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SUMMARY

An infinite solid contains a flat elliptical crack, occupying the surface (in Cartesian
coordinates)

{(x,y,z):x=apcos¢,y=bpsing,z2=0,0<p<1,0=< ¢ <2r}.

The crack faces are subjected to prescribed shear stresses, with Cartesian com-
ponents g, and g,; the corresponding crack-face displacements have components
tu, and tu,. We expand u,, u,, g, and g, as Fourier series in ¢, and expand each
Fourier component as a series of orthogonal polynomials in p. We obtain explicit
relations (systems of linear algebraic equations) between the coefficients in these
series, and derive simple formulae for the stress-intensity factors. Our systems of
equations (i) yield the known analytical solutions for uniform shear and simple
torsion, (ii) reduce to those obtained by Krenk for the penny-shaped crack (a = b),
and (iii) are computationally attractive for arbitrary polynomial shear loadings.

1. Introduction

ConsiDer a flat elliptical crack in an otherwise unbounded homogeneous
isotropic elastic solid. Let (x, y, z) be Cartesian coordinates, so that the
crack occupies the region

Q={(x,y,2):0sp<1,0s ¢ <2m, z=0}, 1.1
where
X =ap cos ¢, y=bpsin ¢ (1.2)

and 0<b =a; Q2 is an elliptical region in the plane z =0. A basic problem
in fracture mechanics is to determine the displacement of the crack faces
when they are subjected to arbitrary equal and opposite prescribed
tractions. (This is sufficient to determine the displacement field throughout
the solid: use the Somigliana formula.) An efficient scheme for solving this
problem could also be used as part of an alternating technique for
computing the stresses around an elliptical crack in a finite body. In the
present paper, we describe such a scheme.

We begin with a brief description of previous work on the static loading
of elliptical cracks. The earliest solution was given by Green and Sneddon
(1), who considered a pressurized crack (normal component of the traction
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prescribed on ). This problem is symmetric about the plane z =0, and can
be reduced to the determination of a single harmonic function. For the
special case of constant pressure, Green and Sneddon recognised that this
potential problem had a known solution, proportional to V", where

Q(s)=s(s + a®(s + b?),

A is an ellipsoidal coordinate, defined as the positive root of w(s)=0 and
«>—3 is a real number. The harmonic functions V(®, and their partial
derivatives with respect to x and y, have been used to treat polynomial
loadings of the crack. Here, we shall consider their use for shear loadings of
the crack (references to work on pressurized elliptical cracks are given in
2)).

( )\)Nhen the crack faces are subjected to equal and opposite tangential
tractions, the problem is antisymmetric about z =0, and can be reduced to
the determination of a pair of harmonic functions, ®(x,y,z) and
W(x, y, z), say (see section 3). For a constant shear, Kassir and Sih (3) took
® and W proportional to V", and then determined the two constants of
proportionality by imposing the boundary conditions on 2. This approach
has been developed by Smith and Sorensen (4), Kassir and Sih (5, Chapter
3), Vijayakumar and Atluri (6) and Nishioka and Atluri (7). These last two
papers contain a well-developed, systematic treatment, which we shall now
describe. (We do this so as to put our own work into context; see section 6.)
Thus, suppose that the prescribed tangential components of the traction on
Q, g, and g,, have the forms (6)

M m
q:(x, y)= 2, D AL_xPmTryn (1.3a)
m=0 n=0
and
M-1 m
q,(x, y) =xy EO ZO B, _, x>y, (1.3b)
Then take
M m
O(x,y,2)= 2, X Ch_nFomon (1.4a)
m=() n=(
and
M-1 m
Y, y,2)= 2 2 DhoaFamezansn, (1.4b)
m=0 n=0
where

amv(m+1)

Fo(x, y, 2) = oy
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and C7,, D7, are unknown coefficients. Calculate the tangential tractions on
Q from ¢ and ¥, and expand them as polynomials in x and y (this is the
complicated step: similar expansions of F,..(x, y, 0) are required). Equate
the coefficients in these polynomials with the corresponding coefficients in
(1.3), leading to systems of linear algebraic equations for the determination
of C7,, Dy,; see section 6.

The problem solved by Kassir and Sih (3) (uniform shear) was first solved
by Eshelby (8). This problem has also been discussed by other authors.
Chen (9) considered an elastic material with transverse isotropy; he also
sketched a method for linear loadings. Shibuya (10) used dual integral
equations and a conformal mapping between €2 and the unit circle. Kostrov
and Das (11) have evaluated the stress field around the crack in some detail.

