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A rigid cylinder of infinite length is floating in the free surface of deep water. The cylinder is held fixed and a given
time-harmonic wave of small amplitude is incident upon it. The corresponding linear two-dimensional boundary-value
problem for a velocity potential ¢ is treated using the null-field method, and an expression for the T-matrix is obtained.
(The T-matrix connects the diffraction potential away from the cylinder to the given incident potential.) Fundamental
properties of the T-matrix are derived from considerations of energy and reciprocity. For regular wavetrains incident from
the right or from the left, there are well-known relations between the corresponding reflection and transmission coefficients;
these relations are recovered by specialising the equations satisfied by the T-matrix. Two extensions to water of constant
finite depth are described: one uses multipole potentials whilst the other uses Havelock wavemaker functions; this second
approach also leads to a new method for treating the problem of waves in a semi-infinite channel with an end-wall of arbitrary
shape.

1. Introduction

A rigid cylinder of infinite length is floating in the free surface of deep water. The cylinder is held fixed
and a given time-harmonic wave of small amplitude is incident upon it. This wave is scattered and induces
hydrodynamic forces on the cylinder. To model this situation, we make the usual assumptions of classical
hydrodynamics [1]: we assume that the water is incompressible and inviscid, that the motion is irrotational,
and that the wave crests are parallel to the generators of the cylinder. Consequently, we obtain the
following linear, two-dimensional boundary-value problem for a velocity potential Re{¢(P) e *“'}.
Scattering problem S

Find a function ¢(P) such that ¢ satisfies Laplace’s equation,

¥ &
(§+a—y2)¢=0 in D, (1.1)

the free-surface condition
d
K¢+—¢=0 on F (1.2)
ay
and the boundary condition
d
—¢=0 on oD, (1.3)
an

@ — ¢; = ¢p, satisfies a radiation condition, and |grad ¢|- 0 as y » . (The exact kinematic and dynamic
boundary conditions on the moving free surface have been linearised and combined to give (1.2).)
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Here, D, F and 9D denote the fluid domain, the mean free surface and the wetted surface of the
cylinder, respectively. x and y are Cartesian coordinates, chosen so that the y-axis is vertical (y increasing
with depth) with F occupying a portion of the line y =0; the remaining portion of this line is denoted
by F_ and is assumed to contain the origin O. D_ denotes the interior of the cylinder, i.e. the region with
boundary 4D u F_. Capital letters P, Q denote points of D, lower-case letters p, g denote points of dD,
and P_, Q_ denote points of D_. 3/9n, denotes normal differentiation at the point g, in the direction from
4D into D, and r; is the length OP. See Fig. 1.

Fig. 1. The floating cylinder.

K = w”/ g, where w is the radian frequency and g is the acceleration due to gravity, is a given positive
number. ¢, ¢; and ¢, are called the total, incident and diffraction potentials, respectively. ¢, is given,
satisfies (1.1) everywhere in y >0 (except possibly at a finite number of isolated points in D) and (1.2)
everywhere on y =0.

John [2] has proved that, under certain geometrical restrictions on 9D, S is uniquely solvable for all
values of K. We shall henceforth assume that these restrictions are met.

One method for solving S is the null-field method [3, 4]. This requires the solution of an infinite set of
moment-like equations for ¢(q) (these are called the null-field equations); an integral representation then
gives ¢(P) for all Pe D. Let C, (C_) be the escribed (inscribed) semicircle to 9D, centered on O. Then,
for P outside C,, we can formally reduce the null-field equations and the integral representation to

where d, are the (known) coefficients in a certain expansion of ¢(P.) for P_ inside C_ and ¢, are the
coefficients in a certain expansion of ¢(P) for P outside C, (see Section 3). T,,, is usually known as
the T-matrix. Such a matrix was first introduced in the theory of quantum scattering [5, Section 7.2.2] and
was later used by Waterman [6] to treat electromagnetic scattering problems; it is now used widely in
classical scattering theory [7].

