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SUMMARY

In a previous paper (1), integral-equation methods were used to solve the
two-dimensional problem of acoustic scattering by a pair of sound-hard cylinders;
uniquely-solvable integral equations were obtained by using a fundamental solution
with additional singularities inside each cylinder. In the present paper this approach
is extended to treat a two-dimensional water-wave problem, namely, the interaction
between two horizontal cylinders of infinite length that are floating in the free surface
of deep water with their generators parallel. Differences between the two problems
are highlighted. Thus, unlike in (1), it is shown how a finite number of singularities
inside each cylinder can be treated, giving a complete generalization of Ursell’s result
for a single cylinder (2). However, this generalization is conditional on the availabil-
ity of a uniqueness theorem for the original boundary-value problem; at present such
a theorem has not been proved. The analysis uses an addition theorem for Ursell’s
multipole potentials, which is proved in an Appendix and has wider applications.

1. Introduction

Two rigid cylinders, with their generators horizontal and parallel, are
partially immersed in the free surface of deep water, and a surface wave is
incident upon them. For beam seas (waves with their crests parallel to the
cylinder generators) we can formulate this problem as a linear two-
dimensional boundary-value problem for a velocity potential ¢. It is this
plane problem (labelled %, below) that we shall study here, using the
integral-equation method described in (1); henceforth, this paper will be
referred to as 1.

‘The plan of the paper follows that of I. Thus we begin with a brief
literature survey and then describe (in section 3) Ursell’s (2) integral-
equation method for the simpler problem of scattering by one partially-
immersed cylinder. In section 4 we show how Ursell’s approach can be
extended to treat P,. Unlike the corresponding acoustic problem considered
in I, here we are able to prove a complete generalization of Ursell’s result:
our main result (Theorem 4.2) concerns a modified fundamental solution
with a finite number of additional singularities inside each scatterer (cf. I,
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Theorem 4.2). However, we also have to assume that %, has at most one
solution; at present, this uniqueness theorem has not been proved.

2, A brief survey

The literature on scattering of water waves by two or more rigid bodies is
quite extensive, but does not seem to have been surveyed previously. Here
we shall restrict ourselves to two-dimensional interactions between a pair of
partially-immersed cylinders.

2.1. The method of multipoles

Apart from some work on scattering by two thin vertical barriers (see (3)
for references), the first problem to be studied extensively was the radiation
problem for two half-immersed circular cylinders. Thus, Ohkusu (4) and
Wang and Wahab (5) extended Ursell’s multipole method (6) for one
cylinder to analyse the heaving motion of a catamaran, consisting of two
identical, rigidly-connected, half-immersed circular cylinders (we call this
the ‘semicircle-catamaran problem’). For this symmetrical problem, the
velocity potential at a point P in the fluid can be represented as

$(P)= L aOEp+ OB+ L BB - PR (21)
ne= n=0

where ®Z(r,.) are the multipole potentials defined in sections 3 and 4.
Equation (2.1) satisfies all the conditions of the problem, except the bound-
ary condition on the wetted surfaces of the cylinders; applying this condition
allows the coefficients a,, and b, to be determined. Ohkusu (4) and Wang
and Wahab (5) computed the wave amplitude at infinity and the virtual-mass
coefficient, and found good agreement with the corresponding values ob-
tained from their experiments. Ohkusu (7) has also made similar calculations
for the swaying and rolling motions of the same catamaran, whilst Spencer
and Sayer (8) have analysed the motions of two freely-floating identical
circular cylinders.

2.2. Integral-equation methods

Several authors have used integral-equation methods to treat multiple-
scattering problems. Most of these authors represented ¢ as a distribution of
simple wave sources over the wetted surfaces of the cylinders, and then
solved the corresponding integral equation of the second kind for the
unknown source density (see section 4). Thus, Nordenstrgm et al. (9), Kim
(10), Lee et al. (11) and Katory et al. (12) have all solved the semicircle-
catamaran problem for deep water, whilst Chung and Coleman (13) have
solved it for water of constant finite depth. The agreement between these
solutions, those obtained using the method of multipoles, and those deter-
mined by experiment is generally very good. Other geometries have also
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been investigated, for example, two different rectangles (10, 12), two triang-
les (11), and bulbous-form catamarans (10, 14). It is noteworthy that none
of these authors reported any difficulties at the irregular frequencies.