Eshelby’s approach (8) was based on Somigliana’s formula. This has also
been used by Willis (12). His method is applicable to anisotropic media, and
also leads to the following analogue of Galin’s theorem.

THEOREM. Suppose that the faces of an elliptical crack are loaded by equal
and opposite tangential tractions, with Cartesian components q.(x,y) and
q,(x, y). Assume that

qx(xr ,V) = Ql(x’ y) and qy(x’ y) = QZ(X) )"), (15)

where Q, (i=1,2) are polynomials of degree n in x and y. Then the
tangential displacements of the crack faces have Cartesian components
tu(x, y) and tv(x, y), where

u(x, y)=(1-p)P(x,y),  v(xy)=(1-p)P(xy), (16)
x2 y2 %
o= (G5 7
and P, (i = 1, 2) are also polynomials of degree n in x and y.

Walpole (13) has also given a proof of this theorem for isotropic media.

The basic method used by Willis and Walpole is as follows. First obtain a
pair of (integral) equations connecting g, and g, with 4 and v. Then, assume
that « and v can be written as (1.6), and deduce that ¢, and g, can be
written as (1.5). The equations connecting the coefficients in P, to those in
Q, are complicated. However, Gladwell (14) has shown, for pressurized
cracks, that they simplify if the Cartesian polynomials are replaced by
Fourier series in ¢ and series of orthogonal polynomials in p (see (1.2)).
Similar expansions have been used in (2) for pressurized elliptical cracks,
and have also been used for arbitrary loadings of a penny-shaped crack
(a = b); references are given in (2).

In the present paper, we shall use methods similar to those used in (2) to
treat polynomial shear loadings of a flat elliptical crack. These methods
combine polynomial expansions of u and v with certain integral repre-
sentations of ® and W, involving two-dimensional Fourier transforms (these
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are discussed briefly in section 2). We derive systems of simultaneous linear
algebraic equations, connecting the coefficients in the expansions of u and v
to the coefficients in similar expansions of the (given) loads, g, and g,.
These systems appear to be new; they reduce to the relations found by
Krenk (15) for polynomial shear loadings of a penny-shaped crack; they can,
be properly truncated (see section 6); and they are simpler than the
corresponding systems obtained by Atluri et al. (6, 7). In section 5, we
derive simple formulae for the stress-intensity factors, k,(¢) and ks(¢).
Finally, in section 7, we solve a few particular problems, and compare our
solutions with those of other authors.

2. Two-dimensional Fourier transforms
Define the two-dimensional Fourier transform of f(x) by

F®) = S8l =5 [ 0 exp (8. x) dx, @1
where x=(x, y) e R%, E=(§ n)€R? and E.x=Ex + ny. Make the sub-

stitutions x =ap cos ¢, y =bpsin¢, E=(A/a)cos y and n = (A/b)sin y in
(2.1) to give

w8 =52 [ [ f@ew o cos(y - opdode.  @22)

Suppose, now, that f(x) has the Fourier expansion

f©= 5 fnlp)cosmp+ 3 fu(p) sinme. .3
Then, since
exp {xircos 8} = i £,(xi)"J,(r) cos nb, (2.4)

n=0

where €o=1 and g, =2 for n >0, (2.2) gives

FLI@)iEl=ab 3, i™ cos mypdta[f,(p); 1

rab S imsinmyH,[fa(0); Al @5)
where m=l
%07 (0); A = f F(oVn(Ap)p dp (2.6)

denotes a Hankel transform of f. Similar results obtain for the inverse
Fourier transform, which is defined by

f6)= FF@ix =5 | FOep(-igx) a8 @)
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3. An elliptical crack subjected to shear loadings

523

The problem under consideration is equivalent to determining the
displacement uw= (u,, u,, u,) and the corresponding stresses 7, in the

half-space z > 0, when the boundary conditions are

1,,(x,y,0)=¢q.(x), x€Q,
1,.(x, y,0)=¢,(x), xeQ,

u(x,y, 0)=0, x e R2\Q,
u,(x,y,0)=0, xeRA\Q,
17,.(x, y,0) =0, xe R

(3.1)
(3.2)
(3.3)
(3.4)
(3.5)