In this paper, we shall derive some fundamental properties of the T-matrix for S, namely

Ton=Tom (1.4)

and

EIrn(j‘mn)_’_’Tlm’T)lkn_*_’TZm’T)Zl(n:O, (15)
'y

where the asterisk denotes the complex conjugate. These results are obtained (in Section 4) from reciprocity
and energy considerations for S. In fact, it is well known that if these considerations are valid for any
given scattering process, then similar results will obtain; see, e.g. [8].
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The results (1.4) and (1.5) can be used to provide independent checks on numerical calculations. It
should also be possible to use (1.4) and (1.5) as constraints in a numerical method for finding approxima-
tions to T'; this approach has been used successfully by Waterman [8] and Werby and Green [9].

In Section 5, we consider specific incident waves, namely regular waves incident from x = +c0 or from
x = —00; let r, and ¢, denote the corresponding complex reflection and transmission coefficients. We show
that the known relationships between these coefficients [10] can be recovered by specialising (1.4) and (1.5).

In the last two sections, we consider the more complicated situation of finite depth. We describe two
approaches: the first is a natural generalisation of the infinite-depth approach, but leads to a complicated
analogue of (1.5); the second approach uses Havelock wavemaker functions—besides yielding a relation
similar to (1.5), it also leads to a novel method for treating problems involving a semi-infinite channel
with an end-wall of arbitrary shape. Possible extensions to three dimensions are described.

2. Reciprocity and energy relations

Let ¢, and ¢, be two scattering potentials, corresponding to two incident potentials, ¢;; and ¢y, i.e.
b=t dp, i=1,2
where ¢; solves S. Choose two distinct points, P, and P,, in D, and set
¢u(P)=G(P; P), i=1,2 (2.1)

where G(P; Q) is the potential at P due to a simple wave source at Q in the absence of the body (G is
given explicitly by (3.1), below). By Green’s theorem, we have

21{¢,(Py) — d(P2)} =y, ¢2]_[¢1, b2l
where

[, d2lc = J- (d’l 68;452_ b2 Lﬁl) ds,
C n

an (2.2)

(&1, d2]=[b1, d2]ap, C is any simple path in D connecting the positive x-axis to the negative x-axis, 9/0n
denotes normal differentiation on C in the outward direction (i.e. away from the body), and it is assumed
that P, and P, lie in the fluid between C and aD. By (1.3), [¢,, ¢,]=0. Also, since ¢, and ¢, both satisfy
the radiation condition (i.e. not merely ¢p, and ¢p,), [P}, d2]c = 0 as the path C recedes to infinity. Hence

@2(P1) = $:(Py). (2.3)
Since G is symmetric, we have

¢1(Py) = G(Py; Py) = G(Py; Py) = ¢u(Py),
whence (2.3) reduces to

¢D2(P1) = ¢D1(P2)- (2-4)

This reciprocity relation states that the diffraction potential at P, due to a wave source at P, is the same
as the diffraction potential at P, due to a wave source at P,. Reciprocity relations are also well known in
other branches of scattering theory; see, e.g., [11, Section 1.32].

Note that the derivation of (2.4) is independent of the water depth, which need not be constant (the
symmetry of G can be proved, using Green’s theorem, without knowing G explicitly). Note also that
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¢(P) is not known; if it were, we could apply Green’s theorem to ¢, and ¢, and obtain

soP)=2 [ s aaas,
™ Jip an,

a4

which is a formula for ¢ (&, is known as the exact Green function, or Neumann function, for S; see, e.g.
[12, p. 38]).
Let us now consider the average flux of energy through a control contour C, namely

d
E =3pw Im J ¢* a—¢ds = —iipw[¢*, ¢]c
c n

If ¢, is regular inside C, Green’s theorem gives

E = —ipw[e*, ¢]=0,
by (1.3), i.e. the average flux of energy through C is zero. Writing ¢ = ¢, + ¢5 and noting that [¢¥, ¢;]=0
(because ¢, is regular in D_), we obtain

0=zpw Im[$f, ¢p]+ Ep (2.5a)
where

Ep = —iipo[d}, ép) (2.5b)

is the average flux of energy through C due to the diffracted waves only. We shall refer to (2.5) as the
energy relation.

The energy relation is usually stated for the special case in which ¢, corresponds to a train of regular
surface waves. Moreover, it is usually expressed in terms of Kochin’s H-function; for details, see, e.g.,
[1, p.249] or [10]. Similar relations have been obtained in other fields, where they are known as
‘forward-scattering’ theorems, or ‘cross-section’ theorems, or ‘optical’ theorems; see, e.g., [11, Sections
8.6, 8.24] or [13-16].

