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SUMMARY

Consider an infinite elastic solid containing a flat elliptical crack, which is opened
symmetrically by a prescribed pressure p. We expand p and the crack-face
displacement w as Fourier series in ¢, and expand each Fourier component as a
series of orthogonal polynomials in p, where (in Cartesian coordinates) the crack
occupies the surface {(x,y,z):x=apcos¢, y=bpsing, z=0, 0=p<],
0= ¢ <2xm}. We obtain explicit relations between the coefficients in the series for w
and p, and derive a formula for the stress-intensity factor. As an example, we con-
sider the quadratic pressure p(x, y) = A + Bx + Cy + Dx* + Exy + Fy” in detail, and
compare our solution with those of other authors.

1. Introduction

It 1s now 40 years since Sneddon (1) and Sack (2) first studied the static
loading of a penny-shaped crack in an otherwise unbounded homogeneous
isotropic elastic solid. Both authors considered the crack to be opened
symmetrically by a prescribed pressure p. It is instructive to look at the
methods used by these authors. Let x, y, z be Cartesian coordinates, so that
the crack occupies the region

Q={(x,y,2):0sr<1,0s6<2x,2z=0},
where
X =ar cos 8, y=arsin g,

and a is the radius of the crack. As the problem is symmetric about z =0,
Sneddon (1) considered an equivalent half-space problem. Taking p to be
axisymmetric, and using an integral representation for the displacement in
2 =0 (involving Hankel transforms), he obtained a pair of dual integral
equations, which he could solve. Sack’s approach (2) was more direct: he
reduced the problem to one in potential theory, which he solved using the
method of separation of variables in oblate spheroidal coordinates, when p
was constant over .

Since the pioneering work of Sneddon and Sack on the simplest problem
in three-dimensional fracture mechanics, there has been much written on
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the static loading of a penny-shaped crack. Sneddon’s method has been
extended to arbitrary loadings by Kassir and Sih (3, Chapter 1) and Bell (4)
(see also (5)); an alternative method, based on the Somigliana formula, has
been used by Guidera and Lardner (6) (see also (7) and §3.2 below).
Polynomial loadings have also been considered. Thus, Payne (8), England
and Shail (9), and Shail (10) all, like Sack (2), used oblate spheroidal
coordinates, and obtained polynomial solutions for polynomial loads.
Similar solutions have been obtained using different methods by Gladwell
and England (11) and Krenk (12). For example, Krenk showed that if a
penny-shaped crack is inflated symmetrically by the pressure

[(n + TG +3) CyA(Q -

(r,0)=u S7 r” cosnf, (1.1)
i D TR —r’)f
then the normal displacement of the upper crack face, say, will be given by
L(n +3)!
— hHr 6, (1.2
u,(r, 6, 0) = %agogo T T+ +3) Con(@ =) cosnb, (1.2)
where
Wi=—-(1-v)S}, (1.3)

g is the shear modulus and v is Poisson’s ratio. Here, Ci(x) is a
Gegenbauer polynomial of degree m with index A (13, §10.9); these
polynomials are orthogonal and satisfy

1 ’.2m+1

G CE i((l PHCEA - dr=h7se, (1.9

where J; is the Kronecker delta and A" is a known constant. (An
alternative derivation of (1.3) is given in (7).) The authors of (8 to 11) used
associated Legendre functions P;'(x), whilst Bell (4) used Jacobi polyno-
mials P{*P(x) to expand the Fourier components of p(r, 8). All these
solutions are equivalent, since

rCi (A=), Praraa(Q-rAY), rQ-»APoba-2r7)

are all proportional to one another. However, we prefer to use Gegenbauer
polynomials, so that we can compare with Krenk’s result (1.3).