This problem can be reduced to the determination of two harmonic

functions, ®(x, y, z) and ¥(x, y, z) (5, 6);
o

X 3o 3X
2 -y — = — - 2 —_ —_— 1 —_ —,
uu, =z p 2(1—v) Fy pu, =2z 3 2(1-v) %

and

X
2 = — — 1 —_ 2 s
wu, =z . ( v)X

where u is the shear modulus, v is Poisson’s ratio and
5 00, ¥
ox Jy

This representation satisfies (3.5). Also

faley, 0= =(-9) 23+ v,
T,.(x,y,00=—(1- v)%’+ vz—f,
w0 =, ,0 =222,
and
v(x)=u,(x, y, 0) =;(17—l)%

Following (2), suppose that, for x € R?,

u(x)=1a S, u.(p)cosmep +3a S, & (p)sinme,

m=0 m=1

and then take the harmonic function ¢ as

O, y, 2) =71 F5[IE™ U®) exp (-[8] 2);x],

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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where
U®) =30 S imHfun(p); Al cos my +3a% S, i"%, [, (p); A] sin my,
m=0 mm=]

(3.12)

&l = (E* + n»)} and A= (a?E2+ b?*p?)L. Then (2.5) shows that (3.8) and
(3.10) are consistent; (3.3) will be satisfied if u,(p) and i,,(p) vanish for
p=1

Similarly, define v(x) and W(x, y, z) by making the transformations
u-v, -, U->V, u,— 0, and i,— v, in (3.10 to 3.12). Equation
(3.4) will be satisfied if v,, and ©,, vanish for p = 1.

The boundary conditions on the crack, (3.1) and (3.2), will be satisfied if
U, 4,, v, and U, are also chosen to satisfy

¢ =1 FE T (E Q-+ vEV)ix] (313)
and
g0 == FE 7 (vEU + (L-ME+ 1)V, (3.19)

These integral equations are coupled. However, they are very similar in
form to the equation which arises in the analysis for the pressurized crack
(2, equation (3.9)) and so we shall adopt the same method of solution here.
Note that it does not seem to be advantageous to take linear combinations
of (3.13) and (3.14). In fact, even for the penny-shaped crack, nothing is
gained by making the natural choice of polar coordinates, and then solving
for u, and u,, given 7,, and 14, ; see section 4.

Consider equation (3.13). Noting that |E|™'=(b/A)(1 — k*cos® y)7},
where k2=1—(b/a)? and using results from section 2, we can reduce
(3.13) to

00 =4 3 t(p)cosn +u 3 x(p) sinng, (3.15)
where
x(1 = v)k't,(p) = -3¢, %ISM(A, B)E,[um; p] — 3¢, 21 LBS%.[va; P
(3.16)
R E(P)= = 3 (A, Bl Pl T 1SS, 0mip], (B17)
Ll 0] = K[ Ao (1n(0); 1) P, (3.18)

27
IS.(A, B)= }i"’(—i)"f A(A + B cos 2y) cosmyp cos nyp dy, (3.19)
0
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25
I.(A, B)= }i"‘(—i)"f A(A + B cos2y)sinmy sinny dy, (3.20)
0

2
I5S = 3k vim (—i)" J' A sin 2y sin my cos ny dy, (3.21)
0
IS = (-1)"*"I5€, (3.22)
A(k)=2-v—k*  Bk)y=v-k? (3.23)

A=(1-k?*cos®y) "} and k’ = b/a. Similarly, (3.14) reduces to

@ =4 3 5.(p)cosng +4 3, 5,(p)sinng, (3.24)
where
.71'(1 - v)klsn(p) = - 2-0 I,,Cf,.%’,,[u,,,; p] - Eml Iim(cx D)gn[vm; p]! (325)

21— VK'S,(p) = — e 2 BEL,[@; p] — e, 2 1S,(C, D)%, (5 p),
(3.26)

Ck)=2—-v—-k*1—-v) and Dk)=-v—-Kk*(1-v). (3.27)

Note that (3.16) and (3.25) relate ¢, and s, to u,, and v,,, whilst (3.17) and
(3.26) relate 7, and §, to i, and 7,,.

