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SUMMARY

Integral-equation methods are often used to treat the exterior problems of
acoustics. It is known that the simplest equations fail to be uniquely solvable at
certain frequencies (the irregular frequencies). For a single smooth scatterer, D. S.
Jones has shown how any given irregular frequency can be removed by using a
fundamental solution which has a finite number of additional singularities inside the
scatterer. This approach is extended here to treat the two-dimensional exterior
Neumann problem for a pair of scatterers, using a fundamental solution which has
additional singularities inside each of them. A partial generalization of Jones’s result
is obtained, involving fundamental solutions with an infinite number of singularities
inside one scatterer and a finite number inside the other. Similar results can be
obtained for the Dirichlet problem, and in three dimensions.

1. Introduction

Two rigid cylinders, with their generators vertical, are immersed in water,
and a surface wave is incident upon them. If the water is of uniform depth
and the cylinders reach down to the bottom, the corresponding three-
dimensional linear boundary-value problem can be reduced to a two-
dimensional problem by separating out the dependence on the vertical
coordinate (1). It is this plane problem that we shall study here.

To be more specific, let D denote the infinite region exterior to two
simple, closed, disjoint, Lyapunov curves, dD' and oD% Let dD=
aD'U3dD?. Then we wish to find a function u which satisfies the two-
dimensional Helmholtz equation

(V2+k?u=0

in D, together with a Neumann boundary condition on 9D and a radiation
condition at infinity (see section 4). This boundary-value problem (labelled
P, below) also arises in other contexts, for example in acoustic scattering by
a pair of sound-hard cylinders. There are also obvious generalizations to
more scatterers, and to three dimensions.

Several methods have been devised for treating P,. In section 2 we give a
brief review, concentrating on exact methods (which, at least formally, could
yield the exact solution) rather than approximate methods (which can, at
best, only yield approximations to the solution). We shall use integral-
equation methods to treat @,. It is straightforward to obtain integral
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equations for ®,, using Green’s theorem or source distributions, but the
simplest of these fail to be uniquely solvable at certain values of kZ (called
irregular values). We shall obtain an integral equation which is always
uniquely solvable. This is an extension to scattering by two cylinders of some
work by Jones (2) and Ursell (3) on scattering by one cylinder; their work is
described in section 3. We give the proof of our result in section 4; we use a
modified fundamental solution which has additional singularities inside both
scatterers.

2. A brief survey

The literature on multiple-scattering problems is vast, and was first
surveyed by Twersky (4) in 1960; an addendum was published four years
later (5). We shall begin our survey by describing some of this early work
(section 2.1); the main emphasis is on exact formulations and analytical
approximations. More recently, the emphasis has shifted towards numerical
solutions; this work will be described in section 2.2.

2.1. Early researches

In his review, Twersky (4) identified three different methods: ‘One may
seek to solve the boundary-value problem for the “compound body”’; one
may use a self-consistent procedure based on the known response of the
isolated elements, such that each object is considered as excited by the
primary wave plus the resultant of the initially unknown total scattered fields
of the other objects; or onc may use an iterative procedure corresponding to
the “‘successive scatterings” of the primary wave.’

The first method usually reduces to finding an integral equation over aD,
using the free-space wave source G, (defined by (3.4) below). For two
circular cylinders this equation can be replaced by an infinite system of
linear algebraic equations; see, for example, (6). For two arbitrary cylinders
this is not possible in general, and only approximate solutions can be found.

The second and third methods differ from the first in that they explicitly
use the solution of the single-body problem. For a circular cylinder this
solution can be found by separation of variables; it is in the form of an
infinite series of the cylindrical wave-functions H’(kr)e'™®, where H("(z) is
a Hankel function and (r, 6) are circular polar coordinates with origin at the
centre of the circle. For two circular cylinders the two methods are as
follows. In the second method the scattered wave is written as the sum of
two infinite series of cylindrical wave-functions, corresponding to the waves
scattered by each cylinder. The unknown coefficients are determined by
applying the boundary condition on each cylinder and using the addition
theorem for Hankel functions; this leads to the same system of linear
algebraic equations as obtained using the integral-equation method, de-
scribed above. This method was devised by Zavi$ka in 1913 (7). (Actually,
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he treated the corresponding transmission problem for a finite number of
circular cylinders.) As we shall see, it is very useful for numerical computa-
tions but less so for analytical purposes.

