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The diffraction of time-harmonic stress waves by a penny-shaped crack in
an infinite elastic solid is an important problem in fracture mechanics and
in the theory of the ultrasonic inspection of materials. Martin (Proc. R.
Soc. Lond. A 378, 263 (1981)) has proved that the corresponding linear
boundary-value problem has precisely one solution, and that this solution
can be constructed by solving a two-dimensional Fredholm integral
equation of the second kind. However, this integral equation has a compli-
cated matrix kernel and the components of its vector solution are coupled.
The main purpose of the present paper is to show how Martin’s integral
equation can be explicitly solved in terms of a sequence of functions, each
of which satisfies a very simple scalar integral equation of the second kind;
this simplification may be made for any incident wave. For an incident
plane wave, further simplifications are possible. We show that the solution
at an arbitrary angle of incidence can be derived from the solution at a
particular angle of incidence, namely grazing incidence. The resulting
computational procedure is especially attractive if only the stress-
intensity factors or the far-field displacements are required. Finally, we
present some numerical results for the scattering of a P-wave at normal
incidence and an SV-wave at oblique incidence, and compare these with
those of other authors.

1. INTRODUCTION

The diffraction of time-harmonic elastic waves by an internal crack in an other-
wise unbounded elastic solid is an important problem in fracture mechanics and in
the theory of the ultrasonic inspection of materials. When infinitesimal compres-
sional (P) or shear (S) waves are incident upon the stress-free boundary of a homo-
geneous isotropic elastic solid, they are scattered, in general, as a combination of
both modes. The scattered field is further complicated by the excitation of Rayleigh
surface waves. These physical complexities are reflected in the difficulty of solving
the corresponding mathematical boundary-value problem and so, in particular,
there are very few exact solutions; see, for example, Eringen & Suhubi (1975) or
Miklowitz (1978). Such solutions, however, play an important role in the validation
of computational and heuristic methods, such as Kirchhoff theory or the geometrical
theory of diffraction, and, to this extent, the problem considered here is canonical as
well as being of relevance in its own right.
[91]
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Given the paucity of explicit solutions to scattering problems in elastodynamics,
a great deal of attention has been directed towards expressing the scattered field in
terms of the solution of an integral equation which can be solved either numerically
or by analytic approximations. When the scatterer is a crack, it can be shown that
the solution may be expressed in terms of the ‘ crack opening displacement’ (c.0.d.),
i.e. the discontinuity in the displacement across the crack. Thus, Wickham (1981),
by considering a simple two-dimensional problem, has proposed a new method for
deriving Fredholm integral equations of the second kind for the c.o.d. This method
is based on what is termed a ‘ crack Green function’, and does not depend essentially
on the crack geometry. Martin (1981) has shown how such a Green function can be
constructed for the penny-shaped crack and has derived a Fredholm integral
equation of the second kind that uniquely determines the c.o.d. in this case. Thus, he
has established the existence of a solution to the original boundary-value problem
(which we denote by S) for general incident waves.

Since the problem under consideration is essentially a three-dimensional one, the
boundary integral equation derived by Martin (1981) is two-dimensional. Moreover,
the components of its vector solution are coupled and the matrix kernel is extremely
complicated. The main purpose of the present paper is to show how Martin’s
integral equation may be solved explicitly in terms of a sequence of functions, each
of which satisfies a very simple scalar integral equation of the second kind in one
space dimension. To be more specific, let us define cylindrical polar coordinates
(r,0,2) such that the penny-shaped crack y occupies the region 2 =0, 0 <r < 1,
0 < 0 < 2n, and let the displacement vector # have corresponding components
(%, ug,w,). Now consider, for example, an incident SV-wave (polarized in the
plane 6 = 0) propagating at an angle ¢ to the z-axis. Then, the c.o.d. (defined by
(2.12)) is given by

[u,(r,0)] =19 % w,(r) cosnd, (1.1)

n=0

[u,(r,0)] = 7 % u,(r)cosnf and [uy(r,0)] =19 § v,,(r) sin n0, (1.2)
n=1

where . wy(r) = D, &, {0,(x)}, n>0,
0= S ol s o o
(1.3a)
1= =g [ () -G a0 |G G ece won
(1.3d)

o, (r) = 2K sin ¢ o, {q,.(x }—S“‘ (1 —12)~% — o {ph(2)}),
Bu(r) = =85 (r(1 —r*)~t — L {pr(2)}),
and u(r) = 00'511{91(5”)}
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Here, 0,(x; ¢) satisfies the one-dimensional Fredholm integral equation of the
second kind,

0,(; $) + f 01 0,(y; §) No(zr, ) dy = ) (Ksin ), (1.4)

where N, (x,y) is a symmetric kernel given by (3.16); ¢,(x; ¢) satisfies an equation
of this form, but with a slightly different kernel (4.37); p;; and p;, are independent
of ¢ and also satisfy similar integral equations (4.28); 7, is an Abel-transform
operator, defined by (3.9); K is the shear wavenumber; S; and S; depend only on
K sin ¢, and are given as certain weighted integrals of pi and g, (see §4.1); C, and
D, are normalizing factors that depend only on ¢, and are given by (A 2) and
(A 1), respectively; y = 4(1—v)/=n, and v is Poisson’s ratio. Thus, we are able to
reduce  the problem to the solution of some uncoupled one-dimensional integral
equations of the form (1.4), and a few finite quadratures. This simplification may be
made for any incident wave.

For an incident plane wave, further simplifications are possible. We show that
the solution at an arbitrary angle of incidence, ¢, can be derived from the solution
at a particular angle of incidence, namely grazing incidence (¢ = 4r). The resulting
computational procedure is especially attractive if one only wishes to determine
the dynamic stress-intensity factors and the far-field displacements (rather than
the details of the complete displacement field). Our method is a generalization of a
method due to Williams (1982), who studied the two-dimensional problem of
diffraction of plane acoustic waves by a finite rigid strip. As Williams (1982, p. 107)
remarks, the equations obtained are ‘highly reminiscent of various formulae
obtained by “invariant imbedding” methods in radiative transfer theory’; con-
sequently, we shall label our method as an ‘imbedding method’ (even though it
does not appear to fit into any of the known classes of imbedding methods, as
described by, for example, Kagiwada & Kalaba (1974)).

As an example, we have used the imbedding method to solve S when the incident
wave is an SV-wave. Numerical results are presented for the far-field displacements,
and these are compared with those obtained by other authors.

The plan of the paper is as follows. In §2, we state the boundary-value problem S
and then give a fairly complete review of the literature on its solution. Next, we
review Martin’s (1981) solution; we reduce S to two sub-problems (the normal
problem and the shear problem) and state his (two-dimensional) integral equations
for each. In §3, we consider the normal problem in detail; we introduce various
transformations to show that each azimuthal harmonic satisfies a simple (one-
dimensional) integral equation. If the incident waves are plane, these integral
equations simplify further (§3.1). In §4, we describe some similar transformations
for the shear problem; these lead to coupled pairs of integral equations with non-
symmetric kernels. In §4.1, we show how these equations can be uncoupled and,
again, further simplifications are exhibited for incident plane waves (§4.2).

In §5, we define the quantities of most physical interest, namely, the dynamic
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stress-intensity factors and the far-field displacements. We then show how these
are related to the solutions of our integral equations.

In §6, we describe the imbedding method, which is applicable for incident plane
waves, and show how this leads to an efficient algorithm for evaluating our solution.
Aspects of the numerical implementation of this algorithm and some results for
the reflexion of an SV-wave at oblique incidence are given in §7.

Notation

h{P(2) spherical Hankel function, see §7.1
Jn(2) spherical Bessel function, see (3.2)

k compressional wavenumber
K shear wavenumber
o =v/(2-v)

BE) = (E2—K?)}, see (2.3)
v = (E2—k*3, see (2.2)

€ e=1;¢,=2forn >0
1 —4l-w)/n
K = ksin ¢ (incident P-wave)
= K sin ¢ (incident SV-wave)
Kg = k (incident P-wave)
= K (incident SV-wave)
A = ksin @ (scattered P-wave)

= K sin @ (scattered SV-wave)
A, 4 Lamé constants

v Poisson’s ratio

o =k/K

1) angle of propagation of incident wave; ¢ = 0 is normal incidence
D angle of propagation of scattered wave, see §5.1

[#]  discontinuity in % across the crack

2. THE BOUNDARY-VALUE PROBLEM, S

We consider a homogeneous, isotropic, elastic solid containing a penny-shaped
crack, y. Suppose that time-harmonic stress waves, of radian frequency w, are
incident on the crack. We wish to determine the scattered waves when the faces of
the crack are free from applied tractions. We denote the scattered displacements
and stresses by %, and 7,;, respectively, where a time-dependence of e-i“t will be
suppressed throughout. Then, u; is the solution of the following boundary-value
problem. '

Boundary-value problem S. Determine w,(P), PeD, the region exterior to v,
satisfying
(S1) elastodynamic equations of motion in the solid,

k2gradV-u—K2VxVxu+u=0, PeD, (2.1)
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(S2) boundary conditions on the crack faces,

() = —7), q€;
where %) and 7{) denote the incident displacements and stresses, respectively;
(S8) radiation conditions (see Martin 1981, p. 265); and
(S4) edge conditions, namely u,(P) is bounded in D.

We use a standard notation: capital letters P, Q denote points of D; small letters
p, q denote points of v; and n is the unit normal vector, which is assumed to point
into D. The wavenumbers k and K are defined by

Pow? = (A+2p) k* = pK?,

where p, is the mass density of the solid, and A and x are the Lamé constants,
related to Poisson’s ratio v by

2 = AJ(A+p) = (K2—2k?) /(K2 — k?).