It is easy to show that I3 ;.1 = I5n+1,2,. =0, where a denotes C, S, SC
or CS. Thus, (3.16) and (3.25) separate as follows:

A= VK10 = ~4ern 3, I5man(Ar B) ol P)

o

—1e,, 2 I%ﬁ,ln'(gl.n[vbn;p]’ (3.28)

mm=]

xa(1—=v)k'tyi(p)= — E Igm+1,2n+l(A; B)%,, 1[U2ma1; P)
mm=0

- 2 1§£+1,u+15£)_n+1[1’2m+1;p]’ (3-29)

m=0

a1 = v)k'sp(p) = — i 155 20 Lon [tz P]

m=0

= S BaC, DY lvamip),  (3.30)

mm=]1
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A1 = v)k'sp(p) = — E Izcsm+1,2n+1$2.n+1[uzm+1;P]

me=0

- 2 Ig.rn+l,h+l(c; D)-cgz,,.g.][Uz,,H.l; p] (331)

m=0

Equations (3.17) and (3.26) separate in a similar manner.
As in (2), the integrals I, can simplified; in fact, they can all be written
in terms of the basic integrals (see the Appendix)

ix
F (k)= f (1 — k?sin® x)~} cos 2mx dx, (3.32)
0
m =0, 1,..., and these are easily computed.

4. Polynomial solutions
As in (2), we follow Krenk (15) and write

—H-p)pm S up LD 2
un(p) = H(L=p)p" 2, U o =25 O =07 (4)

and
d T(m +3))!

Um(p) = H(1—p)p™ 3 VT

2 VT Fomay+ 3 CHA-PY),  (42)

where H(t) is the Heaviside unit function, U]' and V[ are unknown

coefficients, and Ch(x) is a Gegenbauer polynomial of degree m with index

A (16, §10.9); these polynomials are orthogonal (see (2, equation (1.4))).
From (2, §4), we have

L fun; 0] =2§0 UL, (o), 4.3)
where
LZ,(p)= f s (AP 1(A) di (4.4)

and j,,(z) is a spherical Bessel function. The integral (4.4) is evaluated in (2,
§4) for 0 < p < 1; for example, with [ =j+m —n, L%, ,,(p) vanishes when [
is a negative integer, but is proportional to

p(1- pA)HCHH( - pP)?) (4.5)
when /=0, 1, 2,... . These results can then be used to express the right-hand

sides of (3.28) to (3.31) as series of terms like (4.5). So, if we express the
left-hand sides in a similar form, we shall obtain relations between the
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coefficients. Thus, we suppose that ¢,(p) and s,(p) have the expansions

be)=p" Y ;{(1+),)(I;O;§—)); 1401~ pH)Y) (4.6)

j=0

and

l“(n + %)F(J + %) 2
sa(p 1-p?Y), 4.7
where the coefficients 77 and S} are known. Usmg the orthogonality of the
Gegenbauer polynomials, we obtain the following relations from (3.28) and
(3.30):

—Jr(l—v)k' 9=1IS(A, B)US, (4.8)

A=K TF = 630 3, IS0 20(A, BYUZ7,_ .+
m=0
n+j
+em 2 BS2Vim  n+j=1, n=0, (4.9

m=l

—Jr(l— 'V)k SZ"_Z 21 I% 2,.,U,,+/ _mt

m=0

n+
+2 2/ B 2:(C, D)VZ3, ., n=1, (4.10)

me=]

forj=0, 1,.... Similarly, (3.29) and (3.31) give
n+j
—JT(]. - V)k,sz’H-l =2 E {Ign+l,2n+l(A) B)Unz’:;-lm + 12m+l 2n+1 ?;:f-}m
m=0

(4.11)
and

n+f
"”(1 - V)k'sjbwl =2 E {Igi+l,2n+1uz':/+—lm + Igm+1,2n+l(cx D)Vnz'-"f-;—lm}’

m=0

(4.12)

forn=0,1,...andj=0,1,....

