed with a non-
zero value of d. (If —a <d <0, John’s results prove unique-
ness, but not existence; if 0 <d < a, they prove neither.)

Several authors have studied the scattering problem ¢.
However, before reviewing their work, let us define the
physical quantities of interest; these are also the quantities
that may be determined by experiment.

The incident wave will be partially reflected and partially
transmitted. Let n > n. as x > £ oo where 7 is defined by
equation (2.4). The reflection coefficient R, and the
transmission coefficient T are defined by

(2.6)

n4(x) = — iA{exp(—iKx) + R exp(iKx)] (2.7)
and
n_(x)=—IiAT exp(—iKx) (2.8)
Since the surface elevation of the incident wave is
n1(x) = — i4 exp(—iKx) (2.9)
we see that
s = [1+ R exp(2iKx)] n;
and

n.=Tn
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R and T are related by

IRPP+ITI> =1 (2.10)

and

farg R —arg T'| = 37 modulo n (2.11)

Equation (2.10) follows from a simple energy argument,
whilst equation (2.11) has been derived by Newman.’
Both of these relations may be used to check numerical
calculations.

The incident wave will induce a dynamic force on the
cylinder; this force has components X and Y (per unit
length of the cylinder) in the x and y directions, respec-
tively. X and Y are obtained by integrating the dynamic
component of the pressure over the mean wetted surface of
the cylinder. Thus:

X =— piwa (@) sing df (2.12)
—m
and
-
Y = — piwa (@) cosB db (2.13)
S

where we use angular brackets to indicate that r is to be put
equal to a. We define dimensionless force coefficients, f,
and f,, by

X = pgaAf, and Y = pgaAf, (2.14)

The four complex quantities, R, 7, f, and f,, are all
functions of a single dimensionless variable, namely Ka;
several authors have attempted to determine these func-
tions. Dean and Ursell®> have used Ursell’s'® ‘multipole
method’, in which ¢p is represented as an infinite series
of multipole potentials (see Section 3), i.e.

oo

¢D(r7 6) = Z cm(bm(r; 6)

m=0

(2.15)

(®,,, are the known multipole potentials and the coefficients
¢ are to be determined). Equation (2.15) satisfies all the
conditions of problem &, except the boundary condition
equation (2.6); using this, we obtain:

C20@) = 3 n(z @) <0<k
m=0 (2.16)

Essentially, Dean and Ursell multiplied equation (2.16) by
each of a complete set of trigonometric functions and inte-
grated over §, yielding an infinite system of linear algebraic
equations for the unknown coefficients c,,. By truncating
this system, they were able to obtain numerical solutions;
their results were presented as graphs of |R|, |T|, | f¢| and
[fy1, against Ka.

Barakat ! has also used the multipole method to solve 2,
but used a least-squares technique to solve (2.16). He
presented graphical results for the same quantities as Dean
and Ursell, and also for cylinders of other cross-sections. In
an earlier draft,'? he described his technique in more detail,
and also gave tables of values of |T|, |f,| and [fyl, for
several values of Ka; we shall examine these in Section 3.

Integral-equation methods have also been used to solve
9. Kim" represented ¢, by a distribution of wave sources

over the mean wetted surface, and then determined the un-
known source strength by solving an integral equation of
the second kind (the source integral equation). He has
computed dimensionless forms of X —X;yand Y —Y;, for
several cylinders of elliptic cross-section, where X; and Y;
are the components of the Froude-Krylov force. (By
definition, X = X; and Y=7Y; when ¢ =¢;, i.e. when
¢p =0.) More recently, Naftzger and Chakrabarti'* have
solved 2 for water of constant finite depth, by solving
Green’s integral equation for (¢p). They have presented
graphs of f, f, and |R|, against Ka, for several depths of
water.

All of the methods we have described so far yield
(numerical) solutions for small, or moderate values of Ka;
for large values of Ka, other methods must be employed.
Ursell'® has given a rigorous asymptotic solution of ¢, by
deriving a Fredholm integral equation of the second kind
for {¢), with a ‘small’ kernel. He solved this equation by
iteration, and obtained the following asymptotic estimate
for T

T ~ i/my(Ka)™ exp(—2iKa) (2.17)
Leppington!® has rederived this result, using matched
asymptotic expansions; he has also obtained similar results
for a half-immersed elliptic cylinder, and for a half-
immersed circular cylinder with a vertical keel. Alker'” has
used similar methods to treat the problem of a partially
immersed cylinder, with —a <d < 0.

We conclude this brief review by mentioning two perti-
nent review articles, by Newman'® and Mei.'” In the next
section, we shall give a detailed description of the multi-
pole method.