1.1. The pressurized elliptical crack

Some of the methods used to solve the problem of a pressurized
penny-shaped crack have been adapted to the corresponding problem for a
flat elliptical crack. Let

Q={(x,y,2):0sp<1,0s¢p<2mz=0}, (1.5)
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where
X =ap cos ¢, y=bpsin ¢, (1.6)

and 0<b=gq; Q is an elliptical region in the plane z =0. Green and
Sneddon (14) reduced the problem to the determination of a single
harmonic function, V(x, y, z), say (see §3.1 below). In the special case of a
crack inflated by a constant pressure p, this potential problem had a known
solution. This solution represents the gravitational potential of a uniform
elliptical plate, and is proportional to V®, where

V@(x,y, z)= r% a7
w(s)=1__i_y_2_z_2’ Q(s) =s(s + a®)(s + b?),

A is an ellipsoidal coordinate, defined as the positive root of w(s) =0, and
«> —1% is a real number. The harmonic functions V* were introduced by
Kassir and Sih (15) and Segedin (16) in order to treat polynomial loads;
Segedin (16) also suggested using partial derivatives of V(* with respect to
x and y. This method has been developed by Shah and Kobayashi (17),
Kassir and Sih (3, Chapter 3), Vijayakumar and Atluri (18) and Nishioka
and Atluri (19); for example, if the prescribed pressure has the form (18)

M m
p(x, y)= 20 ZOA:,-nx“-z"y”, (1.8)
then take
2y @m+1)
Vix,y, z)= EO 20 Ch- A gy 1.9)

and determine the coefficients C;, by imposing the boundary condition on
Q, (3.4). This method is complicated (because of the difficulty in expanding
the right-hand side of (1.9) as a polynomial), but tractable (18, 19).

An alternative method for finding V has been given by Shail (20). He uses
the method of separation of variables in ellipsoidal coordinates, leading to
solutions as products of Lamé functions. This method is elegant, and is the
natural generalization of the corresponding approach for the penny-shaped
crack (2, 8 to 12). Its main drawback lies in the Lamé functions themselves,
since these functions are not easnly computed and their properties are not all
well understood.

Shibuya (21) has used a method involving dual integral equations and a
conformal mapping between Q and the unit circle. Later, Sneddon (22)
showed that Shibuya’s method is essentially based on certain properties of
two-dimensional Fourier transforms (see §2 below), although he only
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considered the case of constant p. One purpose of the present paper is to
extend this approach to general polynomial pressures.

Somigliana’s formula has been used by Eshelby (23), Willis (24), Walpole
(25) and Gladwell (26). Eshelby (23) gave the first solution for a uniform
shear stress on €2, whilst Willis (24) has presented a general method which is
applicable to anisotropic media.

One general result which features in much of the work on elliptical cracks
is an analogue of Galin’s theorem, which we state here in a form given by
Shail (20).

THEOREM. Suppose that an elliptical crack is inflated by equal and opposite
pressures p(x, y), where

p(x, y) = P(3%, y?) + xPy(x%, y?) + yPy(x% y2) + xyPy(x%, y?), (1.10)

and P,(i=1,2,3,4) are polynomials in x* and y>. Then, the normal
displacements of the crack faces are tw(x, y), where

w(x, y) =1 - p)HQ:(¥%, y?) +xQa(x, y?) +
+y0Qs(x?, y?) +xyQa(x?, y?)},  (1.11)
p = (x*a*+ y?*/b?)} (1.12)
and Q, is a polynomial in x* and y* of the same degree as P,.

Concise proofs of this theorem have been given by Willis (24), Walpole
(25), Shail (20) and Gladwell (26); indeed, the theorem is true when the
elastic solid is arbitrarily anisotropic (24).

In the present paper, we combine Sneddon’s approach (22) with Krenk’s
polynomial expansions (12). We obtain results which generalize (1.3) to
elliptical cracks; these are also implied by some results of Gladwell (26),
who used a different method. Rather than the simple uncoupled relations
(1.3), we now have certain systems of simultaneous linear algebraic
equations. In section 6, we show how these systems can be properly
truncated. In section 5, we derive a simple formula for the stress-intensity
factor k,(¢). Finally, in section 7, we solve five particular problems. The
first four are simple, and correspond to P, =, (j=1, 2, 3, 4) in (1.10). For
the fifth problem, we take p(x, y) = Ax*>+ By?; this problem is non-trivial
and provides a better illustration of the method.