In the third method, which was pioneered by Twersky (8), the solution is
constructed in a step-by-step fashion as follows. Calculate the wave scat-
tered by each cylinder separately when it is excited by the incident (or
primary) wave; this is called the ‘first order of scattering’. The wave
scattered by the first (second) cylinder is then rescattered by the second
(first) cylinder; this is the ‘second order of scattering’. This procedure is then
repeated, yielding an infinite series of ‘orders of scattering’ (each one of
which is itself a nested infinite series). The advantage of this method is that
there are no equations to solve, that is one merely truncates the infinite
series of known (but complicated) terms and takes this as an approximation
to the exact solution. However, the convergence of the infinite series has not
been demonstrated, although Twersky (9) has shown that it can be summed
in the far field for widely-spaced cylinders.

In 1964, Burke and Twersky (§) wrote: ‘Today, the separations of
variables derivations. .. are only of academic interest. It has been shown
(10) that [the same equations] can be obtained for nonseparable as well as
separable shapes without knowing the addition theorems for the special
functions of the system...’. The method referred to uses the plane-wave
(Sommerfeld) representation for HP(z) (11, §7.3.5), and leads to a compli-
cated formal solution to the problem, but not at all points in D, nor on éD.

2.2. Numerical solutions

In the last twenty years the problem of scattering by two circular cylinders
has continued to attract attention. Thus, Ohkusu (12) has rediscovered
Twersky’s method (8), whilst Zavi§ka’s method (7) has been rediscovered by
several authors: see, for example, Olaofe (13), Young and Bertrand (14)
and, in the context of water waves, Spring and Monkmeyer (15). It is clear
that for circular cylinders Zavi$ka’s direct method is very efficient for
numerical calculations.

For cylinders of arbitrary cross-section, integral-equation methods have
been used. Thus, Isaacson (16) and Sorensen (17) have represented u as a
distribution of simple wave sources over 3D, and then solved the corres-
ponding integral equation of the second kind for the unknown source
strength. This integral equation is not uniquely solvable at a certain set of
values of k (the irregular values: see section 4 below); indeed, Radlinski
(18) has demonstrated this numerically, by comparing the far-field solution
obtained from the solution of the integral equation with that obtained using
Zaviska’s method for two circular cylinders.

One new method for treating multiple-scattering problems has appeared
since Twersky’s first survey. It is called the null-field (or T-matrix) method.
This method was first devised by Waterman (19) for a single scatterer, and
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was later extended to several scatterers by Peterson and Strom (20). It can
be considered to be a generalization of Zaviska’s method to arbitrary
cylinders (in that it uses cylindrical wave-functions and their addition
theorems, and leads to infinite systems of linear algebraic equations). The
null-field method is widely used for obtaining numerical solutions to
multiple-scattering problems; see, for example, (21) or (22). Actually, one
motivation for the present work is the theoretical justification of the
null-field method, using the author’s earlier work on single-scatterer prob-
lems (23, 24).

3. Scattering by a single cylinder

Let D denote the unbounded region exterior to a simple closed Lyapunov
curve dD. The title problem reduces to the following linear boundary-value
problem.

Problem %,. Find a function u(P) which satisfies the two-dimensional Helm-
holtz equation

(V*+k*»u(P)=0 in D, 3.1

the Neumann boundary condition

ou
— (p)=f(p) onaD (3.2)
on,

and the radiation condition

r}i,(;Tu— iku) —0 as rp—>o, (3.3)
P

The function f(p) is prescribed on 4D, and k is a positive real constant.
We shall use the following notation: capital letters P, Q denote points of D;
lower-case letters denote points of dD; and d/dn, denotes normal differenti-
ation at the point g, in the direction from D towards aD. For ?,, we choose
the origin O at some point in D_, the complement of D UdD. Finally rp is
the position vector of P with respect to O, and rp =|rp|.

Typically, 2, is solved by integral-equation methods; for a summary, see
(25) or (26). Let

Go(P, Q)= Gy(rp, 1g) = %i’"’Hf)])(k |rp — l'o|), 3.9

and then look for a solution of , in the form

uP)= | w(@GColP, @) ds,; (3.5)

aD

applying the boundary condition (3.2) yields a Fredholm integral equation of
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the second kind for the unknown source strength w(q), namely

(o) + [

a

1@ 5= Golp, 4) ds, = ). (36)
D Ny

It is well known that this equation is uniquely solvable, except when k?
coincides with an eigenvalue of the corresponding interior Dirichlet prob-
lem; we denote the (discrete) set of these irregular values of k? by IV (D).