3. THE MULTIPOLE METHOD
The potential of the incident wave is given by (2.3) as
o1 =01 + 67
where
¢} = Agw ™' exp (—Ky) cosKx
and
¢f = —idgw ' exp (—Ky) sinKx 3.1

are even and odd; respectively, about § = 0. We decompose
the diffraction potential in a similar manner, and represent
each component by an infinite series of multipole
potentials. Thus:

¢p=¢b + ¢h
where

2m 1

oh = Agw™ {c{fb(‘,+ a cmH(D,ln}

Sk

1
and 3.2)

¢h = Agw™! {c%¢%+ Y a2"'”c3n+1¢3n}
m=1

cp are coefficients to be determined, and &9, are the multi-

pole potentials, defined as follows:?°

r dk
DU(r,0) = :F exp(—ky) coskx P

0

~miexp(—Ky +iKx) as x—>to (33)
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(where the path of integration passes below the pole at
k=K)

I o
fb%(r,@):—E £¢5~i7rexp (—Ky iKx)

asx > t oo 3.4)
B, 0) = cos2mb N K cos(2m—1)6

rim 2m—1 -l

m>0 3.5)
and
82,r.0) = sin(2m + 1)0 ﬁsianB
’ pam 2m ¥

m>0 (3.6)

fb}, and ®3 represent a wave source and a horizontal wave
dipole, respectively, situated at the origin. Similarly, ®},
and &}, are even and odd wavefree potentials. Each d0,
satisfies Laplace’s equation in the water, and the free-
surface and radiation conditions.

The set {®g,} is known to be complete for solutions of
problem 2, and so we are permitted to use the representa-
tions in equation (3.2). Moreover, these representations
satisfy all the conditions of problem 2, except the boun-
dary condition on the cylinder. Using this, we obtain:

<a 5 [—exp(—Ky) cost]>

b) d 9
—cl<a‘ 1> Y ol <2m+1 1>
1 ar (1)0 R Cm+1\42 5 ‘bm

.
(3.7)

<a g [i exp(—Ky) sinKx]>

0 = 0
~ )+ Y G (03
or m=1 or
(3.8)

These two equations are to be satisfied for 0 <8 <in.In
order to solve them, we multiply equations (3.7) and (3.8)
by cos2n6 and sin(2n + 1) 8, respectively, and then integrate
over §. We obtain the following two uncoupled infinite
systems of complex, linear, algebraic equations for the
unknown coefficients ¢, (o =1, 2):

Y AL =bS n=1,2,... (3.9)
m=1

AS,, and by may be evaluated explicitly; expressions for
these are given in Appendix A.

Once the ¢, have been determined, we can evaluate R,
T, fy and f,. From the definitions of R and T, and the
behaviour of ®§ at large distances (given by equations (3.3)
and (3.4)), we find that

R = n(ict + ¢?)
and
T=1+n(ici —c?d)

Expressions for f, and fy, in terms of ¢}, may also be
obtained; these are also given in Appendix A.

16 Applied Ocean Research, 1983, Vol. 5, No. 1

Table 2. Theoretical values for {, and Iy

Ka 1fx) arg f 1y arg fy

0.01 3.143 (-2)  -3.1413 1.933 -1.5901
0.02 6.290 (-2)  -3.1404 1.886 --1.6085
0.03 9.444 (-2)  —3.1388 1.846 —1.6262
0.04 1.261 (-1)  -3.1367 1.811 —1.6433
0.05 1.578 (-1)  -3.1340 1.779 - 1.6600
0.06 1.895 (—-1) -3.1308 1.750 -1.6761
0.07 2.214 (-1)  -3.1270 1.723 -1.6919
0.08 2532 (-1 ~3.1227 1.697 —1.7073
0.09 2.85L(-1) -3.1179 1.674 —1.7224
0.1 3.170(-1)  -3.1125 1.651 -1.7372
0.2 6.269 (-1)  —3.0366 1.470 -1.8728
0.3 8.879 (-1)  —2.9386 1.335 -1.9936
0.4 1.065 -2.8479 1.224 —2.1055
0.5 1.156 -2.7847 1.129 -2.2118
0.6 1.186 —2.7548 1.046 —2.3144
0.7 1.180 —2.7547 9.714 (-1)  -2.4145
0.8 1.154 —2.7781 9.046 (-1) —2.5129
0.9 1.121 —2.8191 8.441 (-1 -2.6103
1.0 1.083 —2.8732 7.890 (-1) -2.7069
2.0 7.769 (— 1) 2.5879 4,355 (-1) 2.6145
3.0 5972 (-1) 1.6330 2,691 (-1) 1.6401
4.0 4.815 (-1) 0.6533 1.802 (- 1) 0.6559
5.0 4.012(-1) -0.3350 1.280 (-1)  -0.3339
6.0 3425 (-1) -1.3272 9.506 (-2) —1.3267
7.0 2.980 (-1)  -2.3217 7.310(-2) -2.3214
8.0 2,632 (—1) 2.9656 5.780 (-2) 2.9658
9.0 2354 (-1) 1.9688 4.675 (-2) 1.9690
10.0 2126 (-1) 0.9714 3.853(-2) 0.9715

For numerical work, we must truncate the two infinite
systems (3.9) (o =1 and o = 2); for each g, we solve the
first N equations for the first N coefficients, c5,. We have
two checks on numerical convergence, both of which were
used: we can test how well the two relations (2.10) and
(2.11) are satisfied; and we can compare results at different
values of V.