3. The null-field equations and the T-matrix

The potential of a simple wave source is [17]
(x—£)’+(y—n)
(x=&’+(y+n)’

where the path of integration passes below the pole of the integrand at k= K. We apply Green’s theorem
in D to ¢p and G, and in D_ to ¢; and G, and then add the resulting equations to give

G(P,Q)=G(x,y; § 1) =3log

x dk
~k{y+n) _
2£ e cos k(x g)k—K’ (3.1)

2w¢D(P)=~J’ ¢(q)£G(P, q)ds, (3.2)

aD q

and

2W¢I(P—) = J

a

$(9) = G(P_, g) ds, (33)

q

(3.2) is an integral representation for ¢, valid for all Pe D. (3.3) is valid for all P.e D_.
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G has a bilinear expansion [17],
G(P,Q)= % an(P)®s(Q) (3.4)

for rp<rg, where the functions a,, and ®,, are defined in Appendix A; each is harmonic and satisfies
the free-surface condition (1.2); a,, are regular, whilst the multipole potentials ®,, are singular at O and
satisfy the radiation condition. Henceforth, we shall simplify our notation and use a summation convention:
sum over repeated suffices from 1 to . Thus, (3.4) becomes

G(P, Q)= a,n(P)P,.(Q).

If we restrict P to lie outside C, and P_to lie inside C_, we can substitute (3.4) into (3.2) and (3.3) giving

27¢p(P) = ¢u®Pn.(P) (3.5)
and

2ni(P-) = dmam(P-), (3.6)
where

=), ), m=12,..., 3.7

d,=(¢,D,), m=12 ... (3.8)
and

_ ag(q)
§A g>—LDf(q) on, ds,

The constants d,, (m=1,2,...) are known; they are given in terms of ¢; by
dm = [d’l; d)m]' (39)

(3.8) are called the null-field equations; they are to be solved for ¢(q) and are known to be uniquely
solvable at all frequencies [3, 4]. Once ¢(q) has been determined, ¢,(P) is given by (3.2), or, when P is
outside C,, by (3.5) and (3.7).

To solve the null-field equations, we begin by choosing a basis for representing functions defined on
aD; let {¢,(q)}, n=1,2,..., be such a basis. Thus, we may write

&(q) = a.¢.(q) (3.10)
where a,, n=1,2,..., are unknown coeflicients. Substituting (3.10) into (3.8) gives

Qua.=d,, m=12 ... (3.11)
where

Quin =G, Prm)- (3.12)
Similarly, substituting (3.10) into (3.7) gives

en ==ty m=1,2,... (3.13)
where

A

Qun ={Dn, ). (3.14)
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The system (3.11) is uniquely solvable, i.e. Q ', the inverse of the infinite matrix Q, exists. Thus,
eliminating a, between (3.11) and (3.13), we obtain

¢pn=Tnd, m=12 ... (3.15)
where

T = = QiQi (3.16)

is known as the T-matrix. Given T, we can determine the diffraction potential, ¢, outside C, for any
given incident potential, ¢, without computing the values of ¢ on 4D.

It is easy to see that the unique-solvability of S implies that T exists and is unique. This in turn implies
that T is independent of the choice of basis {¢,}. However, this choice may be important in numerical
calculations, when T must necessarily be truncated.

Numerical solutions of the null-field equations have been presented in [3, 4, 18]. In [3], simple choices
for {¢,} are used. In [4], a different method is used; this method is convergent, but is only applicable
when ¢, corresponds to regular surface waves on deep water. Multiple-scattering problems are considered
in [18].

In the next section, we shall derive two basic properties of the T-matrix. These are consequences of
the reciprocity and energy relations given in Section 2, and do not depend on the derivation of the T-matrix
given above; we merely require that the coefficients c,, and d,, occurring in the representations (3.5) and
(3.6), respectively, are related through a matrix T,,, by (3.15).