The stress tensor 7;; is related to u; by

ou,, Oou; Ouy
Tﬁ(P) = Aaﬁa +ﬂ(a_ﬁf:’ +a—xi) ,
where an arbitrary point P e D has cartesian coordinates (xy, x,, ;) = (v,y,2). We
also define cylindrical polar coordinates (r, 6,z), where the region y is taken to be
z=0,r <1,0 < 6 < 2r and an arbitrary point g€y will always be assigned plane
polar coordinates (, §).

Many solutions of S can be found in the literature. In the absence of an extensive
survey, we shall attempt to give one here, before describing our solution. (Brief
reviews have been made by Kraut (1976) and Datta (1978).) We begin by noting
that almost all authors represent u by

u=gradd+Vx¥z)+V xVx(x2),

where z is a unit vector in the z-direction, and ¢, ¥ and y are scalar potentials that
satisfy
(V2+k2)p =0, (V2+ K2y =0 and (V2+K2%)y =0,

respectively. v
2.1. Azisymmetric problems

The earliest solution was given by Filipczynski (1961). He considered the axi-
symmetric problem of the diffraction of compressional waves (P-waves) at normal
incidence. After introducing oblate spheroidal coordinates, he obtained two
equations for ¢ and y (¥ = 0), which he solved by the method of separation of
variables. For low frequencies, he derived approximations for the far-field potentials.

Robertson (1967) solved the same axisymmetric problem; for z > 0, he used
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Hankel transforms to solve (2.1) and obtained the following representations (in
cylindrical polar coordinates) for u, and u,:

u(r,2) = f 000 {A(€) (€/y) e+ 0() (B/E) e~F} £y (Er) dE,

and ur,2) = f T{A© e+ 0@ e e

where y% = £2— k2, 2 = £2— K2 and, in order to satisfy the radiation condition,

@@=k £k
ﬂaz{—uﬂ—ﬁﬁ 0<§<k} 2:2)

-k, £> K, } (2.3)

and ﬂ(€)={—i(K2—§2)‘5, 0<E(KK.

Application of the boundary conditions then leads to a pair of dual integral
equations for a single function related to 4 and C. These equations can be formally
solved by reducing them to a Fredholm integral equation of the second kind,
namely

O(x) +f01 O(y) N(z,y)dy = =, (2.4)

where the symmetric kernel is given by

Nz,y) = (ay)t f  EHE) ) ) dE,

and KH(E) = — (1-v){(28— K2/ (y) — 468 — 2(k* — K*)}; (2.5)
the normal displacement of the crack surface is given by
_2(1—p) [ () de
u,(r, 0) = o J; =) 0<r<l1. (2.6)

Robertson reduces N(z, y) to a finite integral (using a contour-integral method; see
§7.1) and then derives an expansion for u,(r, 0) as a power series in K. Actually, it
turns out that our integral equation for this particular problem, namely (3.18), is
identical to Robertson’s integral equation, (2.4); see §3.1.

Mal (1968a) has presented a slight generalization of Robertson’s work by con-
sidering general axisymmetric loading of the crack faces; two pairs of dual integral
equations are derived which reduce to Robertson’s in the special case of a normally-
incident P-wave. In fact, Mal (1968b) has used Robertson’s expansion for the kernel
to derive a low-frequency approximation for the dynamic stress-intensity factor
(see §5.2). Mal (1970) has also presented some numerical results.

Sih & Loeber (1969) have studied the same axisymmetric problem as Mal (1968 a).
However, their paper contains several errors; the corrected equations were given
by Embley & Sih (1972) and are essentially those of Robertson for a normal P-wave.
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Several other axisymmetric problems, involving a penny-shaped crack, have
been investigated. For a normal P-wave, Paul (1969) has considered a crack in an
infinite elastic plate, Shindo (1979) has considered an unbounded solid but has
included the effect of an axisymmetric magnetic field, and Srivastava et al. (1979)
have considered a crack at the interface between two bonded dissimilar elastic
solids. In addition, Embley & Sih (1972) have examined the effect produced by a
suddenly-applied tensile load, and Chen (1979) has considered the diffraction of a
step-pulse by a crack situated inside a finite, concentric, circular cylinder.

2.2. Asymmetric problems

To solve asymmetric problems, it is natural to exploit the geometry further by
replacing all quantities by their Fourier series in the azimuthal coordinate, 6. Thus,
Mal (1968¢) considered the diffraction of normally-incident shear waves (S-waves)
polarized in a plane perpendicular to the crack, and wrote, e.g.

u(r,0,2) = U(r,z)cos@ and wuy(r,0,2) = Uy(r,z)sin0.

Using his previous representations for ¢, i and y, he obtained two pairs of dual
integral equations, from which he obtained low-frequency approximations for the
dynamic stress-intensity factors.

Jain & Kanwal (1972) have studied the same asymmetric problem as Mal. They
used different integral representations for the scalar potentials, leading to a pair of
Fredholm integral equations of the first kind, which they formally converted into
Fredholm equations of the second kind. After solving these equations by iteration,
they obtained approximations for the far-field amplitudes and the dynamic stress-
intensity factors; their results for the latter do not agree with those found by Mal
(1968¢). We have also studied this problem (see Appendix C) and are able to confirm
that Jain & Kanwal’s results are correct.

The general asymmetric problem has been studied by several authors. Garbin &
Knopoff (1973) considered the diffraction of P-waves at oblique incidence to the
crack. They used the representation

n=—o

br,0,2)= 3 e f:{m,(g)¢Pa(£>}Jn<§r>e-v'z'dg, 220,

with similar representations for ¢ and y, and hence obtained three pairs of dual
integral equations for each value of n, which they solved for small values of K.
However, their aim was to calculate the compressional modulus of a medium
permeated by a random distribution of small circular cracks, and this did not
require a complete solution of the boundary-value problem. Piau (1978, 1979) has
also examined this problem, while Garbin & Knopoff (1975) have extended their
method to determine the shear modulus of the same material; for references to
related Russian work, see the review by Guz ef al. (1978).

Visscher (1981) has proposed a novel scheme for solving S. He began by
considering the crack to bisect a sphere of unit radius. In each hemisphere, he

4 Vol. 30. A
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represented u as a series of regular partial-wave solutions of (2.1); outside the sphere,
he represented u as a series of outgoing partial-wave solutions. (A partial-wave
solution of (2.1) is obtained by separation of variables in spherical polar coordinates;
‘regular’ solutions are regular at the origin, and ‘outgoing’ solutions satisfy the
radiation conditions at infinity.) The unknown coefficients in these three series were
obtained by using the boundary conditions on the crack faces and on the spherical
surface (continuity of displacements and tractions across the interface), and the
far-field displacements were computed. It is clear that Visscher’s (numerical)
method will not yield a good approximation for u near the crack edge (he is aware of
the deficiency, and proposes a modification which consists of introducing a toroidal
region around the edge, in which the variation of u is supposed to be quasi-static),
but this does not seem to affect the accuracy of his far-field results (for P-waves at
oblique incidence).
Krenk & Schmidt (1982) began by writing (for z > 0)

#,0,2) = o[ a6 eI 0 ag,

with similar representations for 3 and y, and then derived expressions for the
stresses and displacements on z = 0. They then inverted these latter expressions to
obtain integral representations for the unknown functions (4,(£), ete.) in terms of
the (unknown) displacements of the crack surface. Substituting these into the
expressions for the stresses, and using the boundary conditions, yields singular
integral equations for the unknown displacements. Krenk & Schmidt reduced these
to infinite systems of linear algebraic equations (using series of orthogonal poly-
nomials to represent the unknown displacements), which they solved for various
incident waves; we shall examine their numerical results in §7.

2.3. Approximate solutions

In recent years, there has been much interest in finding approximate solutions to
S, i.e. formulae that exhibit some of the characteristics of the exact solution, but
that can be evaluated without solving any integral equations; it is necessary to
validate such formulae by comparing them with some exact solutions. Achenbach
and his co-workers have used Keller’s geometrical theory of diffraction (GTD) to
estimate the displacement field at high frequencies and/or at large distances from
the crack edge: Gautesen et al. (1978) have considered P-waves at normal incidence
to the crack and investigated the field near the z-axis, which is a caustic (GTD
predicts that the displacement is singular there, and so the theory must be modified);
Achenbach et al. (1979) have considered oblique P-waves, and obtained results which
compared quite favourably with their experiments; and Achenbach et al. (1978)
have studied the diffraction of waves produced by a point source, located at a finite
distance from the crack. Other approximations have been presented by Domany
et al. (1978), e.g. the ‘quasi-static’ approximation is obtained by replacing p;(q)
by [@,;(¢)] in (2.7), below.
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2.4. Martin’s solution

Martin (1981) showed that the unique solution of 8, u,(P), has an integral rep-
resentation as an elastic double layer, whose density satisfies a two-dimensional
Fredholm integral equation of the second kind, i.e.

w®) = [ pa) Zula; Pynyds, (2)
where p;(q) satisfies

pu(D) - f i) Kulgs ) ds, = ()] (2.8)

The uniqueness theorem for S is then used to deduce that + 1 is not an eigenvalue
of (2.8).
In (2.7), Z¥; is the stress tensor glven by

S0P Q) = Ay - G(®s Q)+ G504, (29)
and GY; is the fundamental Green function, given by
G4(P; Q) = { by + o a;az—x(eﬂ _e_‘;)}, (2.10)
where R = |rp—rg)|. Equatlon (2.7) has the property that
[ux(P)] = Pi(P)s (2.11)
where we use square brackets to denote the discontinuity across v, i.e.
[ur(q)] = [ur(r, O)] = wy(r, 0, 0%) —uy(r, 0,07). (2.12)

In (2.8), the kernel K; is continuous and is given explicitly in Appendix B of
Martin (1981). The free term [#,] is precisely the displacement discontinuity that
would be maintained by static stresses —7{) on the crack faces; formulae for
evaluating [i;] have been given by Martin (1982).