In Tables 1 and 2, we present our computed values of
R, T, fy and f,, for Ka =0.01(0.01)0.1(0.1)1.0(1.0) 10.0.
We prefer to present our results as tables of numbers,
rather than graphs, since numerical values are (i) not
generally available, and (ii), more useful when alternative
computer programs (based on different mathematical
methods) are to be evaluated. (Note that we give arguments
of complex numbers in the range (—7, m).)

By examining our computations, we have found that, for
Ka <2, we can evaluate the four complex quantities R, T,
fy and f), to at least four significant figures, by taking
N = 20. As Ka was increased, we had to increase NV in order
to obtain the same accuracy. Thus, for Ka <15, we can
compute f, and f, to at least four significant figures with
N =60. This value of N is also sufficient to compute
argR and arg7T to the same accuracy. For Ka>2.8
(approximately), |R|=1.0 to four significant figures.
However, as Ka increases, it becomes more difficult to
calculate |T'|, using the multipole method. In Table 3, we
give the computed values of T for Ka = 10, and several
values of N. We see that at N = 20, 30 and 60, we have
computed |7| with an accuracy of zero, one and two
significant figures, respectively. Moreover, Ursell’s asymp-
totic formula, equation (2.17), gives |7| = 0.000064, i.e.
at Ka = 10, the computed result and the asymptotic result
differ by about 15%; at Ka = 15, they differ by about
7%.

Dean and Ursell® used essentially the method described
above. They made their calculations for 16 values of Ka in
the range 0.01 < Ka < 10, and with N = 11; curves of | f, |,
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Table 3. Numerical convergence of T at Ka = 10

N 1TI1X10°% arg T
20 3.357 0.37097
30 6.522 0.37179
40 7.136 0.37201
50 7.310 0.37209
60 7.374 0.37213
70 7.402 0.37215
80 7.415 0.37216
90 7.422 0.37216

100 7.426 0.37217

110 7.428 0.37217

Table 4. Numerical results of Barakat and Houston'?

Ka |T| lfxl |fy|
0.1 - 0.3171 1.6511
0.2 0.9185 — -
0.4 0.6763 — -
0.6 0.4263 - -
0.8 0.2619 - 0.9108
1.0 0.1653 1.0956 -
2.0 0.0269 0.7903 -
3.0 0.0077 - 0.2691
4.0 0.0033 0.4704 -
5.0 0.0018 - -
6.0 0.0012 0.3212 0.0936

[fyl, IR| and |[T| were drawn; these are probably suffi-
ciently accurate for comparisons with their experiments
(see Section 5).

Barakat and Houston'? have solved equations (3.7) and
(3.8) by a different method. Consider equation (3.7),
which must hold for 0 <8 <3n. They replaced the infinite
series by its first six terms (i.e. N = 7), and then evaluated
the resulting equation at 6 = 0°(4.5°)90°, yielding 21
equations for the seven unknowns, ci, ci,...,c}; they
solved these by a least-squares technique. In Table 4, we
reproduce their results for |T|, | f,| and |fy1; these may be
compared with Tables 1 and 2; for some quantities (e.g.
[fy| at Ka = 3), we find complete agreement, but for others
(e.g. IT| at Ka = 4), we find no significant figures in agree-
ment.

4. EXPERIMENTAL INVESTIGATION

In order to test the validity of linearised potential theory
(as presented in Section 2), experiments have been per-
formed. The measurements were made in the narrow wave
tank at the Department of Mechanical Engineering, Univer-
sity of Edinburgh, using facilities developed as part of the
Edinburgh Wave Power Project.

The wave tank is 10 m long, 30 cm wide, and holds
water to a depth of 60 cm. At one end of the tank, there is
an absorbing, hinged-plate wave-maker; by varying the
electronic drive to the wave-maker, regular waves of a given
frequency are generated, even when waves (produced by
reflection at a cylinder, say) are incident upon the wave-
maker. At the other end of the tank, there is an absorbing
beach. This consists of a vertical wedge of ‘Expamet’,
packed into a cage, with the density increasing towards the
rear. (Expamet, which is designed for use as a filter material,
is made from thin sheets of metal, with a pattern of slits
which is pulled out and corrugated.) Reflections from the
beach amount to less than 5%.