4. Fundamental properties of the T-matrix

4.1. Reciprocity relation
Let

2wdpi(P)=cP®,(P) and 2w (P_)=d.)a,(P.)

for i=1,2, P outside C, and P_ inside C_. From (2.1) and (3.4), we obtain
dy=2n®,(P), m=1,2,...,

for i=1,2 and P, D. Hence
2m{$p2(P)) = b1 (Po)} = €2 @ (P) = € Pa(P2) = P (P) Ty = o (P) T

=21{ P, (P) T, P (P2) = D (P2) T,n @, (P)}-

Thus, using the reciprocity relation (2.4), we obtain
0=, (P)P,(P{Tnn = Tum}s

this identity must hold for all P, and P, outside C., whence
Toin = Ty (4.1)

i.e. the T-matrix is symmetric.
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4.2. Energy relation
From (3.5), we have

4w, dpl=47(B, dplc, = cie[ DL, Blc, = cko[PE, D).
Similarly, if ¢, is regular inside C,,

4w’{of, dpl=diclef, D),
where we have also used (3.6). Substituting into the energy relation (2.5), we obtain

0=d}d{T.[a%, &]- Thla, @Fl1+ TE. T.[PF, &1
This identity must hold for any incident potential (that is regular inside C,) whence

Tlak, ®1- Thla,, oF1+ TE, T OF, &;1=0. (4.2)
From [17], we have

[ak, D]1=[am Pf]=2m5;, (4.3)
and

[®F, &1=27"18,(8;,+85) (no summation) (4.4)
where 8; is the Kronecker delta. Thus, (4.2) becomes

T — T+ mi(TH, Tin+ T, 1) =0

which, on using (4.1), reduces to
2
—Im(T,,.)+ T, TF,+ T, TE, = 0. (4.5)
™

Observe that only @, and @, can carry energy to infinity (these are the only two wavelike multipole
potentials; see Appendix A); this accounts for the occurrence of the subscripts 1 and 2 in (4.5).

5. The Kreisel-Meyer relations

In this section, we shall consider particular incident waves, namely regular surface waves. We show
that the well-known Kreisel-Meyer relations [10] can be obtained by specialising the fundamental relations
satisfied by the T-matrix.

Consider a train of regular surface waves, propagating from x = +co towards the cylinder; the correspond-
ing potential is

b= A, TR

where A, is a complex constant. This incident wave will be partially reflected and partially transmitted.
We define r, and ¢, by

A e B (e +r, e®) asx->+oo,

¢(P)~{ (5.1)

A, t, e Kyikx as x - —00;
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r, and t, are the (complex) reflection and transmission coefficients. Since ¢ = ¢;+ ¢p, we have

(5.2)

(5.3)

A,r, e Kyrikx as x - +00,
¢éo(P)~ —Ky—iKx
A(t,—-1)e™™ as x » —00,
¢p is also given by (3.5); using the asymptotic behaviour of &,, given in Appendix A, we find that
éo(P) {%(clﬂcz) e Y as x> +oo,
L H—c,+icy) e ®¥ K a5 x> —00,

Comparing (5.2) and (5.3), we see that
aq=A(r,—t.+1)
and
c=—1A(r.+1,—1).
Now, from (3.6) and (A.1), we have
d =imA,, d,=-wA,
and d, =0 for n>2. Thus, from (3.15), we have
o =7mA({IT, - Ty,) and o=mA, (T, — Ts),
whence (5.4) and (5.5) give
re—t.t1=u(iT;, - T},)
and
rotto—1=—m(To +iTy).
Similarly, for a regular wave from x = —00, we have

_ At e~ KyHikx
Gi=A_e T and ¢(P)~{ A e Ko(einp p emikn
In this case, we have

d=—iwA_, d,=-mA_
and d, =0 for n>2. It follows that

re—t_+1=xw(iT,+T,)
and

r_+t_—l='n'(T21—iT22).

(5.4)

(5.5)

(5.6)

(5.7)

as x - +00,
(5.8)
as x> —o0.

(5.9)

(5.10)

If we eliminate r, between (5.6) and (5.7), and r_ between (5.9) and (5.10), we obtain

o=t =w(T,— Ty)
whence the symmetry of the T-matrix, (4.1), shows that

t, =t_=t, say.