Equation (2.8) (with (2.11)) is a system of three coupled Fredholm integral
equations of the second kind for [u;(q)], ¢ = 1,2, 3. Actually, this system partially
decouples (because the crack is flat), yielding two sub-problems:

normal problem (symmetric about z = 0)

[4,] = [4g] = 0,

[u,(p)] - f [4,(@)] K u(ct; P) ds, = [u(p)]; (2.13)
shear problem (antisymmetric about z = 0)
[4,] = 0,

P [ {11 Kt [ Ko} ds, = (5,00, (2.14a)

fua(e)) - (0 Ko+ 1) Kb s, = [7(p)] (2.143)

this is a pair of coupled integral equations for [%,] and [u,].
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In the present paper, we shall give a detailed study of the integral equations above
and of their solutions.

3. THE NORMAL PROBLEM

Let p,€7y have plane polar coordinates (7, 6,). From Martin) 1981, p. 284), we
have

Kufaiv) = = 5 e [ ® BH(E) M,(E, 7o) J(Er) AE cosn(0—0y),

n= 0

where M, (E,7) = o f AL (3.1)

2 ), i (E— )y
H (&) occurs in Robertson’s (1967) solution and is defined by (2.5), j,,(2) is the spherical
Bessel function, related to J,(z) by
Jal2) = (m/22)2 J,14(2), (3.2)

and ¢, is the Neumann factor, defined by ¢, = 1, ¢, = 2 for n > 0.
Let us assume, for simplicity, that the loading of the crack is symmetric about
0 = 0 (the analysis for antisymmetric loading is similar). Thus, we can write

4(1-v)
n

[u,(r,0)] = % w,,(r) cosnd, (3.3)
n=0 '

with a corresponding expansion for [4,]. It follows from (2.13) that w, satisfies

Walro) + f : W) Kol 70) rdr = B,(ro), (3.4)

where Koy = 2 [ BHE (670 T . (3.5)

From Martin (1982) we see that the free term in (3.4) is given by

" roode tgntir, (s)
Bpfr) = f T f T d, (3.6)

where we have written

789(r,0,0) = p §07n(r) cosnd. (3.7)
n=

Equation (3.4) is a Fredholm integral equation of the second kind for w,(r). We
have thus reduced the two-dimensional integral equation (2.13) to an infinite
system of uncoupled one-dimensional integral equations. However, the kernels of
these integral equations, given by (2.5), (3.1) and (3.5), are still complicated. In
order to obtain integral equations with simpler kernels, we introduce a new un-
known function 6,,(¢), related to w,(r) by

1
w,(r) =D, r"fr ﬂ%bT(t—)%)}’ (3.8)

i.e. wy(r) = D, ,{0,(t); t—>r}, (3.9)
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say; if there is no ambiguity, we shall write (3.9) more concisely as
wy(r) = -Dn "an on(t)

(Here, D,, is a normalizing factor which is independent of r.) Equation (3.8) is an
Abel integral equation for ,, whence

= 22" d [ w,(r)rdr
ie. D,0,(x) = A7 Hw,(r); r—>z}, (3.11)

say, which defines the inverse operator to &7,.
Using our operator notation, we see that (3.5) and (3.6) may be written as

Ko = ot “ 1O T ENGUE0 8 tn

t
and Wy (re) = L, {t‘"[ st — )17 (s)ds; t-—>ro: (3.12)
0
respectively, where f(£) = (2/n) §2H(£). Also, using (3.8), we obtain

[, wntenrrar = 0, [ v0uinen v, (3.13)

where we have interchanged the order of integration and used equation 8.5 (33)
from Erdélyi et al. (1954):

fa L], (Er) (a% —r2)rdr = 20 (w+ 1) §‘l“la"+/‘+1J,,+ﬂ+1(a§), (3.14)
0

which is valid for Re (v) > —1 and Re (x) > —1; hence
[,V Esrrirar = Dot e[ s@juten [ s0uinEn dyats 1-rs),
If we now apply the inverse operator 7;! to the integral equation (3.4), we obtain
0,(x) f 0,(y) N,(x,y)dy = Dy 1x*"f: st (g2 — s2)~ 7 (s)ds, (3.15)

where the symmetric kernel N, (x,y) is given by

Ny(e,y) = 2y j © 1©inEn)jnltn) . (3.16)

Equation (3.15) is a Fredholm integral equation of the second kind for 6, (x).
Once 6, has been determined, w,, is given by (3.8), and the displacement anywhere in
D is given by (2.7), (2.11) and (3.3).

3.1. Plane-wave data

So far, we have considered an arbitrary incident wave. Further simplifications
are possible if we suppose that the incident wave is a plane wave, propagating at an
angle ¢ to the z-axis. Then (see Appendix A),

Talr) = Dy() Ju(kr), (3.17)
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where k = ksin ¢ (for an incident P-wave) or k = K sin ¢ (for an incident SV-wave),
and the normalizing factor D, (¢) is a known function of ¢; we shall call (3.17) our
‘plane-wave data’. If we now use (3.14), we can evaluate the free term in (3.15)
to give

0,(x; k) + f 01 0,13 ¥) Ny, ) dy = wj,(k2), (3.18)

where we have indicated explicitly the dependence of 6, on «.

If we set n = 0 and let ¢— 0, (3.18) becomes identical to the integral equation
(2.4) obtained by Robertson (1967), for a plane P-wave at normal incidence to the
crack. Indeed, our choice of representation for w,(r), equation (3.8), was originally
motivated by a comparison of our integral equation (3.4) with Robertson’s equation
(cf. (2.6)).

4. THE SHEAR PROBLEM

Let us now consider the pair of coupled integral equations (2.14), corresponding
to the shear problem. From Martin (1981, p. 285),

Ko o) = [ (=) J(80) P (€5 )

= 3| i Jualr) + B T (B} dE cos (06,
K500 = = [ Jy1all) ~ BE T, (&) dsinn(0- 0y
K@i 20) = 3 [ {4 a6+ Bi 1, 1@} asinn(0 -6y,
Koo 20) = = [ +10) 160 P& v

_721 0°° {5 J1(Er) — By J,_1(Er)} AE cos n(0 — 6,),

where K2h,(£) = £3(482 - 3K2— 4yp) /B + E2(K2 — 2k?), (4.1)
ho(8) = —hy(£) +28(8-8), (4.2)

Ai(E;rg) = hy P+ 1 Qi Bi(E3r) = b PE +1,Q5,
with Qi +Qn = (P + Py) = v, (4.3)
Q = Qn = Py —Pp)+2(1-a) 27, (4.4)
P} — Py =20wQy — (2n+1)v2;, (4.5)
Q&5 7o) = In 2 1 {Unaa (&) t—>7o), (4.6)

and @ =v/(2—V).
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Let us again assume, for simplicity, that the loading of the crack is symmetric
about 6 = 0. Thus, we can replace [%,] and [us] by (1.2), with corresponding
expansions for [#,] and [#,].

Substituting into (2.13), integrating over 6, and rearranging yields

Uy (7o) + nfol (U (1) +0,(7)) f : (ho Pt + Qi) I 1 (Er) dE rdr
tn f () =a(r) f Pl + Q1) Ty a6 dErdr = ), (&)
va(re) +7 f : (tn(r) +00(r)) f 1Py 410 Q5) Ty ) dErdr

tn f " () — (7)) f ® (hy Py + by Q) o y(Er) AErdr = ,(ry).  (4.8)
0 0

Adding and subtracting (4.7) and (4.8), we obtain
ualro) £ 0a(r0) +7 [ 7 U (€) (P £ Pr) + 1@ @5} o
+nf0w Uz (&) {7y(Pif £ Pr) + ho(@f £ Qn)}dE = Ly (rg) £ Fy(r), (4.9%)

where Ut () = f: {u,(r) £ v,(r)} Jppq(Er)rdr, = > 0. (4.10)

For each n > 0, (4.9) yields two coupled one-dimensional integral equations for the
Fourier components of [u,(q)] and [us(q)]. For n = 0, we have a single integral
equation for u4(r), namely

Uofre) + 2 f T (b= 1) Pi (5 70)4E = W), (4.11)

where U = j ' uo(r) Jy(&r) rdr.
0

From (Martin 1982), we see that the free terms in (4.9%) and (4.11) are given by
fig(ro) = A Ry(t),

dn(ro) +5n(r0) = Mn+1Rn(t)’
@, (7,

and w(10) = Bu(re) = Ay 1R, () + 2naR,, ()} — (20 + 1) el R, (2),
where "
1[t 72t
— t n
Ry) = g [ 8t 80) =ty =) (@n o+ )22 -2,
2 by tn_ n
B -5 _V)tn_lfo ’(tg_rz';) dr, n>1,
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and (for symmetric loading)
70(r,6,0) = p § t,(r)cosmb, T(r,0,0) =p § Sp(r)sinmf.  (4.12)
m=0 m=1

Since u,(r) + v,(r) occurs in the combination (4.10), this suggests that we intro-
duce new unknown functions 63 (x), where
Uy (1) 0, (r) = O 1 05 (). (4.13)
After some manipulations along the lines described in §3, we eventually obtain the
coupled integral equations