Integral equations can also be obtained by applying Green’s theorem to ¢
and the simple logarithmic source potential. These equations have simple
kernels but the range of integration includes the free surface, the bottom,
and two vertical control surfaces at some distance from the floating cylin-
ders. The radiation condition (3.4), or an approximation to it, is imposed on
these vertical surfaces, and the bottom is included so as to obtain a finite
range of integration. For details of the method, see (15,16). This method
has been used by Ho and Harten (17) to analyse the motion of one or two
rectangular cylinders oscillating near a vertical wall, and by Ijima et al. (18)
to compute the transmission coefficient for the semicircle-catamaran
problem.

2.3. Other methods

Leonard et al. (19) have used a finite-element method to solve the
semicircle-catamaran problem for water of constant finite depth, and the
corresponding problem with freely-floating cylinders. It may be observed
that their results for the catamaran are in good qualitative agreement with
those of Chung and Coleman (13).

Two approximate methods have been used to treat two-dimensional
multiple-scattering problems. Alker (20) has used the method of matched
asymptotic expansions to study the scattering of short waves by two
partially-immersed cylinders that do not make plane vertical intersections
with the free surface. He has shown, for example, that for a symmetric pair
of cylinders there is an infinite number of frequencies at which there is no
reflected wave.

Secondly, Ohkusu (7) has used a ‘wide-spacing’ approximation, in which
only wave-like interactions between the cylinders are taken into account.
This leads to an approximate solution to the multiple-scattering problem in
terms of the solutions to various single-cylinder problems. An alternative
treatment has been given by Srokosz and Evans (21). For the semicircle-
catamaran problem, Ohkusu (7) obtained good agreement with the exact
solution (4, 5), even when the assumption that the spacing between the cylin-
ders is large compared to the wavelength is not valid. Other applications
have been made by Ohkusu (7,22, 23), Ohkusu and Takaki (24), Srokosz
and Evans (21) and Masubuchi and Shinomiya (25).

Finally, it is also possible to extend the null-field method (26) to treat
multiple-scattering problems. Some preliminary work on this extension has
been done (27), and the method is currently being used to solve some
particular multiple-scattering problems. The results of this research will be
presented elsewhere.
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3. Scattering by a single cylinder

Consider a rigid horizontal cylinder which is partially immersed in the free
surface of deep water. Take Cartesian coordinates (x, y, z), with the z-axis
parallel to the generators of the cylinder, the x-axis horizontal and the
y-axis vertical (y increasing with depth) such that the free surface occupies a
portion of the plane y = 0. We consider motions that are two-dimensional,
and independent of z. For irrotational motion a velocity potential exists; for
time-harmonic motion (with radian frequency w) we can write this potential
as Re{¢(P)e '}, where ¢ solves the following linear boundary-value
problem (15,16).

Problem %®,. Find a function ¢(P) which satisfies the two-dimensional
Laplace equation

R .
(E"'a—)ﬂ)d}(l‘)) =0 in D, (3.1)
the Neumann boundary condition
99) _p) onaD (32)
on,
and the free-surface condition
K6+22-0 onE (3.3)
ay
In addition, there is the radiation condition
i)
9 _iK¢—0 asrp—, 3.4)
arp

and the condition that the fluid motion vanishes as y — .

Here, we denote the fluid domain (in the (x, y)-plane) by D, the mean free
surface by F and the wetted surface of the cylinder by aD. The function f(p)
is prescribed on 8D and K = w?/g, where g is the acceleration due to gravity,
is a positive constant. As in I, capital letters denote points of D and
lower-case letters denote points of dD. We write 8/dn, for normal differenti-
ation at the point q, in the direction from 4D into D. The origin O is
assumed to lie in F_, the portion of the line y =0 that is inside the cylinder;
D_ denotes the interior region, that is the region with boundary 6DUF_.
Finally rp is the position vector of P with respect to O, and rp =|rp|.

Let 3D* denote the union of dD and its mirror image in F. We say that
aD has properties J if 3D* is convex and twice-differentiable. John (28) has
shown that if aD has properties J, then %, has precisely one solution.

Typically, 2, is solved by integral-equation methods; for a summary, see
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(26, 15, 16). Let
Go(P, Q)=Go(x, y; &)

x—&*+(y—1) _2£ e—k(y+n)cosk(x_§)%, (3.5)

-1 g
(x—&>+(y+n)?

=1

and then look for a solution of %, in the form

o®)= [ w@GP,a) ds; (3.6)

oD

applying the boundary condition (3.2) shows that the source density u
satisfies the integral equation I(3.6). This equation is uniquely solvable,
except when K coincides with an eigenvalue of the corresponding ‘interior
wave-Dirichlet problem’, where the Dirichlet condition ¢ =0 is satisfied on
dD and the free-surface condition (3.3) is satisfied on F_; we denote the set
of these irregular values of K by IV(3D).