(5.11)
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From (5.6), (5.7), (5.9) and (5.10), we have

miTy=1—t+¥r_+r.), (5.12)

wiTp=1=t-3r_+r.), (5.13)
and

wT=wTy=5r_—r)). (5.14)
If we substitute these into (4.5), we obtain

l[r_+r, =2t +|r_.—r.f-4=0, (5.15)

|r_+ry+2tP+|r.—rf-4=0, (5.16)
and

|r_|>=|re>+2i Im(2r¥ + t*r_) =0, (5.17)

where (5.15), (5.16) and (5.17) correspond to m=n=1, m=n=2and m=1, n=2 (or m=2, n=1),
respectively. Taking the real and imaginary parts of (5.17), gives

Irl=Ir| (5.18)
and

Im(tr¥ + tr¥) = 0. (5.19)
Adding (5.15) and (5.16) gives

|ro P+ e+ 2] =2,
whence (5.18) implies that

|ro?+[e?=1 (5.20,)
and

lr P+t =1. (5.20.)
Subtracting (5.15) and (5.16) gives

Re(er¥+*r_)=0;
combining this with (5.19) shows that

tr¥+t*r_=0, (5.21)
Using (5.18), (5.21) can be rewritten as

2 arg(t) —arg(r,) —arg(r-) = 7 modulo 2. (5.22)

The results (5.11), (5.18), (5.20) and (5.22) are all well known: we shall call them the Kreisel- Meyer
relations ; they are derived systematically by Newman [10] for water of constant finite depth (he also
derives the corresponding results in three dimensions). Kreisel [19] obtained (5.18) and (5.20), and their
generalisations to the situation where the asymptotic depths of water are different at x = 00, R. Meyer,
in an appendix to a paper by Biesel and Le Méhauté [20], proved (5.11), (5.18), (5.20) and (5.22). He
also showed that, by a suitable shift of origin, it can be arranged that arg(r,) =arg(r_), whence r,=r_;
however, this shift cannot be determined a priori and, moreover, it depends on K.
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6. Extension to finite depth, using multipole potentials

We can obtain similar results when the water is of constant finite depth, h, say. We begin by modifying
S, so that the condition on ¢ as y - o is replaced by

d
a—d)= 0 on the bottom, y =h. (6.1)
n

The potential of a simple wave source is now given by [17]

(x=§)>+(y—n)’
(x=§)>+(y+n)*

G(x,y;¢m)=z3log

, )L‘” cosh k(h —y) cosh k(h — ) cos k(x— &) dk
o cosh kh(k sinh kh — K cosh kh)

, J’ * o—¥» sinh ky sinh kn

* cosh ki cos k(x— &) dk (6.2)
4]

where the path of integration passes below the pole of the integrand at k = k,, and k, is the unique positive
real root of

K = ko tanh koh. (6.3)
G has the bilinear expansion [17]

G(P, Q) = a(P)$,(Q) (6.4)

for rp < ro, where the functions «,, are the same as for the case of infinite depth, and &,, are the finite-depth
multipole potentials; ém are defined in Appendix A—they are harmonic, satisfy the free-surface and
radiation conditions, satisfy the bottom condition (6.1), and are singular at O. Using (6.4), we obtain all
the formulae derived in Section 3, with @,, replaced by &, (except that we do not have to make this
replacement in (3.9)). In particular, we have

2wdo(P) = cn®,,(P), P outside C, (6.5)
and

2w P.)=d,a,(P.), Pinside C_ (6.6)
with

n=Tmnd, m=1,2,.... (6.7)

As before, the reciprocity relation implies that T is symmetric. The energy relation yields
Tulah, 1= Thlan $}1+ TE T 1, $1=0. (6.8)

Ursell [17] has evaluated the bilinear products occuring here (see Appendix A); when these are substituted
into (6.8), we eventually obtain

2 {m(Tym) + A(PoP + QnQ%) =0 (69)
T
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where
2 cosh? koh
A(koh)=—"—"""FT"7"— 6.10
(koh) 2koh +sinh 2k,h’ (6.10)
k o 2_)+1

P,":-KE T, +sech? kyh z (2 ¥ Toj+1 (6.11)

and
21

Q = T2m+sech koh 2 m m2)+2 (6.12)