0:0)+ [ 050 Krle ) + 0 Kaw,dy = fi @), (414
O () +f01 {03 () K (2, y) + O (y) Kin(z, y)} dy = fa (@), (4.147)
where the kernels are given by
Ki(z,y) = 4ha(wy), Ki(w,y) = Biy;a), ‘

K(x,y) = Bi(x;y) —ax™{By(1;y) + 4% 11(1, %)},
Ki(x,y) = A} _y(x,y) —aa™{d}_,(1,y)+ Bi(y;1)},

. w (4.15)
A4(e.9) = ay [ “m@ulER)inlEn €,
Biwi9) = ay [ ” 8 r( €0l )8,
with 2mmy(§) = vhy+(2—v)h, and 2mmy(8) = (2—v)hy +vhy; (4.16)
the free terms are given by
fi (@) = C31 By (@) (4.17%)
1
and fr(@) = CYR, (x) — aR,(x) + (20 + 1) aa” f t—"-1R, (t) dt}. (4.177)
Similarly, we transform the single integral equation for » = 0, (4.11); writing
uo(r) = Co 4,0 (t), (4.18)
find that 1
ORI )+ [ 0w (Ao ) - Ay} ay = fi @) (4.19)

4.1. Decoupling and symmetrization

It is clearly desirable to seek some further simplification of equations (4.14) as
not only are they coupled, but their kernels are not all symmetric in « and y (this
latter property would prevent the immediate application of the imbedding pro-
cedure, to be described in §6). However, a close inspection of the K% reveals that
they are all simply related, via the differential operators

d d
x"—zx~" and g~®tD_—gntl
dz dx ’
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to the symmetric kernels 4%(x,y), defined by (4.15). Thus, by introducing the new
dependent variables ¢if, given by

1
0itw) == (03(1) - [ i) ) (4204
1

and o) = o [0:0) - [ gy, (4.20)

we are able to reduce (4.14) to
Oie)+ | D4 Kie,)dy = F(w)+54 Ko, 1), (4.21%)

0

where D () = ¢ () + dn (%), (4.22)
S = 0(1) £ 65 (1) (4.24)
and Fi(x) = x-("+1)d—d;c {er 1 ()} + wn‘%{x“”f; ()} (4.25)

Since (4.21) are linear, we may write

B3 (2) = g (2) + S5 ph (@), (4.26)
where ¢;if and pi satisfy
1
g () + f g 0) Ki(e,9)dy = P @), (4.27)
1
and PE(@) + f pE(y) K@, y)dy = K@, 1), (4.28)
0

respectively. Note that pif(x) are independent of the incident wave, and the kernels
K (x,y) are symmetric.

Examining (4.21), we see that their free terms contain S;, which are presently
unknown. However, they may be determined by substituting (4.20) into the integral
equations for 63 (x). From (4.14%) we obtain an equation which, after multiplying
by 2"+ and letting x - 0, yields

o) = [ gt oray. (4.29)
Similarly, if we use (4.20) in (4.14-), and set @ = 1, we obtain
B (1) {1 +ME(1)} = 6, (1) Ih(1)
+[ ) 2306) - 850) M3y s = (1), (430

where  Mh(s) = f 060 (my— ) o +(8) = s o )},
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and M3 is defined similarly with m, and m, interchanged. If we now use (4.22)-(4.26),
(4.29) and (4.30) become

cr St +cex Sy =F,,
and } (4.31)
di Sy +dy Sy =G,
1 1
where G =1- f antipt(x)dx, F, =f gt () + gy ()} de,
’ . ’ (4.32)
a = 1= M3+ [ M@ pie) ds,
~Jo
1
Gy = 2fa(1) —f {M; () git () + M (%) g (%)} Ao (4.33)
0
and Mi(x) = a{Mh(x) T M2(x)}.
Solving (4.31), we obtain
8 = (dy Fy—ci G) /4y, (4.34+)
and Sy =(—di F,+cy@G,)/4,, (4.347)
where A, =chdy —dfcy.
We can give alternative expressions for di; and G,,: write
Liw) = o [ g2 T o)) a€
1 x
= x‘”f s"f y" Kit_,(s,y)dyds, (4.35)
o Jo

1
whence MiE(x) = if sP1 K (x,8)ds F (2n+1) (1 + a) Lz ().
0

Hence, using the integral equations satisfied by pi and ¢z, we find that

dif = +{ci+(2n+1)(1 +a)ei},

1 1
and G, = f gt (x) — gy ()} de 4+ 2(2n + l)f xf (x) dx
0 0
+(2n+ l)fol {(1 +a) L} (x) gt (x) — (1 — o) Ly (%) ¢ ()} de,  (4.36)
where ex = Li(1) —f lLﬁ(x)pﬁ(w) de.
0

4.2. Plane-wave data

For an incident plane wave propagating at an angle ¢ to the z-axis, we have (see
Appendix A)
ta(r) £ Spr) = * O'n(¢) Jn+1(Kr)’
and to(r) = Cy(@) (k).
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For this particular incident wave, many of the preceding formulae simplify. Using
(3.14), we obtain

R,(t) = Co(@) tnra(kt), n >0,
R,(t) = —(1+2)OW(P) tjp_r(xt), n>1,
fa (@) = &jpa(xz), n 20,
fa(®) = =%y (kx) —a@™{j,_1(K) +Jnia(K)}, m 2> 1,
F(x) = 2kxj,(kx), n>1,
and Fo(x)=0, n>1.

Hence, from (4.27), we obtain ¢, (x) = 0 and,

it (%) = 26, (; K),
say, where g, (x; k) satisfies

Gl )+ f 0‘ 4y 6) K (2,9) dy = 2, (k2), (4.37)

an integral equation of precisely the same form as that satisfied by 6,(x; k), namely
(3.18).
The S5 (k) are given by (4.34), where, from (4.32) and (4.36),

1
F,(x) = 2/<f xntlg, (x; ) de, (4.38)
0

Golk) = Fyf) —2(1 +0) {jn_l(m ()= @n+ 1)k f L@ g dx}.
(4.39)

It remains to consider the integral equation (4.19) for 6. Comparing it with
(4.37), we see that
O (%3 k) = q(@; k), (4.40)

i.e. solving (4.37) for n > 1 also provides the solution of (4.19).

4.3. Summary

Let us summarize the results of this section. The Fourier components of the
discontinuity in u across the crack, %, + v,, are given in terms of 6; by (4.13); 63
are given in terms of S and @3 by (4.20), (4.22) and (4.24); S and @3 are given
in terms of p% and ¢; by (4.26) and (4.34); and pi and g¢;if are obtained by solving
the uncoupled integral equations, (4.28) and (4.27), respectively. The functions
Pp%(x) are independent of the incident wave. For plane-wave data, ¢, = 0 and
g+ = 2kq,, where g, is the solution of the simple integral equation (4.37).

Explicitly, from (4.13) and (4.20), we obtain

Un(r) = va(r) = Cy rn—l{em) (1—r2)h— f Yy — ) g ) dy}
and " (4.41)

0a(1)+0,0) = G0 051 B - [Ty B (0 /1) 1) ),
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where

v dt
B,(r/y) = f"*zfr T _p2)h

in n
we have B,(p) = j (sinz)2tlde = (1—p2)t 3 o p2n-2,

aresin p j=0

where the coefficients are given by (n > 0)

o™ = 2in(n—1)...(n—j+1)
7T 2n+1)(2n—1)...(2n—2j+1)’

(4.42)
forj > 0, and af¥ = (2n+ 1)~. Hence,

Unlr) +05(r) = Gyt 3, a2 {"xu) (1—ro)— f - i) d?/}-
j=0 r
(4.43)

We note that u,, and v, may also be expressed as (1.3a) and (1.35), respectively,
by introducing the functions «,, and 8, defined by

a(r) + Bn(r) = r=®+D(d/dr) {r"+1(uy, + v,)}
and (1) = Bu(r) = "= (d/dr) {r= (u,, —v,,)}.

We have thus shown that Martin’s integral equation may be reduced to a system
of simple one-dimensional integral equations with simple symmetric kernels. These
equations are identical to those derived by Robertson (1967) and Mal (1968a) in
the case of axisymmetric loading. It seems to us, however, that the structure of the
transformations just described is so complicated that it is not obvious how our
equations for general loading could have been obtained by the more direct dual
integral equation method.

5. THE QUANTITIES OF PHYSICAL INTEREST

In this section, we show how the scattered displacement field at large distances
from the crack, and the asymptotic stress field near the crack edge can be simply
related to the solutions of one-dimensional integral equations (3.15), (4.27) and
(4.28).

5.1. The far field
Let P e D have spherical polar coordinates (R, @, @), where
x=Rsin®Pcos®, y=Rsin®sin® and 2= Rcos®.

Furthermore, let
u(P) = (uR’ Ugs uq&)’
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in this coordinate system where u is given by (2.7) and (2.11); estimating this

)

quantity for large R (see, for example, Martin 1981, p. 268), we obtain

ug(P) = —}ik{o?sin 201 (ksin D) + (1 — 202sin? @) I (ksin )}
xel*®/R + O(R-%), (5.1)

ug(P) = 3iK cos PI(K sin D) e!KE /R + O(R-2), (5.2)
uy(P) = —}iK{cos 201,(K sin @) —sin 2L (K sin D)} elER /R + O(R-2), (5.3)

as R—> oo, where o = k/K,

2nL(A; 0) = fy [u,(r, 0)] e-iArcosxr dr db, (5.4)

2nl(A; 0) = fy {[%,(r, 0)] cos x + [ug(r, 6)]sin y} e~iArcosx y dr d6, (5.5)

2nl(A;0) = f , {{u,(r, 0)]sin x — [uy(r, 6)] cos x} e~iAreosxy dr db, (5.6)
and y = O—0.