The corresponding results for (3.17) (respectively (3.26)) are obtained as
follows. First expand i, (0,) by (4.1)((4.2)) with UP(VT) replaced by
UT(V7). Secondly, assume that 7,(5,) has the expansion (4. 6)((4. 7)) with
T}(S}) replaced by T7(S7). Then the coefficients S7, T7, U7 and V7 satisfy
relations obtained from (4.8) to (4.12) by making the following transforma-
tions: AeC, BeD, Si—> T}, T}—S;, Up— Vi and Vi— U7,

The limit as k— 0 corresponds to a penny-shaped crack If we evaluate
the integrals I, in this limit, we obtain the following results from (4.8) to
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(4.12):

—2(1-v)To=(2~-v)U;,

—41=-NT7=2Q-VU ~v(Ui+ Vi), j=1

~A-WT +SH=U}+V), =0,

=20 -v)T;+SH=Q-v)U}+VH-2vU},;, j=0,
“21-V)(TT+S) =@ = VUF+ V) - v(UR2 - Visd),  n=3,j=>0,
20 -v)T5-S5)=2-vU5-V5), n=1,

=21 - v T} -S))=Q—v)U; - V) - vw(U;2+ VIED), n=1,j=1
These equations can be solved explicitly for U} and V. Moreover, although
these results pertain to the expansions of the stresses and displacements in
Cartesian coordinates, they can be simply rearranged to give the cor-

responding results in plane polar coordinates, and these agree with those
given by Krenk (15) and Martin (17).

5. The stress-intensity factors

Consider two points P and P,, where P is on the edge of the crack and
has Cartesian coordinates (a cos ¢, b sin ¢, 0), and P, is in the plane of the
crack and has coordinates (ap cos ¢,, bp sin ¢,, 0) with p >1. Let s denote
the distance between P and P,. Let P, approach P along the normal at P.
We define two stress-intensity factors at P by

kx(¢) = Lim (25)!z,(ap cos ¢, bp sin ¢4, 0) (5.1)
and
k(p) = I.:;‘?l (2s)}t,.(ap cos ¢,, bp sin ¢4, 0). (5.2)
The analysis in (2, §5) is immediately applicable, and shows that
B (e
k(9) =50 (5) 4@ 53)
and
IR CAY g
) =510 (5) Y@, (549
where

X(@)=a* S, (~1Y{(A + Bcos20)U(¢) + k'vsin26V/(9)}, (5.5

j=0

Y(9) = a; (~1Y{k'v sin 2pUj(¢) + (C + D cos 26)V,($)}, (5.6)
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U($)= U+ 3, (UF cosme + UJ'sin mg), (5.7)
Vi#)=V2+ S (V7 cosme + V'sinmo) (5.8)

and
A(P) = a*sin® ¢ + b cos? ¢. (5.9)

In fracture mechanics, it is conventional to define two different stress-
intensity factors at P by

ki($) = Lim (25)iz,.(ap cos ¢, bp sin ¢, 0) (5.10)
and
ks(¢) = Lim (25)}7..(ap cos ¢, bp sin ¢4, 0), (5.11)

where (n,t, z) are Cartesian coordinates at P, with n pointing in the
direction of the normal at P towards P,. We have
Taz = M0, 1,7, and 7, =47, +14,7,,
where
(ne, n,))=(t,, —t.) =AYb cos ¢, asin ¢).
Since
a*{b cos ¢(A + B cos 2¢) + a sin ¢(k'v sin 2¢)} = 254b cos ¢,
a*{b cos ¢(k'v sin 2¢) + a sin ¢(C + D cos 2¢)} = 24a sin ¢,
a*{—asin ¢(A + B cos 2¢) + b cos ¢p(k'v sin2¢)} = —2(1 — v)sfa sin ¢,
and
a*{—asin ¢(k'vsin2¢) + b cos ¢(C + D cos2¢)} =2(1 — v) b cos ¢,

where we have used (3.23) and (3.27), we obtain
K (NS .
k(@) =72 (3) 87 3 (-1 (b cos pU(#) +asin #Vi()) (5.12)
j=0
and

() =(3) o1 5, (-17(-asin 001 (9) + b cos 9Y(@)). (513

For the penny-shaped crack, these formulae reduce to those given by Krenk
(15).

6. Truncation

Consider (4.9) and (4.10), which are coupled infinite systems of equations
for the unknown coefficients U™ and V™ in terms of the known coefficients
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$?™and T?". A discussion on the proper truncation of such systems is given
in (2, §6). There, it was shown that the infinite systems for the pressurized
crack can be split into a sequence of finite uncoupled systems. Similar
simplifications occur here. Thus, for example, suppose we consider pre-
scribed loadings of the form

N
g:(x)=p 2;0 ta(p) cos 2n¢ (6.1a)
and
4, =1 3 s2.(p)sin 209, (6.1b)
where

1 (p) = p" 2 ,2"1(;"2” +J;)%'){1(1+%) (- pH),

and s,,(p) has a similar expansion with T?* replaced by S;” (the loading
(1.3) can be written in this form), then we obtam the following systems for
the determination of U} and V}™:

—n(1- V)K'TY=IS(A, B)US, (6.2a)

{ {
_”(1 - V)k'le:,, = £2n Z I?(.:M,ZH(A: B)Ulz'—"m + £2n 2 Iicri,ZnV?—"m:

mm=Q mm=1
(6.2b)
forOsn<N, n<I<Nbut!/+#0, and

1 1
m=0 mm=]
for1<n=<N and n </=<N. All other coefficients U?" and V™ can be set to
zero. For each [ in 0=</<N, (6.2) gives 2/+1 equations for 2/ +1
unknowns. For example, / =0 gives just (6.2a), whilst / =1 (for N = 1) gives

rd—vye (2D [BA4B) L5, B) 5\ (s
-= | T8 | =\ 6@, B) 5AB) 5 )| UE). 63)
Y 13 15 BB(C D)/ \V§

Note that the 3 X 3 matrix appearing in (6.3) is symmetric; this is typical.
If we consider prescribed loadings of the form

2:(x) =t 3, Lmsi(p) cos (2n +1)¢ (6.4a)
and
gy(®)=p 2 $2041(p) sin (20 + 1)9, (6.4b)

n=0
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we find that

]
—a(l-VK'TE =2 3 {15204, BYUIT + BS 1 20 ViTa )
m=0

(6.5)
and

!
'—ﬂ(l - V)k'S,zf:l =2 2 {Ig+1,2n+lu?—";:l + Iin+l,2n+l(cy D)Vlz'—"r:l ’
m=(Q
which hold for 0<n<N and n<I/<N. For each [ in 0=/ <N, (6.5) gives
2l + 2 equations in 2/ + 2 unknowns. For example, [ =0 gives

—x(1—v)k’' (T(‘)) _ (15(A, B) It )(U},) 6.6)
2 So 17 I3(C, D)/\vy/* '

Loadings with other symmetries lead to similar systems; these can be
obtained by making the transformations given after (4.12).

In section 1, we briefly described the method used by Atluri et al. (6, 7).
They obtained systems of equations whose structure is similar to (6.2) and
(6.5). However, there are some differences, which may render the present
scheme more efficient for computational purposes.

(i) For each / in 0<!=<N, the systems (6.2) and (6.5) are uncoupled
from all the others, whereas the systems in (6, 7) are weakly coupled, that
is, in order to solve one of their systems for / = L, say, they first need the
solutions for the larger systems with L </ <N (see (6, p. 92)).

(ii) The matrices occurring in (6.2) and (6.5) are symmetric; see, for
example, (6.3) and (6.6). Moreover, they are simpler than the correspond-
ing matrices in (6, 7).

(iii) As we have expanded g, and g, in terms of orthogonal functions, we
can write down explicit formulae for the load coefficients (S}, S7, T} and
T7), involving weighted integrals of g, or g, over Q.

Finally, we mention again the solution sketched by Smith and Sorensen
(4). They considered a cubic loading of the crack faces, given by

3 m 3 m
@)= 2 X AT-x"TY gm)= 2 3 Brx"TY"

For such a loading, there are 20 independent load coefficients; in our
notation, they are T§, T, TS, Ti, T3 T3, Si Si, S2, S3 and 10 more
obtained by making the transformations T— $ and S— T. To determine the
corresponding coefficients in the expansion of u(x) and v(x), we must solve
8 uncoupled systems of equations, two each of sizes 1 X1, 2x 2, 3 X3 and
4 X 4. This compares favourably with Smith and Sorensen, who proposed
solving a single system of size 20 x 20!
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7. Three examples

To illustrate our method, we shall consider some particular loadings of
the crack. We begin with the two simplest examples, namely

(l) q,(x) = ‘11, qy(x) = 0’ (71)
(ll) qx(x) = 07 qy(x) =42, (72)

where ¢, and g, are constants. If we set q, = g, cos B and ¢, = g, sin 8, and
then add the solutions to (i) and (ii), we obtain the solution for uniform
shear at an angle § to the major axis of the ellipse.

(i) Since Ci(x) =2Ax, we obtain
7‘8 = 2‘11/7‘#;
whence (6.2a) gives
US= (1~ v)k*k'q\/uL,
where
Q. (k) = —3K*IG(A, B)= (v — KY)E — vk'’K.