Several methods have been devised for overcoming the difficulty at the
irregular values of k?; for references see (24, p.398; 26, §3.6). Here we
shall concentrate on just one of these, namely, the replacement of G, by a
different fundamental solution. This method has been investigated by Ursell
(25, 3), Jones (2) and Kleinman and Roach (27). Let

M 2
G\(P, Q)= Gi(tr 10) = Goltm xo)+ 2, L ardnltn)dimo), (3.7)

m=0o=1

where a;, are constants,

d;‘,;(rQ) = Hg)(k’Q)E;(GQ), (3.8)
El(6)=2tcos mé, E2(6)=2Ysin m#, m=1,

Ei=1, E3=0 and (r, 8) are circular polar coordinates centred on O. We
now modify (3.5) and look for a solution of %, in the form

wP)=| w@Gi(P,q) ds, (3.9)

oD

whence w(q) satisfies

mt(p)+j

3,

u(q) 5"’— G1(p, q) ds, = f(p). (3.10)
D n,

The solvability of this integral equation is governed by the solvability of
the corresponding homogeneous equation, namely

wu(p)+J

(:]

u(q) ;.f— Gy(p, q) ds, = 0. (3.11)
D n,

THEOREM 3.1. Suppose that the homogeneous integral equation (3.11) has a
non-trivial solution w(q). Then the interior potential

U(P)= J' w(q)G1(P, q) ds,, PeD. (3.12)

oD
vanishes on aD.
Proof (25, pp. 120, 123). (The corresponding theorem with G, replaced by

G, is classical.) Define U(P) for Pe D by (3.12); dU/sn vanishes on 3D by
(3.11). The uniqueness theorem for ®, (25, p. 120) then asserts that U =0
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in D. The result follows by noting that U is continuous across the source
distribution -on dD.

If we can show that U=0 in D_, it will follow that (3.11) has only the
trivial solution and hence that the inhomogeneous equation (3.10) is uni-
quely solvable. Ursell (25) has shown that this can be achieved by (i) setting
M=o, and (ii) making a special choice for the constants a7, appearing in
(3.7); this modification to G, eliminates all irregular values. Later, it was
shown by Jones (2) that any given irregular value can be removed by
keeping M finite and imposing only a mild restriction on aj,. More recently,
Kleinman and Roach (27) have shown that this can be achieved with just
one non-zero coefficient a2, (provided k? is a simple eigenvalue). Jones
proved the following theorem (2).

THEOREM 3.2. Suppose that

12a2 +dim|>4m, o=1,2;m=0,1,..., M. (3.13)

Then every solution of the homogeneous integral equation (3.11) is a solution
of

(o) + |

(:]

d
©(q) P Go(p, 9) ds, =0, (3.19)
D ny
which also satisfies

A;Ej w(@Uo,) ds, =0, o=1,2;m=0,1,..., M.
aD

Proof. We give Ursell’s simplified proof of this result (3). For Pe D_, we
have

M 2
1(@)Go(P,q) ds, + 3, 2 aZALYL(rs),
D

m=0o=1

UPp)= j

;]

where w is a solution of (3.11). Let C_ denote the inscribed circle to aD,
centred on O, and let Dy, denote the interior of C_. If we restrict P to lie in
Dy, we find that

o 2 M . 2
Ue)=dim 3. Y AZoe)+ L X anAnda),  (3.15)
m=0cg=1 m=0o=1
where
P (rq) = Ju(kro)E7(80) (3.16)
and we have used the expansion

oo 2
Goltp 1o)=4im Y. Y. Jo(re)¥ilro), (3.17)

m=0o=1
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which is valid for rp, <rg. Next, we consider the integral

*
= (0220 ),
C an on

where the asterisk denotes the complex conjugate and C is any circle
concentric with C_ and lying in Dy. Using Green’s theorem and Theorem

3.1, we see that
* a
1=J' (UaU —U*_U)ds=o.
oD on Bn

We can also evaluate I directly using the following.

THEOREM 3.3. Suppose that U(rp), Pe Dy, has an expansion

o 2 M 2
Utp)= Y. Y ATLEs)+ Y. Y Bouyo(rs).

m=0oc=1 meQo=1

Then

i (3( aU* aU M2

—L (vi- U2 dop= Y. 3 (BIP+Re[BLAD T,

8 arP a"F' m=0 o=l

Proof. Substitute for U, use the orthogonality of the trigonometric functions
and then simplify using the Wronskian, H, (z)H . *(z)- H(z2)HX(z)=
—4if(mz), where H,,(z)= HY(2).