Wave amplitude was measured with a float gauge. This
consists of a cylindrical float (made of expanded poly-
styrene) which stretches across the entire width of the tank
and which is constrained to move vertically by a linkage at
each end. (Since all wave tanks are prone to sideways
oscillations, it is important that the average wave height is
measured.) The linkage is attached to the movement of a
microammeter, resulting in a signal which is proportional to
the velocity of the float. Some analogue electronic computa-
tion then yields the wave amplitude (after calibration).

A single wave gauge of his type cannot determine in
which direction a wave is travelling; thus, it cannot distin-
guish between an incident wave and a reflected wave. How-
ever, this difficulty can be overcome by using two wave
gauges. The procedure is to place the two gauges one-
quarter of a wavelength apart, and then to search along the
tank for a position where the difference between the two
signals is maximised. The amplitude of the reflected wave is
then half this difference, and the amplitude of the incident
wave is the average of the two signals; see Appendix B for a
proof of these statements.

The cylinder used was neutrally buoyant, and made of a
light alloy; its radius and length were a=5cm and /=
29.5 cm, respectively. Vertically above the cylinder axis,
there were two force transducers, which responded only to
horizontal forces on the cylinder. To the left of these trans-
ducers, there was another pair which responded to both
horizontal and vertical forces. (The transducers consisted
of strain gauges on thin-walled phosphor bronze torque
tubes.) Some analogue electronic computation yielded
the two forces separately (after static calibration using
weights). (A photograph of the cylinder mounting and
force measuring rig is given on p. 431 of reference 5.)

Three series of experiments were performed:

Series 1. Variation of exciting forces with amplitude of
incident wave; frequency fixed. Mean horizontal forces
were also measured.

Series 2. Variation of exciting forces with frequency;
amplitude of incident wave fixed.

Series 3. Variation of reflection coefficient with
amplitude of incident wave; frequency fixed. We
remark that this series has been repeated by Dixon?! for
13 other values of d(—0.8 < (d/a) < 1.8); however, there
is no relevant theory with which to compare his measure-
ments.

For any given frequency, the wavenumber K -is deter-
mined numerically from the dispersion relation:

w?=gK tanh Kh 4.1

where A is the depth of water (h = 0.6 m)and g = 9.815m
s72(f = w/2m is the frequency in Hz).

When measuring forces, three numbers were recorded:
the maximum positive force during one cycle (F*); the
minimum negative force during one cycle (F7); and the
root-mean-square force (F™™*). (For a given force F(r), its
rms value is given by:

T
(F”“s)2=;1 f {F(OP dr
0

where T = 2m/w is the period.) From these three numbers,
the amplitude of the experimental force is calculated in two
ways:

F'=1F*—F| and F2?=V¥rms
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If (1) = Re{ Fexp(—iwr)}, for some complex number F ,
then F'=F?=|%]|. In practice, the two measures are
different. #', which is simply one half of the peak-to-
trough height, is the measure that was used by Dean and
Ursell® in their experiments. Dimensionless quantities f'
and f? are obtained from F' and F2, respectively, by divid-
ing by pgadl(p = 10> kg m™?), Note that a subscript x will
be added to denote various horizontal forces, and similarly
with a subscript y for vertical forces.

The results from each series of experiments are presented
in the next section, together with a comparison with the
linear theory of Section 2.

5. COMPARISON OF THEORY AND EXPERIMENT

The experiments were performed at several of the frequen-
cies (f) listed in Table 5. This table also includes the
theoretical values of Ka, L (the wavelength), | /|, | | and
IR 1. (In this section, we shall write R for |R|, etc, since we
shall only be comparing magnitudes.) Note that these last
three quantities are independent of A, the amplitude of the
incident wave.

Series 1. The results for this series are presented in
Tables 6 and 7. All these experiments were conducted at the
same frequency, namely 1.0 Hz (w = 27); the correspond-
ing theoretical values for fy and f, are 0.639 and 1.463,
respectively.

A comparison between theory and experiment is given in
Fig. 1. We see that the linear theory predicts the horizontal

Table 5. Theoretical values for comparison with experiment

7 (Hz) Ka L (m) ! 151 IR
0.6 0.0908 3.458 0.288 1.672 -
0.75 0.1250 2.514 - - 0.244
0.80 0.1384 2.271 0.439 1.573 -
1.00 0.2041 1.539 0.639 1.463 0.404
1.20 0.2902 1.083 0.866 1.347 -
1.25 0.3146 0.999 - - 0.611
1.40 0.3942 0.797 1.057 1.230

Table 6. Measured values of horizontal forces; f = 1.0 Hz; theoreti-
cal value, f,, = 0.639, independent of Afa