If we now assume that the loading is symmetric about @ = 0, and use (1.1), (1.2),
(3.9), (3.14), (4.13), (4.18) and the Fourier cosine series (equation 7.2.4 (27) of
Erdélyi et al. 1953),

exp (+izcost) = % €,( £ 1)?J,(2) cosnb, (5.7)
n=0 ’
we find that
LA;0) =7 3 (i) D, I4(A) cosn@, (5.8)
n=0
LA;6) = 31 3 ()10, IF(A) cos 6, (5.9)
n=0
and L(A;0) = —41 3 ()"0, I5(A)sinn, (5.10)
n=1
where 5§ = 4(1—v)/x,
I5) = f ' 20, (2) 4, () da, (5.11)
0
IF(A) = 2J1xﬁj(x)j1(Ax) de, (5.12)
0

1) = [ al0t @)0a0) 7 07 (@) 00} d

1
= (st + [ L)) a, (5.13)
. 0
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for n > 1. To obtain the last formula, we have used the decomposition given in
§4.1. Note that, for A = 0, we have

Ij0) = fol x0,(z) dz,

11
10) = 3 [ o) dm - ot ¢,

and all other terms vanish.

5.2. Dynamic stress—intensity factors

There are three dynamic stress-intensity factors which, following Krenk (1979),
we define by

ky(0) = (1/p) lim {(2(r —1))E 7,,(r, 6, 0)}
r~>1+
= [1/2(1- V)]rl_i}}l_{[uz(n 0)]/2(1-n)}, (5.14)

ky(0) = (1/p) lim {(2(r — 1)) 7,,(r, 6, 0)}

o = [1/2(1 )] im (fu,(r, 0))/(2(1 =)}, (5.15)
and
ka(0) = (1/p) im ((2r= 1)) 7(r,0,0)} = & lim {[o(r, O))/(2(1 =)~ (5.16)

From (3.3) and (3.8), we obtain
nk,(0) = 2 % D, 0,(1)cosnd, (5.17)
n=0
while, from (1.2), (4.41) and (4.43), we obtain

nhy(0) = 20,63 (1) + 3, C, S cosnf, (5.18)
n=1

and 1hy(6) = (1—v) 3, C, S5 sinnb, (5.19)
n=1
where we have also used (proof by induction)

& (n)
a® = 1.
=0

7

5.3. Plane-wave data

Recall that for incident plane waves, we introduced (in §3.1) the parameter «
(= ksin ¢ or K sin ¢); we now introduce a second parameter ¢, where % = ksin @
or K sin @ (these are the values of A required in §5.1). Thus, « and £ correspond to
the incident wave and scattered wave, respectively.
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Exhibiting the dependence on «, we rewrite (5.11)—(5.13) as

130 = [t i) A0 (5.20)
0

HTEA k) = sz(x){—jMH f epi (@) () ) + 26T8(H k), (5.21%)
0

ATRA5K) = Sal) (=) + [ api(@) (o) as, (5.217)

and IF (X k) = 214 A s k), (5.22)

where I3 A k) = j ' G, (%; K) j () dez, (5.23)
0

and we have used the simplifications given in §4.2.
The fundamental quantities I§(n > 0) and I4(n > 1) satisfy reciprocity relations,
given by the following.

LEMMA 1.
INA k) = Ti(k; ) (5.24)

and (A k) = I (k; X). (5.25)

Proof. Multiply (3.18) by 6,,(x; ") and integrate over 0 < z < 1 to give

1 1 1
[, s 0, ) da+ [ 0,005 [ 00003 9) Wyt 9) dnly = i)
0 0 0

However, since the kernel N,(x,y) is symmetric, we have from (3.18) that

[ s ) M) ao = v - 0,030

and the result (5.24) follows. Similarly, the result (5.25) is obtained using the
integral equation for g, (x; ), namely (4.37).

Suppose, for example, that we wished to calculate I3(«, ") for several values of
k and J¢"; for each k, we must solve the integral equation (3.18) and for each pair
(k,#"), we must evaluate the integral (5.20). (Actually, this process may be
simplified slightly, by noting that the kernel of (3.18) is independent of «.) Thus, for
(N +1) values of » (n = 0,1, ..., N), M, values of k, ahd M, values of ", we must
solve (N +1) M, integral equations and then evaluate (N + 1) M, M, integrals. In
the next section, we shall describe a more efficient procedure for computing
I%(k,); this reduces the computation to the solution of only (N + ) integral
equations and the evaluation of only N(M,+ M,)+ M,(M,+ 1) integrals. Similar
remarks apply to the calculations of I (x, ).
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6. THE IMBEDDING METHOD

In this section, we shall concentrate on plane-wave data. We obtain further
simplification by exploiting the structure of the kernels and free terms of the
integral equations for 6,(x; k) and ¢, (x; k). We begin with a detailed study of the
normal problem.

6.1. The normal problem

Consider the linear integral equation (3.18), which we rewrite here for con-
venience:

0,3 6) + f 0,5 ) Ny (2,9) dy = i (xa). (6.1)

Some properties of the kernel and free term of this equation are contained in the
following two lemmas.

LemMmA 2. (Equations 7.2.8 (50), (51) from: Erdélyi et al. 1953)

g~ (d/dw) {amtly, (E2)} = Ejpa(E), (6.2)
a™ (d/dx) {x=),(2)} = —&jp4a(£2). (6.3)
LEMMmA 3.
a=(d/dx) 2" N, (2, y)} = —y™(d/dy) {y "N, _1(2,9)}, (6.4)
y(d/dy) {y"No(z,y)} = —a(d/dz) {&™"N, (2, )} (6.5)
Proof.

o o) = o [ 100 te) )

— 2y f  EE)aE0)E) 4 from (6.2),

Il

— xy fomf (€)Jn-a(2) y”'la('ig} Y~ Vina(Ey)}dE,
from (6.3)

n d —n
-y @{y Nn—l(x’ y)}

Equation (6.5) follows by interchanging # and y, and noting that N,(z,y) is
symmetric.
Let us define a,,(2; «) by

(5 k) = O, (25 k) + A%(K) 0, (%; k), (6.6)

where Aj(«) is unspecified at present, and kg is that value of x which corresponds to
grazing incidence (¢ = ir), i.e. kg =k if k = ksing and k, = K if k = Ksin¢.

From (6.1), «,,,, satisfies

1
1 @3 K) + f a0 ) Na ()49 = 2 (k0)+ X 2 ) g
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Noting (6.2) and (6.4), we apply the differential operator 2~®+(d/dx)x"+! to this
integral equation and obtain

1 d . .
Bule; k) —fo Lura(y3 €)Y g N, Y)}dy = 2{kjp (k) + Kg A 11(K) (i)},
where 8,,(x; ) is defined by
Balw: &) = 204D (d /) {am e, (3 )} (6.7)

If we choose A9(x) such that
a,(1;«) =0, (6.8)

then an integration by parts giveé

2 (3.) f By K) Ny, y) dy = e{kjnlkn) + kg Xora(K)jnlkg?)). (6.9)

Comparing (6.9) with (6.1), we find by linear superposition that
ﬂn(x;K) = Ken(x;K)+Kg/\%+l(K) On(x;Kg)' (610)
Integrating this equation, using (6.7) and substituting from (6.6) then gives
Oty (25 K) = 0n+1(9c§’<)+%3»+1(/<) 0p11(%; Kg)

= gD f : Y {0, (y; k) + kg Anya (k) O (y; )} dy. (6.11)

This is a formula for 6,,,(x;«) in terms of 0,,,(x; Kg) (the solution at grazing
incidence), 0,(y; ) and 0,(y; k) for 0 <y < , and A%,,(x); it only remains to
determine the function A4(x).

Multiply (6.10) by zj,( x) and integrate over 0 < x < 1 to give

I, )+ kg X a6) Tl ) = [ s ) 0)

1
= —f x"“ d {x—"jn (A x)} o, (2 &) doe
0
= Ao a1(k, )+ N1 (K) I pa (kg )},
where we have used (5.20), (6.3) and integrated by parts. Thus
HIG (6, ) = kI (k, H )+ Ay 1(&) {kg I (K, ) — H L, 1 (K, )} (6.12)
To determine Ay(k), we set £~ = k, in (6.12) to give

IgH—l(K’ Kg) - Sin ¢I’?L(K’ Kg)

I’fh(Kg: Kg) - I?’L+1(Kg’ Kg)

X, (k) = (6.13)

We note that A% ;(k;) = — 1, whence, from (6.6), a,,,,(2; k) = 0.
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Let us now describe the computation procedure. Suppose that we know I5(x, %)
for M, values of « (including «,) and M, values of 2#". In order to obtain 1% ,,(x, ),
we

(i) determine 6, ,(x; k,) by solving the integral equation

1
6n+1(x; Kg) +f0 0n+1(y; Kg) Nn(x’ y) dy = xjn+1(Kgx);

(ii) calculate
1
Il ) = [ [0y s k) ) d,

for the M, values of £;

(iii) calculate

1
I 1k ) = j B3 0)

for the M, values of «;

(iv) calculate A% (k) from (6.13); and

(v) calculate 1%, (x, #") from (6.12).F

This procedure can now be repeated; for starting values, we require y(x; «),
I§(x, #") and If(k, kg). Counting up, for (N + 1} values of n (n = 0,1, ..., N), we see
that we must solve N + J, integral equations and evaluate N (M, + M) + M (M, + 1)
finite integrals. This is a considerable saving when compared with the direct method
(outlined at the end of §5) which requires the solution of a further N (M, — 1) integral
equations and the evaluation of a further N(M;M,— M,— M,)— M, integrals.
Moreover, from (6.6) and (6.8), we have

0n(1§’<) = _AZ(K) gn(1§’<g)’

and so the dynamic stress-intensity factor k,(0; ), defined by (5.17), can also be
computed efficiently. Also, if the value of 6, ,(; k) is required, it may be calculated
from (6.11), after step (iv) above.