Thus, returning to the proof of Theorem 3.2, we find that

M 2
0=I=2i), Y |AZf{l2a%+}im?—5n. (3.18)
m=0g=1
Since af, satisfy the inequality (3.13), it follows that (3.18) can only be
satisfied if A5, =0for o=1,2 and m=0, 1,..., M. It also follows that u
satisfies (3.14) (substitute (3.7) into (3.11)).
Suppose that (3.13) is satisfied. Then, from (3.15) we see that, for P e Dy,

oo 2
Uke)=im Y L ARdne) =0 as r—0.
m=M+lo=1
So, either U=0 in D_ or U is an eigenfunction of the interior Dirichlet
problem. We may exclude the second alternative by taking M sufficiently
large (2, Theorem 2).

This completes our review of the theory for scattering by a single cylinder.
In the next section we shall show how this theory can be extended to treat
scattering by two cylinders.
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4. Scattering by two cylinders

Let aD', for i = 1, 2, be two simple, closed, disjoint, Lyapunov curves, and
let aD =8D"UaD?. Then the analogue of P, for two scatterers is the
following problem.

Problem %,. Find a function u(P) which satisfies the two-dimensional Helm-
holtz equation in D, the boundary condition (3.2), and the radiation
condition (3.3).

It is known that ®, has precisely one solution; see for example (26,
§§3.3,3.4).

We can use integral-equation methods to treat 2, in just the same way as
we treated @,. In the current notation we try to represent u as a distribution
of simple sources over aD, (3.5), leading to the integral equation (3.6); this
is the equation solved by Isaacson (16), Sorensen (17) and Radlinski (18). It
is easy to modify the classical arguments (25, p.120) to show that the
corresponding irregular values are IV (6D") UV (8D?).

In order to obtain uniquely-solvable integral equations we shall replace
the simple source G, by a different fundamental solution. Let D' denote the
interior region bounded by aD', for i =1, 2, and let D_= DU D?. Choose
two origins, O', with O'e D', and let r; denote the position vector of a
point P with respect to O'. Let

M 2 N 2
Gi(P,Q)=Go(P, Q)+ Y. Y aSpoaeaab)+ Y Y boyo @),

m=0co=1 m=0o=1
4.1)

where ay, and by, are constants. This fundamental solution is singular at
both O' and O? (recall that ¢,(rk) is singular at O'). Note that it is essential
that our fundamental solution has this property, for if we chose one that
only had singularities at O', say, then we could not eliminate those irregular
values associated with aD?.

Look for a solution of %, in the form (3.9), whence the source density
w(q) satisfies the integral equation (3.10). Moreover, the same arguments as
before show that Theorem 3.1 is true (in the current notation); here, we
need the uniqueness theorem for %,.

Let us now investigate the solvability of the integral equation (3.10) and
look for an analogue of Theorem 3.2. Suppose that w(q) is any solution of
the homogeneous integral equation (3.11). Consider the interior potential
U(P), defined by (3.12), for Pe D!. We restrict P to lie in D<= D!, where
D4 is the circular region bounded by C*, the inscribed circle to dD' centred
on O, for i=1,2. Using (3.17) and (4.1), we obtain

o 2 M 2
Uh=Lir Y Y ALILE)+ Y Y asAndsed) +
m=0o=1 m=0o=1

N 2
+ Y Y bLBLuLEd), (4.2)

m=0o=1
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for Pe D}, where

A= [ s as, 4.3)

and
Bi= | w@un@ as, 4.4)
oD

In order to use Theorem 3.3 we need the expansion of U to be in terms of
functions centred on O?, that is we need the following addition theorem that
gives a formula for ¢Z(r?) in terms of functions of rp.

THEOREM 4.1 (11).

o 2
YR = 2 L ST@giad),

n=0 ym=1
where T5=r1p+a, rp<|a|, and the matrix SZ, is defined in the Appendix.