Ale  FIWN) Fe(N) — FEMS(V) I I3

0.1 0.586 -0.293 0.324 0.607 0.633
0.2 1.172 —-0.732 0.647 0.658 0.632
0.3 1.660 -1.172 0.958 0.652 0.624
0.4 2.344 —1.660 1.286 0.691 0.628
0.5 2.881 —2.344 1.621 0.722 0.633
0.6 3.467 -3.174 2.019 0.765 0.657
0.7 4.736 ~4.443 2.550 0.906 0.712
0.8 5.566 -5.664 3.079 0.970 0.752

Table 7. As for Table 6, but for vertical forces; theoretical value,
fy = 1.463

Ala  FHN) FyNy  FTO) 1y Iy
0.2 2.129 -1.934 1.422 1.403 1.389
0.4 4.390 -3.330 2.758 1.333 1.347
0.6 6.367 —4.175 3.908 1.214 1.273
0.8 8.643 —4.775 5.021 1.159 1.226
1.0 9.995

—5.703 6.015 1.084 1.175
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Figure 1. Comparison of theoretical and experimental

values of f, and f,;, f=1.0Hz. The theoretical values
(shown as solid lines) are independent of Aja. 0, fi; ®, f%
o f) A f]

Table 8. Measured values of horizontal forces; Ala = 0.4

fHz)  F3N) FxV)  FY™w) 2 13
0.6 1.270 —-0.830 0.663 0.363 0.324
0.8 2.148 -1.514 1.071 0.632 0.523
1.0 2.344 ~1.660 1.286 0.691 0.628
1.2 2.930 —2.344 1.683 0911 0.822
1.4 2.832 —2.686 1.830 0.953 0.894

Table 9, As for Table 8, but for vertical forces

fHz)  Fy(N) Fyvy  FyTSY) Iy i
0.6 4932 —-4.351 3.341 1.603 1.632
0.8 4.702 —4.106 3.158 1.521 1.542
1.0 4.390 -3.330 2.758 1.333 1.347
1.2 3.882 —2.744 2.431 1.144 1.187
1.4 3.296 —2.148 2.059 0.940 1.006

forces very accurately; even at A/a = 0.6, f, and f;Z differ
by less than 3%; note, also, that |f, —f2| is consistently
smaller than |f, —f+|. However, the vertical forces are
predicted rather less accurately; at A/a =0.2, f, and f}
differ by about 5%: at A/a = 0.4, they differ by about 8%.
Dean and Ursell® obtained better agreement (see Fig. 3),
but they used much smaller values of A/a in their experi-
ments (0.01<(4/a)<0.18). We conclude that linear
theory gives an accurate prediction of vertical forces when
A/a is sufficiently small.

Series 2. The results for this series are presented in
Tables 8 and 9 (the theoretical values are given in Table 5).
In all these experiments, the value of 4/a was 0.4. In
Fig. 2, we give a comparison between the theoretical and
experimental values of f,. The experimental data of Dean
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Figure 3, Comparison of theoretical and experimental
values of f,; Aja=0.4. ®, Dean and Ursell; 0, Yu and
Ursell; 0, f,; A, f7; theory, —

and Ursell are also included. The agreement is seen to be
good, at all the frequencies considered.

In Fig. 3, we give a similar comparison for f,; again, we
include Dean and Ursell’s data. The difference between our
data points and the theoretical curve is seen to increase as
Ka increases. This is not true of Dean and Ursell’s data.
Moreover, it cannot be due to the finite depth of water, for
such effects become smaller as Ka increases (i.e. as the
wavelength shortens). We believe that the differences are
due to the rather large value of A/a used, namely 0.4,
because (i) we showed in Series 1 (see Fig. 1) that significant
differences occur at such values of 4/a, and (ii), Dean and
Ursell obtained better agreement using smaller values of 4/a
(maximum value, 0.18).

Yu and Ursell?® have performed a related series of
experiments: they measured the amplitude ratio Ry, for a

Reflection coefficient

half-immersed circular cylinder which is forced to make
small simple-harmonic oscillations in the vertical direction.
(R4 is the amplitude of the radiated waves, at large
distances from the cylinder, when the cylinder makes
forced oscillations of unit amplitude.) We may use one of
the Haskind relations (see, e.g., Newman®) to determine
fyfromRy:

[y =R4D[(Ka) (5.1
where K is the solution of equation (4.1) and
D = tanhKh + Kh sech? Kh (5.2)

(D~ 1 as h—~ ). We have taken Yu and Ursell’s data for
afh = 0.13 (their Table 1), and computed f, from equation
(5.1); the results are given in Table 10 (for Ka < 1.0) and
are also plotted in Fig. 3. Again, the agreement with linear
theory is satisfactory; the usefulness of the Haskind relation
has also been demonstrated.