Several methods have been devised for overcoming the difficulty at the
irregular values of K—some of these have analogues in acoustics, others do
not (for example, it is possible to obtain a uniquely-solvable integral equation
by distributing additional sources over F_ (29,30)); see (2, 15, 26) for
references. As in I we shall concentrate on just one of these, namely, the
replacement of G, by a different fundamental solution. This method has
been investigated by Ursell (2). Let

G1i(P, Q)=G,(Xp 10) = Goltp To)+ 3, 2, aZ®op)05(xg), (3.7)

m=0o=1

where aj, are constants,

= . dk ~14
4’6(l'p)=‘£ e "yCOSkxE‘_—K, ¢’5=?5;¢’5,
1 =cosZm(:" K cos(2m-1)0
©r(Te) " 2m-1 /™t

sin(2m+1)8 K sin2m@
OLle) ==ty am

m=1, and rp=(x,y) has circular polar coordinates given by x=rsin 6,
y = r cos 6. The @, are called multipole potentials (6); they are harmonic, except

at O where they are singular, and they satisfy the radiation and free-surface
conditions. We modify (3.6) and look for a solution of %, in the form

o®=| w@GiPa)ds, (3.8)

aD
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whence w(q) satisfies the integral equation 1(3.10), némely

1Tu(p)+J

(:]

(@) ai Gy(p, q) ds, = f(p). (3.9)
D n,

Ursell (2) has analysed the solvability of this equation. He proved the next
three theorems, which are the analogues of I, Theorems 3.1 to 3.3.

THEOREM 3.1. Suppose that the homogeneous integral equation 1(3.11) has a
non-trivial solution p.(q). Then the interior potential U, defined by 1(3.12) for
P e D_, vanishes on aD.

The proof of Theorem 3.1 uses John’s uniqueness theorem for &P, (28).
THEOREM 3.2. Suppose that
Im(aZ)>0, o=1,2;m=0,1,..., M.

Then every solution of the homogeneous integral equation 1(3.11) is a solution
of the homogeneous integral equation 1(3.14) which also satisfies

-

AiEJ w(@)®r) ds, =0,  0=1,2,m=0,1,...,. M
oD

(Actually, the condition on af can be replaced by a weaker condition, namely,
|mag+i|>1 for o =1,2.)

Ursell’s proof of this theorem is similar to his proof of I, Theorem 3.2.
One ingredient is the expansion (cf. 1(3.17))

L 2
Go(rp, l'Q) = Z Z an(rp)Pr(rg), (3.10)
m=0o=1
which is valid for rp <rg, where
ad(rp) =—2e7® cos Kx, al=-2e X sin Kx,
-22m—1)! i (—Kr)?

sz q=2m q'

cos q0,

ak@®p)=

. emt 2 (Ko
22m)! & -Kr
o (xp) = sin q0;
i K2m+l q—2zm+1 Q'
a?, are regular harmonic functions which satisfy the free-surface condition

(3.3). A second ingredient is the following.

THEOREM 3.3. Suppose that U(rp), Pe Dy, has an expansion

o 2 M 2
Utp)= Y Y, AZalp)+ 2, 2 BrLou(s).

m=Qom=1 mw=Qo=1
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Then
1 (¥ aU* *aU) 2 | M
— —_— — = o o\
4 L,, (U ors U or, )T d0e cgl {%w |Bg] +m2_0 Im [B,(A7) ]}.

Here, Dy is the semicircular region bounded by F_ and the lower half of C_,
where C_ is the inscribed circle to dD*, centred on O.

From these results, it can be shown that the integral equation (3.9) is
uniquely solvable at any given value of K, provided that M is sufficiently
large; see (2, p. 148).

4. Scattering by two cylinders

Consider two rigid cylinders that are partially immersed in the free surface
of deep water, with their generators horizontal and parallel. In the xy-plane
we denote the fluid domain by D, the free surface by F and the wetted
surfaces of the cylinders by oD, for i=1,2. Let 8D =9dD'UdD?2 The
analogue of ®, for two cylinders is the following problem.

Problem ®,. Find a function ¢(P) which satisfies Laplace’s equation (3.1) in
D, the boundary condition (3.2) on aD, the free-surface condition, the
radiation condition, and the condition that the fluid motion vanishes as
y —> ™,

In order to make some progress with the analysis of &,, we make the
following hypothesis.