Computationally, the method presented here appears to be more attrac-
tive than Atluri’s method (18,19). Both yield similar systems of linear
equations for the pressurized crack, although here (i) the matrix elements
are much simpler, (ii) all systems are completely uncoupled from one
another, and (iii) the load coefficients S} are easily computed (using (1.4)).
However, Atluri et al. can also treat polynomial shear loadings of the crack;
such loadings have yet to be treated by the present method.
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2. Two-dimensional Fourier transforms
Define the two-dimensional Fourier transform of f(x) by (27, §7.1)

F® = S8 =5 | 1 exp (i5.x} dx; @)
its inverse is
@)= FF@ =5 [ FOew(-50ds. ()

Here, x=(x,y)eR?% E=(§, n)eR? and E.x=Ex+7ny. Make the
substitutions

x=apcos¢, y=bpsing, E=(Aa)cosy, n=(A/b)siny (2.3)
in (2.1) and (2.2) to give

sessl=5 [ [ fwexp idpcos(6-w)pdodp 20

and

! I fo F(E)exp {—iAp cos (¢ — y)}AdydA. (2.5)

FFE =5~

Suppose that f(x) has the Fourier expansion

f@ =3 fulp)cosmp+ 3, Fulp) sinme. 2.6)

m=0 mm1

Since (13, Equation 7.2.4 (27))

-

exp {xir cos 8} = 2, £,(%i)"J,(r) cos nb, 2.7
where n=0
e = {1, n=0,
"2, n>0,

we can integrate over ¢ in (2.4) to give
Flf(x);E]=ab 2_:01"" cos my ¥, [fm(p); Al +

+ab i i™sinmy¥,.[f.(0); A, (2.8

m=1

where

#,[(0); A] = f Fo).(Ap)p dp. 2.9)
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Sneddon (22) has used the ‘axisymmetric’ form of (2.8), in which
f(x) =fo(p); when a = b, f(x) = fy(r) and we recover the well-known relation

(27, 811)
Flfo(r); &l = A Ho[fo(r); A).

3. The pressurized elliptical crack

3.1. Solution using one harmonic function

As the problem is symmetric about the plane z =0, it is equivalent to
determining the displacement u = (u,, u,, u.) and the corresponding stresses
1, in the half-space z >0, when the boundary conditions are

T.(x,y, 0)=p(x), xeQ, 3.1
u,(x,y, 0)=0, xeRAQ, (3.2)
T.(x 9, 0=1,(xy0=0 xeRx (3.3)

Because of (3.3), this problem can be reduced to the determination of a
single harmonic function, V(x, y, z) (28, §5.7), where

|4 oV 1% 1%
+1-2Z, 2uu, = +(1-2v) 2,
dx 8z ( v) ox Hily =2 dy 9z ( V) dy

v oV
2yu,=252—2—2(1-v)——.

2uu, =z

This representation satisfies (3.3). Also,

1,,(x, y,0)= — 8*V/3z? (3.9)
and
(1-v)av

T (3.5)

w(x) = ul(x, y’ O) = -
Suppose that, for x € R?,

] o

w(x)=3a > w,(p)cosmp +3ia D, %,.(p)sinme. (3.6)

m=Q me=]

Following Sneddon (22), take the harmonic function V to be

£ F3EU®) exp (— 8l 233, 3.7

Vix,y, z)=1_

where
U®) =40 3, i"Honlwa(p); A] cos myp +
+ 3a% i " [ Wr(p); Al sinmy, (3.8)

m=1
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& = (82 + 7! and A= (a%E2+b*p?)). Then (2.8) shows that (3.6) is
consistent with (3.5); (3.2) will be satisfied if w,(p) and W,(p) vanish for
p = 1. Equation (3.1) will be satisfied if w,, and W, are also chosen to satisfy

u
1-v

p(x)=— F2 (&l U®); x]. 3.9)