Series 3. The reflection coefficient R was measured for
seven values of A/a and three frequencies; the results are
presented in Table 11, and plotted with the theoretical

Table 10. Experimental data of Yu and Ursell; afh = 0.13; 2n/
Lo =ws [y is determined from R 4, using a Haskind relation

Lo (ft) Ka Ry D ty
9.10 0.1924 0.231 1.182 1419
9.00 0.1940 0.223 1.180 1.357
8.20 0.2085 0.267 1.166 1.493
7.61 0.2213 0.286 1.151 1.488
6.20 0.2629 0.289 1.106 1.216
4.40 0.3600 0451 1.036 1.298
3.65 0.4316 0.514 1.017 1.211
2.98 0.5275 0.543 1.007 1.037
246 0.6386 0.610 1.000 0.955
1.87 0.8400 0.695 1.000 0.827
1.67 0.9406 0.735 1.000 0.781

0.7+
] f=1.25
0.6F
» a - -
0.5F
.
f=1.00
0.4
0.3+ Iy A . s A
A f‘= 0.75
0 L 4
0.2} . A
®
[ ]
[ ]
0.1
| — 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ala

Figure 4. Comparison of theoretical and experimental
values of |R |, at three frequencies. Solid lines are theoretical
values (independent of Afa). ®, f = 0.75 Hz; A, f = 100 Hz,
s f=]125Hz
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values (see Table 5) in Fig. 4. We see that R is almost inde-
pendent of A/a; for /=0.75 Hz, R increases slowly with
Aja. However, the agreement with linear theory is poor;
the measured values are nearly all less than the theoretical
values; at A/a = 0.1 (where we expect the best agreement),
the differences between theory and experiment are about
8.3% (f=1.25), 26% (f=1.0) and 51% (f=0.75). For
the lower frequencies, finite-depth effects are probably
important. (The conventional deep-water limit is #/L > 0.5,
which .is only satisfied here when f= 1.25; however, this
limit may not be applicable when an immersed body is
present.) However, these do not account for the significant
difference at f= 1.25 Hz.

Dean and Ursell® have measured R for a range of fre-
quencies. They found that the average difference between
theory and experiment was about 14%, and that the
measured values were always less than the theoretical values.
This is in broad agreement with our findings. Dean and
Ursell also measured 7. they found very good agreement
with theory (average algebraic difference = 0.2%). Using
their measured values of R and T, they checked how well
the energy relation (2.10) was satisfied. They found an
average energy loss of about 10%, apparently occurring
mainly in the reflected component (because of the good
agreement between the theoretical and measured values of
T). In order to account for this loss of energy, Dean and
Ursell made some simple calculations; after showing that
viscous effects and surface-tension effects were both
negligible, they suggested the following two mechanisms:

(i) Higher harmonics in the wave motion generated by
the wave-maker.

(ii) Possibility of vorticity in the reflection process.

With regard to (i), they estimated that, for their wave-
maker, the amplitude of the higher harmonics was about
5% of the amplitude of the fundamental wave. Our wave-
maker has been shown to produce waves of a similar
quality (see p. 18.2 of Jeffrey et al.*), and so we cannot
rule out this mechanism. We are also unable to rule out the
second mechanism, since our theory assumes that the fluid
motion is irrotational.

Mean horizontal forces. Let us conclude this section by
examining the mean horizontal forces (‘drift’ forces) on the
cylinder. Such forces cannot be predicted by the first-order
linear theory (where all quantities are time-harmonic with
frequency f= w/2m); they are a second-order effect, as are
forces with frequency 2f. (For a recent discussion of drift
forces on immersed bodies, see Chakrabarti.*) Instead of
developing a second-order theory, we shall use a simple
formula, involving only first-order quantities, which was
obtained by Longuet-Higgins.” He used simple arguments,
based on the conservation of mean momentum, to show
that the mean horizontal force, per unit length of the
cylinder, is given by:

F=—1pgd®D'(1+ |RI*— 1T

in the positive x-direction, where D' = D/tanh Kx and D is
defined by equation (5.2). As before, we divide by pgad
and define a corresponding dimensionless force coefficient,

fim, by:

fm=—40+|RP*—|TI*)D'4/a (5.3)
If the energy relation (2.10) is satisfied, equation (5.3)
becomes:

fm=—3IR[?D'4/a (5.4)
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Table 11. Measured values of |R|

Frequency, f (Hz)

Ala 0.75 1.00 1.25

0.1 0.120 0.300 0.560
0.2 0.160 0.300 0.560
0.3 0.187 0.320 0.540
04 0.205 0.315 0.555
0.5 0.236 0.304 0.628
0.6 0.237 0.250 0.480
0.7 0.243 0.214 %

* Unstable sideways oscillations in tank

Table 12. Measured values of the mean horizontal force; f = 1.0 Hz;
fm= F/(pgaAI)