(6.9) is a finite-depth form of (4.5); moreover, as h -0, (6.9) reduces to (4.5).
Consider a regular wave from x = +00, with potential

bi1=A, Yo(y) e

where

Yo(y) = cosh ky(h — y) sech koh, (6.13)
and define r, and t, by ’
A, Yo(y)(e o +r, e ") asx->+oo,
& )~{A+Y0(y)t+ ¢ ko as x » —o0,
it is shown in Appendix B that the coefficients d,, in (6.6) are given by
d =im(ko/K)A,, (2m)'dypsy =imA k3™ sech® koh,
d,=-mA,, (2m —1)'dypmin = —mwA k5" sech? koh,

for m = 1. Complicated expressions for r, and t, can then be found by using (6.5), (6.7) and the asymptotic
behaviour of the multipole potentials, @,, (see Appendix A); cf. the derivation of (5.6) and (5.7). Similarly,
for a regular wave from x = -0,

1= A_Y,(y) e
and r_ and t_ are defined by
$(P)~ {A_ Pyewr - ssxode,
A_Yo(y)e™ o +r_e ™) asx->—oo,
The corresponding coefficients d,, are given by (see Appendix B)
d, =—im(ky/K)A_, (2mMdye; = —imA_K2™ ' sech? koh,
d,=—mA_, (2m=1)d,4r = —wA_k3" sech? koh,

for m=1, and expressions for r_ and t_ can be found. The symmetry of T then implies that 1, =t_=1,
say. We then obtain

k 0 k2n+|
1—t+%(r_+r+)=Am{K P, +sech® kyh Z @m 2,.+1}, (6.14)

2n

1—t—> (r +r+) ATTI{Qz"'SCCh koh Z an+2}, (6.15)

-1
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and two equivalent expressions for r_—r,:

k2n
%(r‘ r.)= A'rr{P2+sech2 koh Z ————Pz,,+2} (6.16)
n= 1(271—1)
o) k2n+l
:Aw{ Q. +sech? koh Z n )'Qz,,H} (6.17)

We can use these, together with (6.9), to verify that r,, r_ and ¢ satisfy the Kreisel-Meyer relations. For
example, consider (5.15): we have

lr_+r =2t +|r_—r. 4= AP +|r_—r. =21+ 2% (6.18)
where

A=2=2t+r_+r,..
From (6.11) and (6.14), we have

2 o) 2}+l

ko 2k,
®Y =0 2
20 +A%) = 8A~n-{K Im(T,,)+ % sech” koh Z (21)'

Im( Tl,2j+l)

© 2j+2k+2

+sech* k,h Z Y

S E l(21)_'(2k)'Im(T2k+l,2j+l)}'

Using (6.9), we obtain

e 2]+]
2(a +A*)=(2A1r) { |P1|2 SeCh2 koh Z (2! (P1P§+1+P2j+lp’[k)
© 2]+2k+2
+sech® koh ——— Py PE

j=1k= |(2])'(2k)'

+similar terms with P, replaced by Q,.}.

When this is substituted into (6.18), together with (6.14) and (6.17), it is seen that (5.15) is satisfied.

7. Extension to finite depth, using Havelock wavemaker functions

Most of the formulae in Section 6 for water of finite depth are very complicated, whereas the correspond-
ing formulae for infinite depth are simple, e.g., compare (4.5) with (6.9). The reason for this is that all of
the multipole potentials &,, are wave-like at infinity, whereas only @, and @, generate waves (see Appendix
A). Thus, we wish to replace {45,,,} with a different set of functions, most of which are wavefree (i.e.
evanescent). The relevant functions are the Havelock wavemaker functions; the functions corresponding
to {a,,} are suggested by the following alternative bilinear expansion for G (defined by (6.2)), which is
given by, e.g. John [2],

G(P, Q)=Bn(P)¥,(Q) (7.1)
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for |x|<|¢|, where
¥,(P) = Amsgn(x) Yo(y) e, Wy(P) = AmiYo(y) e,
Voms1(P) = A sgn(x) Yo(y) e ™M, Wy s(P) = Apm You(y) 7,
Bi(P)=-2Y(y) sin kyx, B P)=—=2Yy(y) cos kyx,
B (P)=-2Y,(y)sinh k,x, Bom+2(P)=-2Y,.(y) cosh k,,x.