Noting that [E=(A/b)(1 — k?cos? )}, where k*=1—(b/a)?, and using
(2.7) in (2.5), we can reduce (3.9) to

px)=u z £(p) cosng + s z £,(0) sin ng, (3.10)

where

T VK0 = ~des 3 TV [ O0n(p)i i), (3.10)
A=V E0)= = S LKL H () Wi P], (.12

I (k) = 3™ (=i)" f (1 - k?cos® )t cos my cosny dy,  (3.13)
B (k)= }m(-i)" fo - (1 —Kk*cos> y)sinmysinnypdy, (3.14)

k' = b/a and we have noticed that if, in (3.13), we replace cos ny by sin ny,
then the corresponding integral is zero.
Splitting the range of integration in (3.13), we obtain

yor
Lpman=2| Acos2mx cos2nxdx (3.15)
0
and
yrx
L1241 =2 A sin (2Zm + 1)x sin (2n + 1)x dx, (3.16)
0

where A(x) = (1 — k?sin? x)}; also I, 2,41 = 0. Similarly,

in
B2n=2| Asin2mx sin2nx dx, (B.17)
0

ix
Boorznes =2 f A cos (2m + 1) cos (2 + 1)x dx (3.18)
0
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and I3,, 2,+1 = 0. Thus, (3.11) and (3.12) separate as follows:

(1= )k Tan(p) = ~bean 201%",2#52;:[3%:"{%(!7);1};!3], (3.19)

a(l—=v)k'ty(p) = ~ 20 L1241 2n 41 X
X Ao 1 {(Wamsr(0); A} ], (3.190)

R~ VK T (0)= = 3 Ly an oAl Fon(0); 1 ], (3200

a1 = v)k'Tp,1(p) = ~ ZOPZM+1,2n+1%Zn+l X

X [A# 2 +1{W2m+1(p); A}; P].  (3.20b)

This separation corresponds to the four-term splitting of p(x) in (1.10).
The integrals I, and I, can be simplified; we have

1%
L5 2n :tI;,,,,z,,=ZJ Acos2(m Fn)xdx
0

and

ym
I‘im+1,2n+l:tlgrn+l,2n+l=2 A cos {2’71 +1q:(2n + 1)}x dx,
0

whence the basic integrals are seen to be
in
E,,,(k)=f Acos2mrdy, m=0,12,.... (3.21)
0

These integrals are easily computed; we have
Ey= E(k), 3kE,=(1+ k')E - 2k"*K
and
(2m +3)k’E,,,, = —4m(1 + k'))E,, — 2m —3)Kk*E
for m =1, where K(k) and E(k) are the complete elliptic integrals of the
first and second kind, respectively. Alternatively, E,,(k) has a power-series
expansion (29, Equation 806.03)
_EDT S TG DIG-Y) o,
4 S.G+rmIG-m)y

As a preliminary check on our analysis, we can let b—a (k—0),

corresponding to a penny-shaped crack. We have

£,15,(0) = 78,,.,, (3.22)

E,
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whence (3.11) simplifies to
(1_ v)r,,(r)= —%%,[A%n{w,,(r);/l};r], (323)

which is precisely the integral equation solved by Krenk (12, Equation
(25)), using expansions of 7, and w, in series of Gegenbauer polynomials.
We shall adopt a similar approach here for the elliptical crack.