Ala FV) fm i )

0.1 0.120 0.166 -0.009 -0.007
0.2 0.114 0.079 -0.018 -0.014
0.3 0.101 0.047 -0.026 -0.021
0.4 0.060 0.021 -0.035 -0.028
0.5 0.000 0.000 -0.044 -0.034
0.6 -0.062 -0.014 -0.053 -0.036
0.7 -0.167 ~0.033 —0.061 -0.039
0.8 -0.257 -0.044 -0.070 —

We have measured the mean horizontal force for various
values of A/a, and f= 1.0 Hz; the results, and the corre-
sponding values of f,, are given in Table 12. We can com-
pare these results with two formulae:

(i) Assume that the energy relation is satisfied and use
the theoretical value of R (=0.404); equation (5.4)
becomes (D' = 1.073)

fi=—00884/a

(i) Use equation (5.3) with the theoretical value of T
(=0.915) and the measured values of R (see Table
11; measured values of T are not available), i.e.:

1A =—0268(R*+0.163) A/a

The corresponding results are also given in Table 12,and a
comparison is shown in Fig. 5. Both formulae predict that
fm is negative, i.e. that the mean force and the incident
wavetrain are always in the same direction. This is not
borne out by experiment. Indeed, the smallest waves pro-
duced the largest positive forces. Longuet-Higgins’ has
suggested that this phenomenon may be partly due to the
generation of second harmonics in the transmitted wave.

6. CONCLUSIONS

In this paper, we have studied a canonical water-wave
scattering problem, namely, the interaction of a train of
regular surface waves with a fixed, half-immersed circular
cylinder. We have studied this problem theoretically and
experimentally, and compared results from each approach
We began by formulating the well-known two-dimen-
sional linear boundary-value problems of classical hydro-
dynamics. We used the multipole method to solve the
diffraction problem, % ; accurate numerical solutions have
been obtained. In particular, we have given tables of four
important (complex) quantities (for 0.01 <Ka < 10),
these are the reflection coefficient R, the transmission
coefficient T, and the two force coefficients, fy and f,.
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Figure 5. Comparison of theoretical and experimental
values of mean horizontal force; f = 1.0 Hz; ®, experiment;
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Numerically, the multipole method is inefficient at large
values of Ka; in particular, the computation of |7| was
shown to be especially difficult (see Table 3). We have
attempted to show that our numerical solution for |T|
is in agreement with Ursell’s’® asymptotic solution; at
Ka = 15, the difference between the two is about 7%. A
better method for showing such agreement might be to
solve Ursell’s integral equation, numerically, at moderate
values of Ka; to the authors’ knowledge, nobody has tried
to do this.

Experiments have been performed to measure the forces
on a half-immersed cylinder, and also the reflection coeffi-
cient. We compared our results for |fy|, || and |R]| with
those predicted by the linear theory. No measurements of
phase were taken. We obtained the following results:

(1) The horizontal force coefficient, | f, |, was predicted
very accurately by the linear theory, even for quite large
waves (at 4 = 0.6a, the error was less than 3%).

(2) The vertical force coefficient, |f}|, was only pre-
dicted accurately for rather small amplitude waves (4 <
0.2a). For a fixed amplitude (4 = 0.4a), we found that the
discrepancy between the measured and theoretical values
increased as the frequency increased; this was attributed to
the large value of A/a used in our experiments. We also
used some data obtained by Yu and Ursell*? (for the
forced-heaving problem), together with a Haskind relation,
in order to predict |f,|; good agreement was found with
the theory.

(3) The reflection coefficient, |R|, was not predicted
accurately by the linear theory; even for small amplitude
waves, the discrepancy was significant. At low frequencies,
finite-depth effects are believed to be important; a more
detailed numerical solution of this problem is required.
However, at higher frequencies, finite-depth effects are
small, but the difference between theory and experiment
is not. The same phenomenon had previously been noted
by Dean and Ursell.® They also measured |7’|, and hence
showed that energy is lost in the reflection process; the
cause of this loss has yet to be established.

Finally we have also measured the mean horizontal
forces on the cylinder; these are steady forces which are not
predicted by the first-order linear theory. Rather than
develop a second-order theory, we compared our measure-
ments with a simple formula obtained by Longuet-Higgins.”
Unfortunately, the agreement between this formula and our
experiments is poor.
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APPENDIX A

The wave source ®) may be evaluated using the power-
series expansion??

oo o n
Dy(Kr, 0) =— (logKr —im +7) Y. cosmf
m=0 m!
+0 Y ¢ sinm0
m=1 m
= (= Kr)'” 1
+ Y ~+...+— cosmb
m=1 2 m

where v is Euler’s constant (y=0.5772 ...). Differentiating,
we obtain

sin @ = (—=Kr)"
®3(Kr,0)=—— + (logKr —in +7) ¥ sin m@
Kr m=
+0 - (TR cosmb
1

m=0

= (—Kry" (1 1 1
-y — =+ ...+ —)sinmg
m=1 m! 1 2 m

Similar expansions may be obtained for d®g/or.