6.2. The shear problem
In the shear problem, the function that corresponds to 8, is g, ; g, satisfies the
integral equation (4.37), and this equation is immediately amenable to the im-
bedding procedure. Let

(25 K) = @n(@; ) + AL(K) 4 (2 Kg), (6.14)

and B (x; k) = 2~V (d /de) {an i, (5 &)}, (6.15)
then, if A%(k) is chosen such that

ad(1;x) = 0, (6.16)

1 If k > X, it may be necessary to reverse this procedure, i.e. use backwards recursion
and the asymptotic estimates of Iz for large n given in §7.2.
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we find that

ﬂ;l}:(x;’() = Kq'n(x;K)+KgA%+1(K)qn(x;Kg)’ (6'17)
whence

i) = w0 [ "y i) M) a0y (6.18)
It follows that 14 satisfies
HIG 1k, ) = kIZ (K, ) + A% 1 (k) {kg L (kg A ) = H TG, 1 (kg )} (6.19)

and A% is given by
I, (&, kg) — sin @IF (k, kg)

. 6.20
T8(rg, ko)~ T8 11(kgr Kg) (6.20)

AL (k) =

The computation procedure for determining I is identical to that for I}, except,
for starting values, we require g,(x; «), I{(«, ") and I{(«, k).

To complete the computation of the far-field displacements and the stress—
intensity factors, we must determine S (k). Thus, from (4.34), we must determine
F,(k) and G, («), defined by (4.38) and (4.39), respectively; these can be computed
efficiently using the imbedding procedure, as follows.

Set x = 1in (6.18); from (4.38) and (6.16), we obtain

Fy(k) = = A841(x) Fy(iy). (6.21)

Thus, we can compute F, (x) from F,(k,).
In order to obtain a corresponding formula for @, (), we consider the function
B, defined by

B (; k) = am(d/da){z—"al_y(x; K)}; (6.22)
an analogous imbedding procedure yields
ﬂ;(sz) = _KQn(x;K)_KgA%—I(K) q'n(x;Kg)- (623)

Now, from (4.39), we have
Gn(K) + A%—I(K) Gn(Kg) = Fn(K) + Ag&—l(’() Fn(Kg)

1
—2(1+a) (@0t 1>{jn<x>/x+ X8 (K) ) /Ky + f Li (@) Bz (@3 ) dx}. (6.24)
0
To evaluate the integral, we define

L (1) = at f g2 m G a(8t) dE,

and A, ;) = fl £ (x,t) Bu (x; k) de,
0

whence (see (4.35))
L;t(x) = "Zn(xs l)s

and A, (15 k) =f1L;(x)ﬂ;(x;K)'dx. (6.25)
0
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Integrating by parts, and using (6.16) and (6.22), gives

1
A, (k) = ——j ad_i(x; k) x*"%{x"gn(x,t)}dx.
0

Now, from (6.2), we have

t—"(—% [tnx—"dgx {xn %, (, t)}] = K} _(z,1),

whence

1
t‘”d%{tn/ln(t;x)} = —f al_i(x;k) Ki_i(x,t) de

0
= ad _1(t; k) —t{Jp_s(kt) + A% _1(K)] n_s(Kgt)},

where we have used the integral equation satisfied by a_,. Integrating, we find that
¢
A5) = 170 [ a7{0d_4550) =2y 00) — X8 406) sy}

whence  A,(1; &) < {3F,_1(k) = ju(Kk)}/K + A% _1(k) {3 Fo_1(Kg) = JinlKe)}/Ke-
Using (6.25) and substituting back into (6.24), we obtain

Go(K) = F(K) + A5 _1(k) {FnlKg) — Grnlicg)}, (6.26)
where Fulk) = F(k)— (2n+1) (1 4+ a) F,_,(k)/k. (6.27)

Suppose, now, that we use (6.21) and (6.26) to compute F,(«x) and G, (k), given
F,(kg) and G, (), for 2 < n < N, say. Then, we require A{ (for G,) and A%,
(for Fy): A is given by (6.14) and (6.16) as

Al(k) = —qu(1; ) /(15 k)

(for starting values, we have already computed ¢,(x; «) for all values of «); A%, is
not known, but, for N sufficiently large, it can be replaced by its asymptotic
approximation (see §7.2), i.e.

Nyo1(k) ~ —(sin G+

7. NUMERICAL SOLUTIONS

In this section, we shall describe some further simplifications which enable us to
give numerical solutions of S for the particular case of an obliquely-incident
SV-wave.

7.1. Reduction of the kernels

The kernels of our integral equations are given as infinite integrals. These can be
reduced to finite integrals using a contour-integral method, as described by, for
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example, Noble (1962, p. 343): write g(£) = g(£; 8;7y) to show the dependence on
pand y. If g(£) - 0 as £—> o0 and £2¢(§) > 0 as £— 0, then

|7 eo@ineinen ag
w3 [ EMOEe )G & — i) -G YNE ()

where B'(§) = (K283}, y'(£) = (k*—£2)4,
T, =max (z,y), 2.=min(z,y) and AP (z) = (n/22)} HP 4(z).

Thus, the infinite integral has been replaced by two finite integrals along the
branch cuts of £ and vy. It follows that terms in g that are continuous across these
cuts will make no contribution.

Using (7.1), we quickly find that

9 K
Nay) = = Ziny [ " gm() Hy (g, ) e, (72)

2 K
and Ki(ay) = ~2iny [ fm*(8) Hulgon £) o, (73)

where
K*m(£) = (1—v){(2£2— K2)? (k- £2)~2 H(k — £) + 4£3(K2 - £2)}},
K2m*(8) = (1-v){(282— K?)? (K2 — £2)~t +- 4£2(k2 - £2) H(k - £)},
m=(§) = (K2-§2)3.

Here, H(x) is the Heaviside step function, and

H,(Ex, &y) = hP(Ex.) ju(Ex ). (7.4)
Also, from (4.35), we obtain

Kp+ 1xm
Litw) = - 2o [T B g e ) a, (1.5)
by integrating (7.3).

Equations (7.2), (7.3) and (7.5) are suitable for the numerical evaluation of N,,,
K3 and Li, respectively. They can also be used to obtain low-frequency asymptotic
solutions of the integral equations, for we can expand H,(¢z, £y) as an ascending
power series in £; see Appendix B for these expansions. In Appendix C, we derive
low-frequency approximations for the diffraction of a normally-incident SV-wave,
and compare our results with those obtained by Mal (1968¢) and Jain & Kanwal

(1972); we find complete agreement with those of Jain & Kanwal.

7.2. Asymptotic behaviour for large n

In this section, we shall obtain the asymptotic behaviour of all quantities as
n—> 0, for fixed K (recall that the crack has unit radius). Our procedure is to note



118 P. A. Martin and G. R. Wickham

that, for K fixed, each of the kernels N, and K; tends to zero as n—>co, and hence
the associated integral equations can be solved by iteration for sufficiently large n.
Since the original integral equation (2.8) has a small kernel in the limit K —0
(Martin 1981), it is clear that the estimation that we are about to provide also gives
an approximation to the general solution of (2.8) for sufficiently small K.

We begin with 6,,(x; k), which satisfies (3.18). From (7.4), we have (see Appendix B)

Hn(gx,gy)=m—_*-_——li;i-§@q{l+0(l/n)} as m—>00,

whence an approximation to N,(x, y) follows from (7.2). Hence, solving the integral
equation (3.18), we obtain the estimate

0,(; k) ~ xj,(kx) {1 + A[(2n+ 1)1 —a3(2n + 3)71]},
as n—>00, where
K
-] ma
= }(1—v) K2(3— 40+ 30%),
and o2 = k2/K?2 = }(1—2v)/(1—v). Similarly,
4n(®; K) ~ j (k) {1+ AH[(2n + 1)~ =220 + 3) 7]}

and PE() ~ =221 4% /(2n+ 1),
1K
where A* = —f m*(§) dg,
TJo
ie. A+ = 1(1—») K1+ 0%
and A4- = 1K2.

From equation 7.14.1(9) of Erdélyi et al. (1953), we have
1
1406, ~ [ a8 (K0 (2043) (€ H) S a0, (710
whence, from (6.13), we obtain

Ao(k) ~ — (sin )™; (7.7)

identical estimates can be derived for I and A%, respectively. Also, from (6.2),
we have

f 01 P (@) (A7) A ~ —24% ] 1 () /(204 1). (7.8)

Let us now estimate Si(«). Using the definitions given in §4.1, we find that
¢k = 1+0(n),

and e = 0(n=3),
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whence di = £1+0(n7%),
and 4,= —-2+0(n?)

as n—>o0. Also, F, (k) ~ 2§,41(x),

and G, (k) ~ —2(140t)jp_1(K),
whence SiE(k) ~ F(1+a)g,_i(k).

The above calculations allow us to estimate, for a fixed value of K, the number of
Fourier components required to compute the stress—intensity factors or the far-field
displacements, to a specified accuracy. For example, with K = 10, we can compute
the far-field displacements to about 5 decimal places by taking the first 15 Fourier
components; to compute the stress-intensity factors to the same accuracy would
require about 20 Fourier components.