3.2. Solution using the Somigliana formula

An alternative approach is based on the Somigliama formula; this has
been used by, for example, Willis (24), Walpole (25) and Guidera and
Lardner (6). We have (6, Equation (2.4))

N 2 9.9 9
tzz(x Y,z )_ 4‘”(1 _ V) fQ {ax [uz(x)] ox + ay [uz(x)] ay} X

1 ZIZ
x (E + F) dx, (3.24)
where Q is defined by (1.5), R*=(x —x')*+ (y —y')*+z'* and
[w.(®] = u.(x, 5, 0+) —u,(x, y, 0 - ) =2w(x) (3.25)

is the discontinuity in wu, across the crack. Following Willis (24), we
introduce the two-dimensional Fourier transform of R},
R =% '([g| " exp {i&.x~ [§] z'}; x'] (3.26)

where x’' = (x', y'). Substitute (3.26) into (3.24), integrate by parts (noting
that [u,] =0 around the crack edge), let 2’—0 and use the boundary
condition (3.1) to give

u
1—v

p(x)= - #2'(l5l U®); x], (3.27)

where

U® =5 [ (000 exp (15.x) dx = F{w(x); 8l

here, we have noted that [u,(x)]=0 for x e R\Q and used (3.25). Using
(3.6) and (2.8), we see that U is given by (3.8) and hence (3.27) is identical
to (3.9).

4. Polynomial solutions
Following Krenk (12), take

2 Dm + !

Wn(p)=H(Q1 - p)p™ X W

+3 _
2 W Tom g+ Co@ =P, (@)
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where H(t) is the Heaviside unit function and W} are unknown coefficients.
We have (12, 26)

[ s - b d- ‘%’%,ﬁ) Sin®), (42)
where j,(z) = (37/2)4J, ,4(2) is a spherical Bessel function. Hence
Holta(P)i 11 = 3, Wiy «3)
and
%, [A % (W (p); A ] =2§0 WrLY, (p), (4.4)
where
L3p) = [ Mu(ApYigamen(3) 4.5)

Consider L% (p), where u and v are integers. From (3.19), we see that we
only need to consider those cases where u and v are either both even or
both odd; thus, we can define integers p and g by

u+v=2p, u—v=2q. 4.6)

Now, (4.5) is a Weber-Schafheitlin integral (13, §7.7.4). For 0<p <1, we
have

_atpTGi+p+3)
LA =S FGrg 1)

where F is the Gauss hypergeometric function. Note that
L%,=0 whenever j+q=-1,-2,-3,..., 4.8)

Fj+p+3% —j—gq;v+1;p9), (47)

whereasif j +¢ =0, 1, 2, . . ., the series terminates; in fact, in this case, we
have
J@ADIG+g+3)
G +p)! (1-pH}
where we have used (13, Equation 10.9(22)) and the duplication formula for
I'(2z). Using (4.9) in (4.4), (3.19a) becomes
—E,pPT2n+3) S S,
A= Py e
(T0m =1+ +3) Chthnanna( = P
(m+n+j)! (1-pH ’

LI Ap)=p Chha+1((1 - pH)Y), (4.9)

T2(p) =

(4.10)
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where the summation is only over those values of j and m that satisfy
j+ m=n. To make this explicit, set [ =j + m, whence

™ -] ) -] o« 1
SE 2 2 aMI= 2 2 am,l—m= 2 E am,l—m-

mm=0 j=0 m=01=m =0 m=0

Using the restriction on /, we obtain

® 1l © n+j
S = 2 2 am,l—m = z Z am,n+]—m'
I=n m=0 j=0m=0

Thus, (4.10) becomes
— £, T2 +3) & D TG +3)
a(l=v)k'  joo (2n+))!
c%?:%((l pZ)i) S
(1 m=0
So if, following Krenk, we suppose that T, (p) has the expansion
L(n + DG +3) CA W - pHh
n(p) p ]20 (n +])' (1 _ 2)i >

where the coefficients S} are assumed to be known, then, since the
Gegenbauer polynomials are orthogonal (see (1.4)), (4.11) and (4.12) give

Toa(p) =

Wil (4.11)

(4.12)

n+f
2" -_—-————m-
s? ( v) X ’201 S 2 (K)W2T (4.13)

forn=0,1,...andj=0,1,.... Similarly, (3.19b) gives

) ntj
St = sz-o L1201 W33 e (4.14)

For a penny-shaped crack we have k =0; if we use (3.22) in (4.13) and
(4.14), we recover Krenk’s relation, (1.3). Thus, for this particular
geometry, we have a simple relation between W7 and S7.