Let b be the position vector of O? with respect to O, whence r3=rp—b.
Since O*¢ D}, (the cylinders do not intersect), we have rp<|—b| whence

oo 2 N 2
ueh= T T {imazs 3 T biBismw fineh+

m=0og=1 n=0Q y=]}
M 2
+ ) Y anAgoE), PeDL (4.5
m=0o=1

Using Green’s theorem, Theorem 3.3 (for D}) and the fact that U(rp)
vanishes on 4D, we obtain

M 2
0=Y Y |AzP{lagl?+3m Im (a2} +

me=Qgo=1
M N 2 2
+Re Y, Y ¥ Y anAn[biBiSm(-b)T*. (4.6)
meQn=0c=1vm]
Suppose now that Pe D%. Then we obtain
oo 2 M 2
U= 2 X {%in:+ X a:A:SZ';.,(b)}t!fZ(r%)+

me0o=1 n=0v=1

N 2
+ Y Y bLBLWGL(R), PeD%, (47)

me=0o=1

and

N 2
0= 3 Y |BAHIbof+im Im (b3} +

mm=0o=1

+Ref Y Y Y anALlbiBI*STDb). (4.8)

mm0n=0gm=1 y=l
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By comparison with the proof of Theorem 3.2, we expect to be able to
deduce from (4.6) and (4.8) that AZ, and B? must vanish for o=1,2,
m=0,1,...,Mand n=0,1,..., N Add (4.6) and (4.8); since, from (A1),
Sy (b)= S~ (—b), we obtain

0=Y Y AP faglP+inIm @i+ Y Y |BLRAbGR+4m Im (b3} +

m=0o=1 moQo=1
M N 2 2
+2Re Y, ¥ Y Y anAu[biBISTb), 4.9)
m=0n=0og=1v=1

where S =Re (S%). Let us simplify (4.9). Choose circular polar coordi-
nates (r}, 8 at O so that b= (b, 0); it follows that S!2(b) = SZ. (b) =0 (see
the Appendix), that is, the dependence on o uncouples. Write

Ar=an A7, and R =boBy,.
Then (4.9) becomes

2
0= I° (4.10)
a=1
where
M N
I°=K°+3m Y, Im(a3)|AZP+3ix Y Im(b3)|B?
m=Q m=0
and
M N M N
K=Y |52+ L 1BoP+2 L Y Re{«45BIWmb).  (4.11)
m=0 m=0 m=0 n=0

Suppose that we can show that K =0. Then if we take Im(aZ)>0
(c=1,2;, m=0,1,...,M) and Im(b3)>0 (=1, 2; m=0,1,...,N), it
will follow that I° >0, provided that A7 #0 and B, # 0. But, from (4.10),
I'+1?=0, that is, we must have A% =0 (oc=1, 2; m=0,1,..., M) and
B5=0(c=1,2; m=0,1,...,N).

So consider the quadratic form K. Without loss of generality we can
assume that o3, and BY, are real. For if they were complex we could split
K7 into the sum of two identical quadratic forms, one involving only the
real parts of 3, and B7, and one involving only the imaginary parts.
Suppressing the dependence on o, we have

Y (At Y (B)242) Y 4,B.5mb)

K=
me=0 m=0 m=0n=0
M N 2 N M N 2
= Y (ot T BS0) + 2 @2 2 (3 D8,
mw=0 ne=Q m=0 m=0 =0

= Kl + K2, (4.12)
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say, where K, denotes the first summation; clearly K, =0. We can write K,
as

K= Y (B~ Y 2 B.BCu(M), (4.13)
m=0 n=0k=0 .
where
% (M) = Zos‘:,:(b)éz,z(b)= Ci(M). (4.14)

Is K,20? We have been unable to answer this question for arbitrary M and
N. However, we do have the following result, which is a partial generaliza-
tion of Jones’s theorem (Theorem 3.2).

THEOREM 4.2. Suppose that, in (4.1), only one of M and N is finite: take
M =, Suppose also that

Im (aZ2)>0, o=1,2;m=0,1,2,...
and
Im (b3)>0, o=1,2;m=0,1,...,N.

" Then every solution of the homogeneous integral equation (3.11) is a solution
of the homogeneous integral equation (3.14) which also satisfies

A =0, o=1,2,m=0,1,2,...
and
B;, =0, o=1,2;m=0,1,...,N.

Proof. 1In the light of the previous discussion, it suffices to show that K;=0.
In fact, K, =0, because

Crn(®) =6, (4.15)

where §; is the Kronecker delta; this result is pAroved in the Appendix, using
two applications of the addition theorem for ¢¢,.

Theorem 4.2 is useful from an analytical point of view. In particular, if we
let N — o, we obtain an integral equation which is uniquely solvable for all
values of k? and, hence, we can prove an existence theorem for %,.
However, Theorem 4.2 is less useful for the analysis of a possible numerical
method, in which M and N must both be finite. To illustrate the difficulties
with the present approach we conclude this section with two examples,
corresponding to M=N=0 and M=N=1.