7.3. The scattering cross section for P-waves at normal incidence

Consider a plane compressional wave that is incident upon the crack. We suppose
that this wave propagates in the plane 6 = 0, at an angle ¢ to the z-axis. The radial
component of the scattered displacement, up, in the plane 6 = 0, has the form
(see (5.1))

up(R,0,P) ~ F(D)el*E/R,

as R—o0, and the scattering cross section, 2 is defined by (Barratt & Collins

1965)
Zp = dno-2 Re {F(¢)}.

We have computed X, for the special case of a P-wave at normal incidence
(¢ = 0), and compared our results with those of Keogh (1983) and Krenk &
Schmidt (1982). This is the simplest possible case, because the problem is axisym-
metric and is governed by a single integral equation, namely Robertson’s equation,
(2.4). This equation was solved using a simple quadrature method (see, for example,
Baker 1977, §4.3), yielding an approximation to () at a set of M equally spaced
points in [0, 1], including the end points (recall that the stress-intensity factor, k,,
is proportional to 6,(1); see (5.17)). This can then be used to obtain an approximation
to F(0).

In the third column of table 1, we present our computed values of Xp/n for
K =1.0(1.0)10.0 and v = 0.25. In the first column, we ‘reproduce the corre-
sponding results obtained by Krenk & Schmidt (1982; their table 1) while the
second contains those computed by Keogh (1983) from a rigorous short-wave
(K — 00) asymptotic analysis. We see that the present results (column 3) agree with
those of Krenk & Schmidt for K < 3.0 and are confirmed by Keogh’s analysis for
larger values of K. This suggests that the numerical scheme used by Krenk &
Schmidt is inaccurate at high frequencies, possibly because their approximating
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polynomial for w, is not of sufficiently high order. Accordingly, we may expect
similar inaccuracies to arise in their treatment of asymmetric problems.

TABLE 1. THE NORMALIZED SCATTERING CROSS SECTION, 2p /T, FOR A P-WAVE AT
NORMAL INCIDENCE WITH v = 0.25, AS cCOMPUTED BY KRENK & SCHMIDT
(1982), KEOGH (1983) AND THE PRESENT METHOD

K Krenk & Schmidt Keogh present method
0.5 0.009 — 0.009
1.0 0.214 — 0.214
2.0 2.894 3.066 2.895
3.0 1.910 1.836 1.910
4.0 1.655 1.617 1.600
5.0 2.106 2.364 2.314
6.0 1.801 1.851 1.877
7.0 1.987 1.770 1.831
8.0 1.941 2.212 2.208
9.0 — 1.901 1.896
10.0 — 1.942 1.925

As K increases, the kernel of the integral equation (2.4) oscillates more rapidly,
and so it is necessary to compute 6,(x) at more points in [0, 1]. For example, in
table 2 we give our computed values of X'p/r for several values of M, at K = 8 and
v = 0.25; an accuracy of four significant figures is obtained with M = 30.

TABLE 2. THE NUMERICAL CONVERGENCE OF X'p/m WITH INCREASING M, FOR A
P-WAVE AT NORMAL INCIDENCE WITH v = 0.25, WHERE M IS THE NUMBER OF
POINTS IN [0, 1] AT WHICH THE APPROXIMATE SOLUTION OF THE INTEGRAL
EQUATION (2.4) IS COMPUTED

M Zp/n
10 2.202
15 2.212
20 2.210
25 2.209
30 2.208
35 2.208

7.4. The scattering of an SV-wave at oblique incidence

We have used our method to compute the far-field scattered displacement when
the crack is insonified by a plane shear wave polarized in the plane 6 = 0 and propa-
gating at an angle ¢ to the z-axis. The component of the scattered displacement
g in the plane 6 = 0 has the form (see (5.3))

uy(R, 0, D) ~ G(P) elKE /R,
as R->o00, and the scattering cross-section, X'g, is defined by

Zg = 4nRe{G(4)}.
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| G(@+m)|
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F16UrE 1. The amplitude of the back-scattered SV-wave, |G(¢ + x)|, for an incident SV-wave,
as a function of the shear wavenumber K, for 3 angles of incidence (¢ = 0°, 45° and 90°)
and Poisson’s ratio v = 0.25.

TABLE 3. THE NORMALIZED SCATTERING CROSS SECTION, Xg/m, FOR AN SV-WAVE
AT VARIOUS ANGLES OF INCIDENCE, 1 < K < 10, AND v = 0.25

(The numbers in parentheses (for 1 < K < 8) are the corresponding results of
Krenk & Schmidt (1982).)

K ¢.. 0 15° 30° 45° 60° 75° 90°
1.0 0.068 0.081 0.105 0.112 0.095 0.069 0.056
(0.068) (0.081) (0.105) (0.112) (0.095) (0.069) (0.056)
2.0 1.145 1.220 1.305 1.199 0.928 0.669 0.567
(1.145) (1.220) (1.304) (1.199) (0.928) (0.669) (0.567)
3.0 1.970 1.700 1.521 1.627 1.414 0.958 0.737
(1.972) (1.700) (1.519) (1.619) (1.403) (0.950) (0.733)
4.0 2.036 1.683 1.425 1.665 1.573 1.098 0.851
(2.048) (1.690) (1.419) (1.639) (1.571) (1.160) (0.944)
5.0 2.136 1.768 1.299 1.667 1.757 1.235 0.941
(2.187) (1.779) (1.203) (1.327) (1.405) (1.073) (0.872)
6.0 2.034 2.032 1.382 1.534 1.891 1.392 1.048
(1.973) (1.975) (1.234) (1.157) (1.494) (1.194) (0.955)
7.0 1.834 2.040 1.421 1.388 1.863 1.488 1.140
(1.820) (2.012) (1.280) (0.981) (1.207) (1.004) (0.811)
8.0 1.943 1.947 1.533 1.271 1.773 1.553 1.254
(1.977) (1.872) (1.182) (0.868) (1.128) (0.990) (0.811)
9.0 2.041 1.954 1.574 1.265 1.660 1.636 1.363

10.0 2.044 1.933 1.564 1.306 1.516 1.703 1.464
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Ficure 2. The amplitude of the back-scattered SV-wave, |G(¢ + n)|, for an incident SV-wave,
as a function of the angle of incidence ¢, for 3 values of the shear wavenumber (K = 1.0,
2.5 and 6.0) and Poisson’s ratio v = 0.25.

Figure 1 shows the back-scattered amplitude, |G(¢ +x)|, as a function of K, for
v = 0.25 and three values of ¢, namely 0° (normal incidence), 45° and 90° (grazing
incidence); in the second case, the incident wave induces only normal stresses on the
crack faces. These graphs show that the resonant frequency for normal incidence
corresponds to K = 2.6. Figure 2 shows the back-scattered amplitude as a function
of ¢, for v = 0.25 and three values of K, namely 1.0, 2.5 and 6.0.

In table 3, we present our computed values of Xg/n for K = 1.0(1.0)10.0,
¢ = 0°(15°) 90° and v = 0.25. For comparison, we also reproduce the corresponding
results of Krenk & Schmidt (1982; their table 2). This comparison shows discrep-
ancies which increase as K increases (as in the P-wave case; see §7.3) and also as
the angle of incidence, ¢, increases. For example, when K = 8and ¢ = 90°, Krenk &
Schmidt give a result that differs from our result by some 35 %,. The probable cause
of the increase with ¢ is that Krenk & Schmidt only use 8 azimuthal harmonics to
compute their estimates whereas it may readily be shown, using the asymptotic
formulae in §7.2, that this is insufficient. Indeed, when K = 8 and ¢ = 90°, we
found that to obtain convergence to four significant figures, 11 harmonics were
required.

In this paper, we have obtained the exact solution of the boundary-value problem
8. It is of interest to compare this solution with certain well known ‘approximate’
solutions. Thus, figure 3 shows the back-scattered amplitude, |G(¢+n)|, as a
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F1cure 3. The amplitude of the back-scattered SV-wave, |G(¢ + x)|, for an incident SV-wave,
as a function of the angle of incidence ¢, for K = 10.0 and v = 0.29. The solid line is
the exact solution, obtained by the present method. The dashed lines are two approxi-
mations to [G($+n)|: - —- —, the Kirchhoff approximation; — - — -, the ray-theory
approximation (Chapman 1983).

function of ¢ for K = 10 and v = 0.29 (corresponding to steel) obtained by (i) the
Kirchhoff approximation, (ii) Keller’s ray theory (GTD) and (iii) the present
method. The Kirchhoff approximation is derived as follows: replace p,(q) = [u;(¢)]
in the integral representation (2.7) by the scattered displacement that would be
induced at ¢ if the crack were replaced by an infinite, plane, traction-free surface
(with the same incident wave). This yields the following approximation:
G(¢p+7) ~ —cospJy(2K sin ¢) /2K sin ¢.

(Note that this formula is independent of v.) This approximation appears to be
accurate near normal incidence, but is clearly only reliable up to the first side-lobe
(¢ ~ 18°). The ray-theory approximation shown in figure 3 was computed by
Chapman (1983). It is apparent that this approximation is good, except near normal
incidence, near the ‘critical’ angle arcsin (k/K) ~ 33° and in the interval 50° < ¢
< 70°. At normal incidence, it is well known that GTD fails because the z-axis is
a caustic of the diffracted field. Keogh (1983) has shown (for the two-dimensional



124 P. A. Martin and G. R. Wickham

problem of scattering by a Griffith crack) that the discrepancy at the critical angle
is due to multiply-diffracted body waves (which are neglected in GTD). It is
possible that the discrepancy in the third range of ¢ may be due to a similar effect.