If k #0, then (4.13), for example, is an infinite system of linear algebraic
equations for W7™ in terms of S?*. In section 6, we give a proper truncation
of (4.13); we shall use this to solve some particular problems.

The corresponding results for (3.20) are as follows:

-2 n+f

c2n __ 2m
S =T T ”:S_‘:l B W2y (4.15)
(e — N Yo (4.16)
a(l—-v)k' <2 i

where W, is given by (4.1) with W} replaced by W, and 1, is given by
(4.12) with S] replaced by S.
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The formulae (4.13 to 4.16) can be used to solve the converse problem, in
which it is required to determine the pressure distribution needed to
maintain a prescribed crack-face displacement. We remark that Kassir and
Sih (15) treated this problem by writing

wp(p) = (1 — p?H} go ci(1 - p?.

5. The stress-intensity factor

Consider two points P and P;, where P is on the edge of the crack and
has Cartesian coordinates (2 cos ¢, b sin ¢, 0), and P, is in the plane of the
crack and has coordinates (ap cos ¢;, bp sin ¢,, 0) with p > 1. Let s denote
the distance between P and P,. Let P, approach P along the normal at P.
Then, Sneddon (22) has shown that the stress-intensity factor at P is given
by

kx(¢) = lim (25)}z,.(ap cos ¢,, bp sin ¢, 0)
= (ab)}(a®sin? ¢ + b? cos® ¢) % x
X lim {(0”— 1)z..(ap cos ¢, bp sin ¢, 0)}. (5.1)

We have

T.:(ap cos ¢, bp sin ¢, 0) = E_)o T.(p) cosng +u D, T.(p)sinng, (5.2)

n=1
where 7, and 7, are given by (3.19) and (3.20), respectively. For example,

Ez’l -] -
=——2_ %I 2 g :
an(p) ﬂ(l—v)k, "12-0 %,ZAIE()W[ LZm,?-n(p): (5 3)
where we have used (4.4), and L%, is defined by (4.5). For p>1, we
have (13, §7.7.4)
T +p +3)
L% (p) = X
w0 TG+ DT~ 4 - D

XF(j+p+3,j+q+32+u+3;1/p%,

where the integers p and g are defined by (4.6). Since (30, Equations
9.131.1, 9.122.1, 8.339.2 and 8.339.3)

F(a,B;v;2)=(1—-2)" " PF(y—a, v — B; 15 2),

.y LIy —a— B)
e B D= R G- 8y
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G +mrE —n) = (-1)"x,

we obtain

plillll+ {(P2 - 1)§Li{v(p)} = (_1)['+q+1‘

Hence from (5.3)
. I ) s S,

hm {(p*~-1) T2.{P)} 1- )k',,,E.:o pu 2:71.%]%)( IYW/ . (5.9)

Now from (3.13), we have

) ( 1)m+n

2 €2,

n=0

Sm.2n €08 219 = (1 — k2 cos? ¢)} cos 2m, (5.5

whence

lim {(p*— D} E T2n(p) cOs 2np}

n=0

(———1 k” cos® "’)52 S (—1yW?" cos2m¢. (5.6)

(1 - V m=0 j=0

Similar results obtain for 7,,.;, %,, and %,,,,; combining these gives

i
£ ” (%) (a®sin® ¢ + b2 cos? ) IW(¢), (5.7

where

W)= (—1)1{ S Wrcosme + S, Wrsin m¢}. (5.8)

j=0 m=Q mm]

For the penny-shaped crack, this formula for k, reduces to that given by
Krenk (12).