Hence, u,(x) =0,

(@) = V(1 - pt = E=0 1 o (1.3
k(@) = (b/a)st~3(k?/Q,)q,b cos ¢, (7.4)

and
ki(9) = —(1 = v)(b/a) e ~4(k*/Q,)q a sin ¢, (7.5)

where #(¢) is defined by (5.9). Equation (7.3) was first obtained by
Eshelby (8) (with an erratum given in (18); see also (11)). Equations (7.4)
and (7.5) were obtained by Kassir and Sih (3) (but the factor k'? should be
replaced by &’} in (5, equations 3.54a,b)) and by Shibuya (10).

(ii) We have
58 = 2‘12/”#,

Vi=(1-v)k%k'q,/u,,

whence

where
Q,(k) = —3k*IS(C, D) = vk'*K — (k* + vk'*)E.
Hence, u.(x)=0,
(1 - v)k?bq, 2
u,(x) =——*2(1- p?}, 7.6
)=o) (7.6)

ko) = (b/a) st ~(k*/RQ;)g,a sin ¢ (1.7)
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and
k3(¢) = (1 — v)(b/a)tst~4(k?*/Q,)q,b cos ¢. (7.8)

Again, (7.7) and (7.8) have been given by Kassir and Sih (3) and Shibuya
(10).
We now consider a linear loading of the crack faces. Specifically, take

9:(x) = T,(y/b) and g,(x) = 12(x/a); (7.9)

for suitable choices of the constants t; and t,, this corresponds to a simple
torsional loading. The only non-zero load coefficients are

Td=47,/3zn and S} =4r1,/37u.
The corresponding coefficients U} and V) satisfy (cf. (6.6))
—a(l—v)k’ (Sé) _ (Iﬁ(c, D) LY )(Vé)

2 T Ig I5\(A, BY/\UY)’
whence
3uQ, U4 = —2(1 — v)k'{7,IG(C, D) — 1,13
and
3uQ; Vo= —2(1 — v)k'{r.I5\(A, B) - 1,15},
where

Q;(k) =17,(C, D)i\(A, B) - Yy
and we have noted that I{T = If. From the Appendix, we have
4I(C, D) =2C(K, - F) + D(F, - 2F, + ),

4I3(A, B)=2A(k + F) - B(E+2F + K)
and
A =k'v(F— B).

Then, we have
u(x) = a(y/b)0s(1 - p?)},  u,(x) =a(x/a)Vi(1 - p?)},

ky(¢) = 1__"v (a/bt~H{b U} + aV}} sin ¢ cos ¢ (7.10)
and
ky(¢) = u(a/b)ist~HaUlsin? ¢ — bV} cos® ¢). (7.11)

After a lengthy calculation, it may be verified that (7.10) and (7.11) agree
with the formulae given by Smith and Sorensen (4) and by Kassir and Sih
(5, equations (A3.7i,j)).

We have been unable to find any published solutions for loadings other
than (7.1), (7.2) and (7.9). However, our method is systematic, and so we
can, in principle, treat higher-order polynomial loadings. In particular, the
discussion at the end of section 6 shows that it is not too difficult to obtain
the analytical solution to Smith and Sorensen’s problem (cubic loading).
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APPENDIX

The integrals I5,, can all be expressed in terms of F,,(k), as defined by (3.32). We
have the following relations:

IZCM,Zu :tli!,?ﬂ =AFM=Fn - iB{Fm*n-H + Fm:Fn-l};

S — J¢€ §
I§M+l,2n+l + 12n+l,1u+l = IZm.Zn + Izn,zm

Igu—l,Zn+l - lim-n,znn = "(Igu,u - Iiu,z:-):
Iils.h:tlgns,h=%k'v{Fmtn+l Fmtn—l}’
Igf!—l,ln+l + I%:—l,h-fl _(12,. 2n + z,..,z;.),
17s.g+1,z-+1 - Ig+l,2n+l = —(Iz.m,z'- e [gns,h)r
where IS, = IS (A, B) and IS, =IZ,(A, B).
We have
R=K(k), KFR=2E-(Q1+kDK
and

@m + Dk*F, ., =4m(k* — 2)F, — (2m — 1)E,,_,

for m = 1, where K(k) and E(k) are the complete elliptic integrals of the first and
second kind, respectively.