Uniqueness assumption. Problem %, has at most one solution, that is, the
only solution of the homogeneous problem (f=0) is the trivial solution,
¢ =0.

To the author’s knowledge, this result has not been proved. John’s proof
(28) for one cylinder does not seem to extend to two cylinders. A proof may
also impose some restrictions on the geometry: here, we shall suppose that
D" and 3D? each have properties J (this also eliminates corner-singularities
from the integral equation below; see, for example (28, §7)).

Although we do not have a uniqueness theorem for #,, uniqueness can be
proved for some other configurations. Thus, John’s proof succeeds for two
(or more) floating three-dimensional bodies (each having a wetted surface
which is bounded and has properties J);T the essential difference between
this problem and @, is the connectivity of the free-surface (note that John’s
proof also fails for a single floating torus). We also have two results for
totally submerged bodies: Schnute (31) has proved uniqueness for a pair of
widely-spaced circular cylinders, whilst a theorem due to Maz’ja guarantees

t I am indebted to Ralph Kleinman for this observation.
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uniqueness for any two (or more) bodies which individually satisfy a certain
geometrical condition for the same choice of origin; see (32) for details.

We shall use integral-equation methods to treat $,, and begin by trying to
represent ¢ as a distribution of sources over aD, (3.6), leading to the
integral equation I1(3.6). It is easy to show that the corresponding irregular
values are IV(3D') UIV(3D?), if the uniqueness assumption is correct.

We now replace G, by a different fundamental solution. Let F. denote
the portion of the line y =0 inside the ith cylinder, and let D' denote the
interior region bounded by F' and 8D, for i=1,2. Let D_=D!UD? and
F_=F'UF2. Choose two origins O', with O'e F., and let r> denote the
position vector of P with respect to O'. Let

Gi(P,Q)=Go(P, Q)+ Y. Y al@oEddoah)+ Y Y bodsad)do(d),

m=0o=1 m=0oc=1

(4.1)

where a?, and bZ, are constants, and then look for a solution of %, in the
form (3.8), whence u satisfies the integral equation (3.9). Then it is
straightforward to show that Theorem 3.1 is true (in the current notation),
whenever the uniqueness assumption is correct.

Suppose now that g is any solution of the homogeneous equation 1(3.11),
and consider the interior potential U(P), defined by 1(3.12), for Pe Dy,
where DYy is the semicircular region bounded by F! and the lower half of
C., and C! is the inscribed semicircle to aD' centred on O, for i=1,2.
Using (3.10) and (4.1) we obtain

L 2 M 2 N 2
U= Y Y AZaLED)+ Y Y aALLaH+Y. Y boBLOLE2), (4.2)

me0gmi m=0oc=1 mm=Q o=1
for Pe D}, where
as=[ w@en as, @3
aD
and

Br=| w@enedds, 4.9)
aD

In order to use Theorem 3.3 we need an addition theorem for ®f,; we
have the following.

THEOREM 4.1.

o)=Y Y ST (@axd),

n=0p=1

where r2=rp+a, ri<|a|, and the matrix S, is defined in the Appendix.
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This theorem appears to be new. It can be proved either by introducing
complex variables (27) or by using integral representations; both proofs are
sketched in the Appendix.

Let b be the position vector of O? with respect to O'. Then, using
Theorem 4.1, (4.2) becomes

o 2 N 2
uah= Y Y {A;;+ D) b,”,B,‘;S,,"‘,’,,(—b)}a‘;.(r},)+

m=0o=1 n=0 py=1

M 2
+ ) Y alALdxh), PeDh. (4.5)

m=0o=1

Using Green’s theorem, the free-surface condition (3.3), Theorem 3.3 (for
D}) and the fact that U vanishes on aD", we obtain

0=§w§2: lagASR+ Z Z |A%]2 Im (a2)+

a=1 m=0 o=l

+1m§ i i iGZA‘J.[b:B:Sﬁ(—b)]*- (4.6)

MmeuQn=0g=lv=l

Similarly, we obtain

ued= T 3 {Ba+ 1 ¥ arazsmm fasid+

m=0Qog=1 n=Q ym=1
N 2

+ Y Y bIBLOLEY, PeD? 4.7)
me=Qo=1

and

0=&ﬂ)22 IbgB + Z )Z |BZ? Im (b%)

o=1 m=0oc=1

—Im f i i iaiA‘J‘[bﬁB:]*Sﬁﬁ.(b)- (4.8)

me=Q0n=0cg=1v=1
Adding (4.6) and (4.8), and using (A7), we find that
0= ¥ S A7 Im@D+ 3 ¥ IBIP Im (b +im
m=0g=1 m=0o=1
where