6. Truncation

Consider (4.13), which is an infinite system of linear equations for W7™;
the right-hand side involves W™, where 0<m <[=n +j. So, to obtain a
proper truncation of this system, we must restrict /. To fix ideas, assume
that the prescribed loading is given by

p@) =4 S, Tamlp)cos2p= 3, S an(p, B),

n=0 n=0j=0



282 P. A. MARTIN

say. Rearranging, we have
) ] oo l
p(x)= z 2 ni-n= E Z Ap,i—n-
n=0 lmp [=0 n=0

Let us now suppose that the loading is such that this infinite series can be
truncated at /=N

N I N N N N-n
p(x) = 2 Z an,l—n = 2 Z an,l—n = 2 2 anj'
=0 n=0 n=(0 /mp n=0 j=0

Thus, we are led to consider prescribed loadings of the form

p(X) = rzz(xr b ) 0) =u 2;0 Th(p) cos 2n¢» (6 1)

where
i) = 3 sy D, - . 62)

When (6.2) is compared with (4.11), we find that (4.13) holds, but only in
the range 0=n=<N, 0<j<N —np, that is,

S,ZZ,,——L,EIE,,,Z,,W_,,,, 0<n<N, n<I<N. (6.3)
( V)k m=0

All other coefficients W7™ can be set to zero.

For each / in 0<I<N, (6.3) gives I + 1 equations in the / + 1 unknown
coefficients W9, W2, W?_z, co., W¥2 W¥ involving the /+1 known
coefficients S7, S7_,, S¢_,, ..., S¥72, §¥. For example, I =0 gives

~7(1 = v)k'SY= I W3 (6.4)
whilst / =1 (for N = 1) gives
—(1 = v)k'S? = [5W3 + I, W3, }

—dn(1 - Vk'S3=I5W? + IS W3 (6:5)
We note that each system of equations is uncoupled from all the others.
Atluri et al. (18,19) obtain equations with a similar structure, except that
their systems are weakly coupled, thus, in order to solve their system
corresponding to /=L, say, they first need the solutions for the larger
systems with L </=<N (see (18, p. 92)).
The displacement of the upper crack-face is given by

v =ta 5,5 W o s (- e cos
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and the corresponding stress-intensity factor is given by (5.7) with

N N-m
W(p)= 2 > (1YW} cos2ms. (6.6)
m=0 j=0
Similar results obtain for prescribed loadings with other symmetries.
Finally, we could now give another proof of the theorem stated in section
1, although we shall not do so here.

7. Five examples

To illustrate our method, we shall consider some particular loadings of
the crack. We begin with the four simplest cases, namely (i) p(x) = —p,, (ii)
p(x) = —pox/a, (iil) p(x) = —poy/b, and (iv) p(x) = —poxy/(ab), where p, is
a constant. These are simple because they all involve just one non-zero
load coefficient (S9, S§, S§ or $2), that is, they correspond to P, =34,
(i=1,2,3,4)in (1.10).

(i) Since C}(x) = 2Ax, we obtain

59— 2P,

mu

whence (6.4) gives (using I§, = 2E(k))
Wg =Po(1 - V)k, .

UE

Hence
wix) = aWg(1 - pii =R 1 - oy .1

and

3
ky(¢) = 1—f—v (%) (a®sin? ¢ + b cos? @)W
!
=%’ (%) (a*sin® ¢ + b? cos? )1, (7.2)

Equations (7.1) and (7.2) were first obtained by Green and Sneddon (14)
and Irwin (31), respectively.
(ii) We have p(x) = —pgp cos ¢, whence
—4po po(l = VIK'K?
Sl _r0 1 _£FON 7 " ,
0 3n“ and Wo II.Q‘
where

Q,(k) = IS, = (K2 — kK'D)E (k) + k2K (k).
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Thus,
w(x) = Wix(1 - p?} (7.3)
and
32
ki(¢) = p0<§) ;;—1 (a®sin? ¢ + b? cos? ¢)? cos ¢. (7.9)

Equations (7.3) and (7.4) have both been given by Shibuya (21) and Shail
(20) and, incorrectly, by Kassir and Sih (15). Equation (7.4) has also been
given by Shah and Kobayashi (17).