Here, A and Y, are defined by (6.10) and (6.13), respectively, k,,, m=1,2,..., are the positive real
solutions of

2 cos? k,,h cos k,(h—y)

K+k =0, An=g——— Ynl¥)=
m tan k,h =0, ™ 2k,h+sin 2k,h and  Y.(¥) cos k,,h

V¥, are (linear combinations of) the well-known Havelock wavemaker functions [21, 22]: consider a
semi-infinite channel x > 0 with a wavemaker at x = 0; suppose that d¢/dx =f(y) on x=0,0<y < h; then

h

© 2
d(x,y)= Z:O 4, ¥imia(X,y) where a,= —;L S Y, (y) dy,

since

h
6""]
L Ym(y)Yn(y)dy=2k A (7.2)

for m, n=0, with A,= A. ¥,, and B,, are harmonic functions that also satisfy the free-surface and bottom
conditions; 3,, are regular but ¥,, are not smooth at x =0; ¥,, satisfy the radiation conditions as x » *c0.
Suppose that

2w ¢p(P) =¥, (P) for|x|>X (7.3)
and

2n¢(P)=d.B.(P) for|x|<X, (7.4)
where X is a positive constant. Let

en=Tondny m=1,2,... (1.5)
for some T,,,. Reciprocity then implies that T is symmetric, as before, whilst it can be shown that the
energy relation (2.5) yields

%Im( Trun) + A(Tin THa + TomTH,) =0, (7.6)
which should be compared with (4.5).

For |x|> X, (3.2) and (7.1) give (7.3) with
&m =, Bm)- -

However, for a floating body, we cannot use the same procedure to reduce (3.3) to (7.4) (since there will
always be points g = (¢ n) €D with |£| <|x|). Instead, suppose we use (6.4) to give (6.6), namely

2'"¢I(P—) = dmam(P—)s (78)
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with
d,={(¢,D,), m=12...; (7.9)
these are the null-field equations for finite depth. Using (3.10) and eliminating a,, n=1,2, ..., we obtain
b= Tonnd, (7.10)
where

Tmn = _RAmké;r:’ Q~mn = <¢m ¢?'m> and ﬁmn = <¢m ﬁm}

Thus, we have a viable procedure for computing (an approximation to) Toume
Now, if we can relate (7.4) and (7.8), i.e. if we can find the matrix S where

dp=Smnd, m=12,...,
then, comparing (7.5) and (7.10), we obtain
Ton = ToieSicy, m,n=1,2,.... (7.11)

Properties of T can then be derived from those for T.
The matrix S is known explicitly: suppose

B (%, p) = drpttn(x, ) (7.12)
set x =0 to give

-2 2032m+2ym(y): Y dr,02,(0, );
n=1

m=

the orthogonality of {Y,.(¥)}, (7.2), then yields

e h
d2m+2:—kmAm 2 dZnJ' a2n(0,y)ym(y) dy’ m:(), 1,29;

n=1 0
szH are obtained by first differentiating (7.12) with respect to x. Actually, it is also possible to calculate
S7' explictly; for a typical example, see Appendix B.
Finally, we observe that if 3D intersects the bottom (physically, this means that the fluid domain is

split into two separate domains, each one of which corresponds to a ‘generalised wavemaker problem’,
i.e. a semi-infinite channel with an end-wall or arbitrary shape), then

Tmn = —ﬁmkR;r: “where Rmn = (‘bm 1[’,,,).
The corresponding null-field equations are
dp=($,¥,), m=12,..., (7.13)

and these could be used to solve the generalised wavemaker problem. Furthermore, if ¢, corresponds to
a regular surface wave, the method of projection [4] can be used to yield a convergent numerical scheme
for solving (7.13). This approach should also be useful for treating various three-dimensional problems,
e.g., scattering by a right circular cone which is resting on the bottom and which pierces the free surface.
These new methods are currently under investigation.
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Appendix A. Multipole potentials

From [17], we have (3.4) with

= dk 1 9
¢2(P)= . € by COS hm, @l(P)=—E£ ¢2(P),
cos 2mé K cos(2m—1)8 sin(2m+1)¢ K sin2mé
(p2m+2(P)= P2m +2m__1 2m= » (p2m+1(P)= p2mel 5"; m
(A.1)
a)(P)=-2¢ % cos Kx, a,(P)=-2¢ " sinKx,
-22m-1)! = (-Kr)? 22m)! = (—Kr)¢