ExampLE 1. Let M=N=0. From (4.13) we have K5= (BHH1- C0)},
whilst from (4.14) and the Appendix we have Cg(0) ={S55(b)}*> =8,,J5(kb).
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Thus,
K3=(82%=0

and

K3=(®B0)1-J5(kb)} =0,
since Jo(x)=1 for all x=0. It follows that AJ=B5=0, for =1, 2.
ExaMPLE 2. Let M=N=1. We have

7=(BDH1 - CoHM}I+(BNH1~ CT1 (1)} —2BEBTCS,(1).
Suppose that A ={1—Cg,(1)}>0. Then,
ATKS = {8785 - CE (DRI + (B,

where A7 = A7{1 - CT,(1)}-{C5,(L)}>. It follows that K$=0, as desired, if
A? =0. Now, from (4.14) and results in the Appendix, we have

A'=1-J2-2J2, A%=1,

A'=AY1-2T7}-(Jy— 1)} -2J3)3
and
A =1-(Jo+ )%

where J, =J, (kb). Since

1=J2+2Y J? (4.16)
n=1

and kb>0, we have A'>0. Similarly, since J,+J, =2J,/(kb) and J,(x)<}x
for all x=0, we have A%=0. It remains to show that A'(kb)=0 for all
kb>0. We have been unable to do this; it is easy to show that AX(k) ~ ak®
as k -0, A'(k)~1—B/k as k — = (where a« and B are positive constants),
and A'(k) is not a monotonic function of k. We expect similar difficulties to
arise when M and N take on larger (finite) values.

5. Conclusions

In this paper we have considered integral-equation methods for solving a
multiple-scattering problem in acoustics, namely, the two-dimensional prob-
lem of scattering by a pair of sound-hard cylinders. We obtained a class of
integral equations which are uniquely solvable at all frequencies, that is
irregular values of k do not occur. To do this, we replaced the simple wave
source G, by a new fundamental solution that has additional singularities
inside both scatterers; this is a generalization of a method used by Jones (2).
However, our result (Theorem 4.2) is not the best possible, for the funda-
mental solution used has an infinite number of singularities inside one
scatterer (cf. (25)) and a finite number inside the other. For computational
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reasons we should prefer to have only a finite nimber (L, say) of additional
singularities, and a result of the following form. The integral equation (3.10)
is uniquely solvable at any given value of k, provided that L > L,,, where L,
depends on k. However, the examples at the end of section 4 suggest that
such a result may be difficult to obtain.

Theorem 4.2 can be used to prove the existence of a solution to problem
@,; this result has been obtained previously by other methods (26). It can
also be used to analyse the null-field equations for #, (20, 21); this work
will be described elsewhere.

The method described in this paper can also be used to solve other
scattering problems. In a sequel we shall use it to treat certain water-wave
problems, namely, the scattering of a surface wave by a pair of partially-
immersed horizontal cylinders. It can also be used to treat three-dimensional
problems. If the number of scatterers is increased the present method may
become unwieldy, for it would require the addition of singularities inside
each of them; for such a configuration other integral-equation methods may
be more suitable (26).
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APPENDIX
We have (11, 7.15(34))
w 2
o@D =Y Y ST@)dip),
n=Q pm=l
where rp=rp+a°% rp<|a? and the matrix Sg, is as follows (all functions have
argument a7, which is the position vector of O' with respect to O?).
Son=(1D"d¢n,  Sar=(-D"¢n, n=0;
Mo= Wny  Swm= o+ 271",
Smo=th,  St=wo—27H-1)"¢3n,
Son=2Hym_nt (= 1)"Ymink, m#n,
Smn =27 gk + (1Y),
St =274 (D W,
anzn = 2—i{¢:n—n— (_ 1)“¢r‘n+n}1 m 3& n,

and m, n=1. Moreover, it is easy to show that

ST@%) =S5 (-a%. (A1)
There is a similar addition theorem for §2; we have (11, 7.7.2(6))
o 2
=3 Y Sm@)ii), (A2)

n=0 pym=]
where $77.=Re (S7), for k real, and there is no restriction on rp. Equation (4.16)
may be derived from (A2). .
Suppose we set rb=r>—aZ and then use (A2) to replace ¢ (r}) in (A2); we find
that

.- 2 o 2
goad=Y ¥ grad) ¥ Y ST@)Sn(—ad).

=0 pu=1 a=0vel

Then (4.15) follows by using $:%:(~a%) = §&2(a2) and $.2(b) = $2.(b)=0.