L= Z{Id"PH%"P}—— Z Z Z ZRe(wa ") Im (S, B)),

a=1 T m=Qn=0o=1v=1
As=a%A% and B =b; By,
Now from the Appendix it can be seen that Im (Si) =0 unless m =n =0;
moreover, from (A8) and (A9), we have

Im {S ()} = Im {S33(b)} = -4 cos Kb
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and
Im {Sg5(b)} = —Im {S35(b)} = 4 sin Kb,

where O? is located at (b, 0) with respect to Cartesian coordinates (x;, y,) at
O'. Hence

2
L= Y {|#3>+|B®3%}+2 cos Kb Re (4 BE* + AZB2¥)

o=1
—2sin Kb Re (4sB2* — AZBL*).
As in I, we can assume that «§ and B§ are real, whence
L = (A5 + (o2 + (B> + (B3)*+2 cos Kb(ASBE+ AZRBL)
—2 sin Kb(sA5BE— AZBY)
=(BL+ A} cos Kb+ A2 sin Kb)?+ (B2 — 4] sin Kb + 43 cos Kb)2=0.

We have thus proved the following generalization of Ursell’s theorem
(Theorem 3.2).

THEOREM 4.2, Suppdse that
Im (a?) >0, o=1,2;m=0,1,...,. M
and
Im (b5,) >0, o=1,2;m=0,1,...,N.
Suppose also that the uniqueness assumption is correct. Then every solution of

the homogeneous integral equation 1(3.11) is a solution of the homogeneous
integral equation 1(3.14) which also satisfies

A =0, c=1,2,m=0,1,..., M
and
B, =0, oc=1,2;,m=0,1,...,N.

An immediate consequence of this theorem is the following existence
theorem.

THEOREM 4.3. Suppose that the uniqueness assumption is correct, that is,
suppose that P, has at most one solution. Then P, has precisely one solution.

5. Conclusions

In this paper we have considered integral-equation methods for solving a
multiple-scattering problem in the linear theory of surface water waves,
namely, the two-dimensional problem of scattering by a pair of partially-
immersed, floating, horizontal cylinders. At present there is no uniqueness
theorem for this problem. However, if such a theorem does hold, then we
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have obtained a class of integral equations that are uniquely solvable at any
given frequency. )

In order to prove our results we used an addition theorem for the
multipole potentials @5, (Theorem 4.1). This can be used in two other ways.
In the first place it can be used in the extension of the null-field method
from one cylinder (26) to two (or more) cylinders; a formal derivation of the
so-called T-matrix for two cylinders has been given by Bencheikh (27).
Secondly, it can be used to adapt Zaviska’s method and Twersky’s method
(these are methods for solving the problem of acoustic scattering by two
circular cylinders; see I, §2) to the semicircle-catamaran problem.

It is interesting to compare the results of the present paper with those
obtained in I. Here we have obtained a complete generalization of Ursell’s
theorem (Theorem 3.2), that is, we can treat fundamental solutions G, with a
finite number of singularities inside both scatterers. For the corresponding
problem in acoustics we were only able to treat fundamental solutions with
an infinite number of singularities inside one of the scatterers and a finite
number inside the other; see I, Theorem 4.2. On the other hand, we did not
need to make a uniqueness assumption in I, because such an assumption is
already known to be correct for the exterior problems of acoustics.
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APPENDIX

THEOREM. Let a point P in the fluid have position vector Ty with respect to O', for
i=1,2, where O' and O? are two origins in the mean free surface (y=0). Then

do(rd) = Z Z Som@as(rh),

ne pml

where T2 =rh+a, r,',<|a| and the matrix S, is defined as follows:

11 151 .
501\:_ ny S ny HBO,

s3=-1®3, s%=‘—"¢3,

sg=—%{¢3+iz¢i}, so’i‘,=—2;;1 ta,  n=1;

2=t s"--;{c";;i"; o )
aegon sueb{n ene () o)
steon, stie L o (7))
sfo——2';;1 L

st 3 (7 e - (7 Ko
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. n\ _ n!
for m, n=1. Here, all functions have argument a and (k)-k! Y

Proof. The result for m=0, og=1, follows from the bilinear expansion (3.10),
namely

- 2
Go(P,Q)= Y, ¥ airh®Lrt)
n=0 ym=]}
(which holds for rp<rg), and the relation
®'(r}) = —3Go(P, O?).