8. CONCLUSIONS

The diffraction of stress waves by a penny-shaped crack in an elastic solid is a
canonical problem in the theory of three-dimensional elastodynamics. In a previous
paper (Martin 1981), we have proved that the corresponding linear boundary-value
problem is uniquely solvable: the solution (u, say) has a representation as an elastic
double layer whose (vector) density satisfies a two-dimensional Fredholm integral
equation of the second kind (see §2.4). In the present paper, we have expressed ©
in a form which renders its computation straightforward, i.e. we have uncoupled
the components of u and expressed them in terms of the solutions of certain simple
one-dimensional Fredholm integral equations of the second kind. The principal
computational task is the routine calculation of the kernels of the integral equations.

In §6, we have derived some imbedding formulae which simplify the computation
of the quantities of physical interest. Moreover, the method of derivation of these
formulae is applicable to the corresponding problems in acoustics and electro-
magnetism.

We have computed the far-field displacements for a P-wave at normal incidence
and for an SV-wave at various angles of incidence, and compared our results with
the high-frequency asymptotic estimates of Keogh (1983) and the numerical results
of Krenk & Schmidt (1982). We found good agreement with Keogh’s formula. We
conclude that Krenk & Schmidt’s scheme is inaccurate both at high frequencies and
near grazing incidence, although this may merely be due to premature truncation
of their infinite systems of equations. However, it should be noted that their
formulation does not afford a priori estimates of the error incurred by truncation at
a certain point, whereas we have provided asymptotic estimates (for large n and
fixed K; see §7.2).

In the future we hope to present our computations of the dynamic stress-intensity
factors for various incident waves. Another problem of interest is the scattering of
waves generated by a point source, or by a source of finite extent. Also, further work
is required on high-frequency scattering, where the present approach is compu-

tationally inefficient; some progress with the axisymmetric problem has been made
recently by Keogh (1983).

The authors are grateful to Dr P. S. Keogh and Dr R. K. Chapman for supplying
preprints of their computations. The work has also benefited from a number of
interesting and relevant discussions with John Coffey and Bob Chapman of the

Scientific Services Department of the Central Electricity Generating Board,
Wythenshawe, Manchester.
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APPENDIX A. THE INCIDENT PLANE WAVES

Consider an incident plane wave, with displacement vector
u"')(r) = AelEN'r  BNelkN'r,
where r = (x,¥,2), N-A = 0 and N is a unit vector in the direction of propagation.
Write N = (sin¢,0,cos¢) and A = A(cos¢,0, —sing),

i.e. the wave is propagating at an angle ¢ to the z-axis, with the motion restricted
to the xz-plane. Differentiating, we find that

70(r) = piK A cos 2¢eiEN'" 1 yik B sin 2gelkN 7,
70(r) = — piK A sin 2¢eiEN"" + y(ikB/0?) (1 — 202 sin? ) etV
and 70(r) = 0,

where o2 = k?/K2.
P-wave ot oblique incidence. Take A = 0 and ikB = o2, whence, on z = 0,

T(:l;l:z)(r, 0, 0) = /,40'2 sin 2¢eikx sin ¢
and 79(r, 0,0) = u(1—202sin? @) etkesing,

We must now decompose these expressions into their Fourier series in 6, as required
in §§3 and 4. Since z = 7 cos 0, we may use (5.7) immediately to give

Ta(r) = Dyy($) Jy(ler sin @),
with D, () = €,i™(1 —202%sin2 ¢).
For the shear problem, we have

79(r,0,0) = 780(r,0,0)cos 6 and 78)(r,0,0) = —7)(r,0,0)sin6.

Thus, since
cos felrcosd — 1 § €, 1Y, 1 (A) = J,_1(A)} cos nb
n=0
and —sinfeiteosd = 3 nL] (A)+J,_y(A)}sinnd),
n=1
we have to(r) = Co(p) Jy(krsin @)
and tn(r) £8,(r) = & Co(@) Sy (lr sin @),
with C,.(9) = e,i"1o?sin 2¢.

SV-wave at oblique incidence. Take B = 0 and iK4 = 1, whence, on z = 0,
ng)(r, 6,0) = 4 COS 2¢elesin é

and 70(r,0,0) = — psin 2¢elKasing,
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Hence,
Ta(r) = Dy(@) Ju(Krsin ),
to(r) = Cy(¢) J1(Krsin @)
and £, (1) £ 8, (1) = £ Cp(P) I, 1 (Krsin @),
with D, (¢) = —e€,i"sin2¢ (A1)
and C,($) = €,i"** cos 2¢. (A2)

APPENDIX B. POWER-SERIES EXPANSIONS

The kernels K and N, are given by (7.3) and (7.2), respectively, where H, is
defined by (7.4). We have

M8

H,(&x, £y) (i)™t Pp(x,y), n >0, (B 1)

0

m
where P%(z,y) can be found by using equations 7.11(3) and 7.2.1. (2) from Erdélyi
et al. (1953), namely

v & (ntm)limnt
WE0) = 208 3 e —m)I GG

© —1\m n+2m
and Jn(8y) = %"%mgo (ﬁ;])ﬂ(_,,(,%f_y,l—_,_%—) :

We note that Pj(x,y) are real; in particular,
Py(x,y) = 222z /(2n +1). B2)
Substituting (B 1) into (7.2), we obtain

N'ri(x’ y) = xsz 20 (IK)m Pﬁ(x’ y) lm’
m=

where

in

nl, = —2(1— v)f {(osin 0)™ (202sin2 O — 1)% + 4 cos? 0 (sin O)™+2} dO

0
and o = k/K. The coefficient /,,, which depends only on Poisson’s ratio, can be
evaluated explicitly: we have

fly = =8(1=) (0™ = 1) By + (1= 0™ By g+ 1o B,
in
where E, = f sin™ 6 do,
0
ie.  Bp=T@T@+H/n and By =) (n—1)/Tn+})
Similarly, we have

Ki@,y) = ayK2 S, (iKym Pu(x,y) 1, (B 3)
m=0
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and
Li@) = —aK? 3 (K" Phs(@, )l (B 4)
m=0
where nl:r_z = 8(1 - V) {(a-m+4_ 1) (Em+4 - Em+2) - i'Em}’ (B 5)
Tl = 2(E1m+2—"‘Em)’ (B 6)

and we have noted that P}(x,y) = 0 forn > 1.

APPENDIX C. DIFFRACTION OF AN SV-WAVE AT NORMAL INCIDENCE

For an SV-wave, polarized in the zz-plane (6 = 0) and at normal incidence
(¢ = 0), we have (see Appendix A)

bh=—-8=1, C=-2 and C,=0 for =+ 1.
Taking « = K sin ¢, letting ¢ — 0 and putting n = 1, we find that
¢ =FH=1{=0

and G, = —2(1+a).
Now, from (B 3),
Kf(w,y) = xyK*Pi(, y) g + O(K?)

= 32 K25 [z + O(K?),
as K0, and (from (4.35) or (B 4))
Li(x) = K23 23(5 — 2?) /30 + O(K3).

Hence,
Pt (@) = Kf(z, 1)+ O(K*) = $22K?F + O(K3),

1
cf = l—fo x2pi(x)de = 1 — K23 /15+ O(K3),

ef = LF(1)+O0(K*) = 2K /15 + O(K3),
df = +{cf +3(1 +a)eif} = + {1+ KF(5 + 6a)/15} + O(K?3)
and 4, =ctdy—dfer
= —2+2K2{(3a—2)ly — (3a+2)I§}/15+ O(K?),

as K—0.
Stress—intensity factors. From (5.18) and (5.19), we have

ky(0) = —(2/n) Sf cos@ and ky(0) = —(2/x) (1 —v) Sy sinb,

where 8 = —ey Gy/4, and 87 =cf Gy/4,.
Thus, Sf = T (1+a){1+K24#/15+0(K?)},
where Af = 3(a—1)1ly — (B +2) I,

and A7 = Ba—2)ly —3(ax+1)1§.
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From (B 5)and (B 6), wehavely = —}andlf = —}(1—v)(1+0%), witho? = k2/K2.
Thus, since @ = v/(2—v) and 2v = (1 —202)/(1 —02), we obtain

21—2202%+ 904 —100%
4(3—202%) (1—0?) °

Af =

_ 9+202+604

and A =559

and this completes our low-frequency expansions for the dynamic stress-intensity
factors. Similar expansions have been obtained by Jain & Kanwal (1972) and by
Mal (1968¢). Our results are in eomplete agreement with those given by Jain &
Kanwal, and thus confirm their statement that Mal’s results are incorrect.
Far-field displacements. From (5.21), we have
1
AT = SH=GH)+ [ [ apt @) ) Q)
= SiH{—Ju(H) + K3 jo( ') [ A+ O(K>A')},
where we have used (6.2). Thus
If = —§SF{1 + K2F /15— 42/10} + O(K3).
Substituting into (5.9) and (5.10), we obtain

8(1—
L(A;0) = 3%(2__%)) (1 + A K¥(Af 1) = A+ O(K¥)} cos
and L(#;0) = ;nié—‘_—?) (1 + A KA —I5) — 5 A2+ O(K¥} sin ©

Substituting for AF and I, we see that

Af =l =47 =ly = 3{(a—1)lg — (@ +1) 1§}
= 3(2+0%)/(3—20%).

Jain & Kanwal (1972) have also obtained low-frequency asymptotic expansions
for I, and I,. We find complete agreement with their results (apart from a typo-
graphical error in their equation (100): the second term inside the first pair of
square brackets should be —(1+7%)/(1—72)). It is noteworthy that I,(¢"; @)sin
O = I(A"; ) cos O, correct to O(K?).
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