The matrix elements Ay, and by in equation (3.9) all
involve elementary integrations over 8. Thus, for n>1,
mz?2

AL, = f <az’"’1 %<I>}n_l> cos2{n—1)6 do
0
and
Exd
A2, =f <a2’" _1>sin(2n —1)6d8
0

Agm == }lnpsnm — Kag(—1 )y +'1/(172 - qZ)

where p=2n—3+0, g=2m—4+ 0, and 3, is the
Kronecker delta. Similarly

1,_f < —<1>0>d0

(—1Y(Ka)? !
jmcosKa + Z )AL A
j=o @i+ D!

nl—f<a—<b>cos(2n—”)6d9

2n—2
m (Ka) "%
4 (2n—3)!

2] +1

2n—-3
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B (Ka)ZjH ()/+ l)( )nﬁ}
i=o (27! 4(117*] —(7]+]
(—Kay
ivan_2 TS _
~’Zl (}-1)' ( j+2n-2 2n+2)
forn>1,and
,,,_f < —<b>sm(2n—1)0d6
T 7 (Ka)** 1
4ka " a@n—2) 77
\ i (Kay?'*! (2 + (=1
S0+ Dt T an— 12— 4G + 1)
1 & (—Ka)
— ) ——— (Son_1+;tSon—1-;
2j:|(f_l)!( 2n—1+j 2n-—-1 ])

for n > 1. Here,

Go=logKa—in+vy G,,,=G,,_1— l/m form>0

9 sinm@ do = {sin(Amn) — Lmn cos(tmn)}/m?

=3 ;“N\—

and So = 0. Note that 45, are real form > 1.
Now

2z
by = f <a —;ir [—exp (—KYy) cost]> cos(2n —2) 6 do
0
and
In
b2 :f <a-§r fiexp(—Ky) sinKx]> sin(2n — 1) 0 do@
0

i.e. b} is real and b2 is imaginary. We have b{ = sinKa
T(Ka)" =2 = (Ka)¥*t () + D=
4 (2n—3)! =0 (2N Hn—17—(2j+ 1)

forn>1,and

1 (Ka)™ !

2_

4 (2n-2)

b=

2 (Ka)¥*? 2+ (=1
I,-zo(zj + D 2n—1)2—4( + 1)?

n

for n > 1. This completes the specification of the matrix
elements.

Force coefficients. By symmetry, we have

1
2T

?+ ¢3) sind df

=

and

¢D> cosf dé
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Now

N""

= (Ko (—1y
! @}) cosf df = l—ana ;21 ) Gi—1)

and

. | |
———2 1 = (Ka)¥ (=1

- f<¢}>smede=—-fwxa—izLL§_z)_
48 4 =121 = D@2 —=1)

Using equation (3.2) (truncated at m = N — 1), we also find
that

P
= J @b cosf db
Ag b
0
1 N (—1y™
=ciV,+-nKac;+ ¥ chfy ———
PR ,,,Z=2"'4(m—1)2—1
and
2
= (¢%) sin@ do
Ag b
29,4+ Ka S O
= z )
e 2 ”’4(m—1)2f1
where
in
\I-'l=f(<b(1,>c0s0 de
0
and

N
E

(®2) sinf db

'E'
o“

1 2j —1y
:'—Go+ T(KQGI+Z ) 02/ (.2 )
4 j=1 @i “*=1
1 = (—Kay
+- Z R {S]+1+S]—1}
2,’:1 j!

and

] ) &Ko (VY
v, 1+411{(Ka) —KaG,}— ]21(2]_1)'02,(4]_2_])

P

j=1

{S1+] + Sl ]}

APPENDIX B

For x sufficiently large, the surface elevation ahead of the
cylinder is given by equation (2.7), as

n(x) = —id [exp(—iKx) + R exp(iKx)]
Write n(x4) = n4 and R = |R| exp(i§), whence
Inal?=1A12{1+ |RI>+ 2|R | cos(2Kx 4 + 8)}
Let xg = x 4 * L, where the wavelength, L = 2n/K. Then
Ingl> = 1412{1+ |R|* - 2[R| cos(2Kx 4 + §)}
where ng = n(x). Thus
(Inal £ Ingly? = 21AP{1+ R * £ (1 +|R?)
—4|R % cos*(2Kx + 6))V2}
whence
min{(Ing| + Ingl)*} = 414)?

and

max{(In4| — Ingl)*} = 4| 41*|R?

both of these occurring at the same value of x 4.
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