The result for m =0, o =2, is obtained by differentiation. For m =1, we give two
methods: the first is a complex-variable method and the second uses integral
representations.

Method 1. (This method is described fully in (27).) Let
z=rpexp(ih) =y, +ix, j=1,2 and z,=ae® &=xim
We have

a
@m = DL, 6) = (K—E)tbl.(r, ), (A1)
where ¢L(r, 6) = cos (2m —1)8)/r*™"!, that is
nrp) =Re (z7°77Y). (A2)
Now, z,=2z,+z,, whence
z27"= ) bP252;" for rp<a, (A3)
k=0
(n) k n+ k -1 . .
where bV =(—-1) 1) Combining (A1) to (A3), we find that
n—
O3 = I(@; 8) + IV (xh; 2), (A4)
where
g\ =
@m—-DIM (@, 0) = (K—;3_> Y b~V Re (z]) Re (2;%")
YI n=0
and

@m -1k 0 =—(K-L) T 627 1m (23 1m (227 0)

Y1/ ne=1

Consider I™. Since 8=}m, it follows that Re(zD)=0 if n is odd, whilst
Re (z;2™) = D} (a, 8). Also,

(K—i) Re {(re)*"*"} = ~2m + )d.(r, 0),
ay

where

®(r, 0)=r>" cos 2mo — r>™*1 cos 2m +1)6 (A5)

K
2m+1
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is a regular harmonic function that satisfies the free-surface condition. Hence

I¢(r, 8;2)= Y, B{™@L..(a, 5)d)(r, 6), (A6)
n=0
where
B = -(2n+1) p@m=D _ (2n +2m— l)
T 2m-1 ! 2m-1

A similar expansion can be found for I'™ by introducing the regular functions

&2(r, 0) = r*"*1sin 2m + 1) — r¥*%sin 2m +2)6, m=0.

2m+2

Thus we have an expansion for ®L(r2) in terms of ®%(r}). We can rewrite this

expansion in terms of aZ(rp): for example, from the definitions in section 3, we have
&}, = —%{a},— K%a}

and

2

a:,‘+1} for m=1.

&1=_1{2 1_
™ Femem 2m+1

Substituting these into (A6), and rearranging, gives
[™(r: @) = —AB™! 1 1¢ g1 K m) g1 1
c (l', a) - _fBO q)m(ﬂ)ao(l' - Z 2"-Bn q)r-|-|+r|(a)—2n 1 Bn—ld)m+n—l(a) an(l')-

The theorem (for o = 1) follows by combining this expansion with the corresponding
expansion for I™.

2

n=1

Method 2. From (2, equation A.6), we have

1 -
..} =—(2m i L k2™ 2(k + K)e ™ cos kx, dk

1 -
= k2m—2 k+ —k(yl+acoc'5)x

(2m-—1)!.[, (k+K)e
X {cos (kx;) cos (ka sin 8) —sin (kx,) sin (ka sin 8)} dk.

If we use
a — n L _k L.}

e coskx= ) ( k!') cosnf and e sinkx=-—Y (kn) sin né,

n=0 N n=1 N

we obtain (A4), where

Cm-1I(r, 0;a)= i (—nrl)" I sn_2(a) cos N6,
n=0
@m—-1)I"(r, 0;9) = i (——'%'

n=1

I—2m+n—2(a) Sin nor

I;(@)= J:k“(k + K)e ™ *=* cos (ka sin 8) dk
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and
I,(a)= L k%(k + K)e ™" sin (ka sin 8) dk.

Consider I™. Eliminate all even powers of r (including r®) in favour of odd powers
and ®!, using (A5). Thus

- 1
CEm-DIT =i, o+ Y, —— DM+

n=1 (2")!
oo '2:\+1
+ Gl {KLGm+20—2— Iomsan-1} cOs (2n +1)6.
n=0

But &, ., satisfies the free-surface condition and this implies that the term in braces
approaches zero as 8 — +3w. Moreover

L@ =2m—-1)! ®}(a),

and so we recover (A6). The rest of the proof is as before.

By inspection, it can be verified that

Smn@)=S;(—a). (A7)
Also, all quantities are real except ®) and &3:
Im {D5(r, 8)} = we ™™ cos Kx (A8)
and
Im {®3(r, 8)} = we ™ sin Kx, (A9)

where x =rsin 0 and y =r cos 6.