(iii) We have p(x) = —pop sin ¢, whence

S~ ang wy-LdLEOKK
where
Q,(k) = 36, = (1 + K)E(k) — k2K (k).
Thus,
w(x) = (a/b)Wiy(1 - p)} (7.5)
and
ky(¢)= po(g)i g; (@®sin? ¢ + b? cos® ¢)* sin ¢. (7.6)

Equations (7.5) and (7.6) have both been given by Shibuya (21).
(iv) We have p(x) = —3p¢p?sin 2¢, whence

Sierpl ana Wil RE
where
Qy(k) = Bk* T = 2(k* + k) E(K) — k(1 + kDK (K).
Thus .
w@) =20 1y - (.7
and
b\} k*
ki(¢) =p0(-‘;> 20, (a®sin® ¢ + b? cos? @)} sin 2¢. (7.8)

Equations (7.7) and (7.8) have both been given by Shail (20) (there is a
factor of ap missing from the denominator in (20, Equation (53))).
Equation (7.8) has also been given by Kassir and Sih (3, Equation (A3.3k)).
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We now consider a more complicated example:
P(X) = pxo(x/a)’ + poa(y/b)* = p*(po + p; cos 29), (7.9)
where po= 3(P20 +Poz) and p, =4(ps — pey). Taking N=1 in (6.1), (6.2)
gives
=g, S, Sheglt,
W3 is given by (6.4), whilst (6.5) gives
QWi = —3x(1 — v)k'{S3I5 — 28%15,}
and
QW = —3x(l — v)k' {2595, — S3l%),
where
Q(k) = Igol% — Ial5.
We can calculate 1§y, 15 and I§; =I5, using the formulae given in section

3.1; w(x) and k,(¢) can also be found. For example, the stress-intensity
factor is

ki(p) = I—Sg (b/a)X(a?sin® ¢ + b? cos? ) {By(k) + By(k) cos 29}, (7.10)

where
QB = 3po(3Q + 2I515,) /150 + p1 I,

and
QB, = polG, + p115.

Kassir and Sih have also given a formula for k,(¢) (3, Equation (A3.3g)).
However, their formula does not reduce to the correct result for a
penny-shaped crack (see the Appendix), whereas (7.10) does; this result,
which can be obtained using the method of Guidera and Lardner (6), is

4g%
ki(¢) = Ton (5po+4p,cos2¢), b=a. (7.11)
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APPENDIX

The stress-intensity factor for an elliptical crack opened by the quadratic pressure
(7.9) has been given by Kassir and Sih (3, Equation (A3.3g)) as

ky() = — 3(a/b)}{A, cos® ¢ + A,(a/b)? sin® ¢} (a®sin® ¢ + b? cos? p)i, (A.1)
where

AA; = pal)iz + SJos) — (a/b)'poaJas + Ji2), (A2)
AA; = —pu(Jiz + 1) + (a/b) P + 5T0), (A3)
Ak) = (Jn + Slx) (12 + 5Ta) = (Tn + 112)?, (A.49)

and
K(k)
Jn(K) = f (sn ¥ (nd £)* dt.
0

We shall let k — 0 in (A.1). Since (29) snt — sint, ndt > land K —» iz ask — 0,
we obtain

i‘
%@=L@mWMa
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In particular
' 112(0) = 13,(0) = J5o(0) = Jos(0) = . (A.5)

Kassir and Sih (3) give formulae for J,,,(k) as linear combinations of E and K;
letting k — 0 in these, we see that their formula for Jy; does not satisfy (A.5), and so
it must be incorrect. Nevertheless, let us now use (A.5) in (A.2), (A.3) and (A.4):

Hence, as k — 0, (A.1) gives

4at .
k(o) = T {Bpn — pa) cos® ¢ + (3pm — p) sin® ¢}

—4ai
= Tox (2po + 4p, cos 2¢),

which should be compared with (7.11); it is seen that only the coefficients of cos2¢
agree. Thus (A.1) must also be incorrect.