Az P) = cos g, Aymri(P) = Y ————singé,

2 2m+1
K " q=2m q' K " q=2m+1} q!

m=1,2,..., and the point P=(x, y) has circular polar coordinates given by x =rsin 8, y = r cos 8 (with
r=r,). Note that ®,,, and a,,, (®,,_, and a,,,_,) are even (odd) functions of x, m=1,2,....
For water of constant finite depth, h, say, the multipole potentials are given by [17]

5 * cosh k(h—y) cos kx dk . .
D,(P) = __19 p
P) .i k sinh kh— K cosh kh’ 2.(P) K ax D,(P),

1 {)“’ e (K + k)(K sinh ky — k cosh ky)k*™ 2 cos kx dk

1 9

ézmn(P) = d’2m+2(P) -

Cm-1'J, k sinh kh — K cosh kh ’
. 1 (e ™™(K+k)(K sinh ky — k cosh ky)k*™ " sin kx dk
i) P)=&,,, . (P)- - .
2m+1(P) = Pomi(P) (2m)!£ k sinh kh — K cosh kh

Asymptotic behaviour of the multipole potentials as |x| > co
We have

45‘ ~ 47 e—Ky:tin

— Ky+iKx

and P,~m7ie as x = £00,

For m>2, @, is a wavefree potential, i.e. it decays algebraically as |x|- co.
For finite depth, we have

D~ xm(ko/ K)AYoe™ >, (2m)1B,y,,, ~ £wkd™"" sech?(koh) AY, e,
b, ~miAYge ™", (2m—1)1],,.,~ k2™ sech’(koh)AY, e*io*
as x - +00, where ko, A and Y, are defined by (6.3), (6.10) and (6.13), respectively, and m=1,2,....
(Note that, as h>, ko> K, A-> 1 and, for fixed y (0 y<h), Yo»>e X))
Bilinear products
From [17], we have
[a¥, &]1=[an, §¥]=2n8,, and [Bf, &]=27"A0,,
where 2y =02, 22p20+1=0,
n=ki/K?  KQm)\Q 3= ki™*? sech? koh,
=1, (2m —1)125 51> = k3™ sech® koh
2m)2N) D 2mir = K222 sech® koh



192 P.A. Martin / T-matrix for water-waves
and

(2m - 1 ) '(2" - 1)'02m+2 2n+2 — k2m+2n SeCh4 koh.

Appendix B

Consider a regular surface wave, propagating from x = +c0 on water of depth h. We seek the coefficients

d,, in the expansion

2’11’(]5[()6, ,V) = 217 YO(y) e-ikox = d;am(xa .V)

Set x =0, whence
20Ye(3)= ¥ dirratansal0, )
We have
Yo(y) = cosh koy — (K / ko) sinh kgy =1 - Ky + él P (Ky)(ko/ K)*™

where

_(Ky)™(. Ky
Pn(Ky) =" 5, (1 2m+1>'

From Appendix A, we have

ax(0,y)= —2<1 -Ky+ i] pm(Ky)>

and
20420, y) = 2(2;— g; Pm(Ky)
for n=1,2,.... Hence
:2; d3n1202n42(0, y) = =2 :Z:l Pm(Ky) ": (2';,(—2) d3, o

Substituting (B.3)-(B.5) into (B.2), and comparing coefficients gives

. k 2m m (2" )
w=-2d; and 217(?)) =—2{d2+nzl——K2—"d2,,+2}

form=1,2,..... Hence d5 = —w and

k 2m 1 m ( 1)
1_(—0> ;El K2 dinz form=1,2,....

Since

l-x"=(1-x) ¥ x"',
n=1

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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we obtain

. m(KP-kQki" _'rrk(z," sech® kyh
242 = 2n-1)! -1

The odd coefficients can be obtained by differentiating (B.1) with respect to x noting that

d d
—a;=Ka, and — a4 =2n0a5042
ax ax

for n=1,2,... and then setting x = 0; the results are
di =mi(ko/K) and (2n)'d;,.,=wiky""' sech® koh.
For a regular wave from x = —00, we have
2u(x, y)=2m Yo(y) " = d a,(x, y);
it is easy to see that

- + - +
dins1=—d2,yy and dz,,=d3,,, forn=0,1,....
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