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ON SINGLE INTEGRAL EQUATIONS FOR THE TRANSMISSION PROBLEM
OF ACOUSTICS*

R. E. KLEINMANT AND P. A. MARTINi

Abstract. The transmission problem, namely scattering of time-harmonic waves in a compressible fluid
by a fluid inclusion with different material properties, is usually formulated as a pair of coupled boundary
integral equations over the interface S between the inclusion and the exterior fluid. In this paper, however,
we consider methods for solving the transmission problem using a single integral equation over S for a
single unknown function. In fact, we derive four different integral equations, using a hybrid of the direct
(Green'’s theorem) and indirect (layer ansatz) methods, and give conditions for the unique-solvability of
each and for the subsequent construction of the solution to the transmission problem. Some of our single
integral equations are Fredholm integral equations of the second kind with weakly-singular kernels. Thus,
these equations, all of which appear to be new, are attractive computationally.
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1. Introduction. Consider the scattering of time-harmonic acoustic waves by a
smooth bounded obstacle, immersed in a compressible fluid. If the obstacle is impen-
etrable (e.g., its surface, S, may be rigid), then the corresponding velocity potential
solves an exterior boundary-value problem for the Helmholtz equation. There are two
familiar methods for reducing this problem to a boundary integral equation, namely
the “direct”” method (using Green’s theorem) and the “indirect” method (using a layer
ansatz); see, e.g., [2], [9]. Both methods yield a single integral equation for a single
unknown function.

Suppose now that the obstacle is a fluid inclusion, whose material properties differ
from those of the surrounding fluid. Such an obstacle is penetrable, for waves can
propagate through the interface S. The single boundary condition (for impenetrable
obstacles) is replaced by a pair of transmission conditions, guaranteeing the continuity
of acoustic pressure and normal velocity across S. This leads to a transmission problem
for the corresponding velocity potential, and it is this problem that we shall study here.

The transmission problem is usually reduced to a pair of coupled boundary integral
equations for a pair of unknowns: for the direct method, see, e.g., [3], [8]; for the
indirect method, see, e.g., [2, § 3.8], [12]. It turns out that these pairs of equations are
uniquely solvable, i.e., there are no irregular frequencies. Other pairs of boundary
integral equations (that are not uniquely solvable) can be derived (see, e.g., [16] and
§ 4 below), as can equations involving volume integrals (see, e.g., [18]).

In this paper, we shall be concerned mainly with methods for solving the trans-
mission problem using a single boundary integral equation for a single unknown. Such
an equation was first obtained by Maystre and Vincent [15], in two dimensions. Much
of their subsequent work is concerned with scattering by an infinite interface between
two different unbounded media, especially periodic interfaces (gratings); for a sum-
mary, see Chapter 3 of [17].

Marx [13], [14] extended the ideas in [15] to three dimensions and also to
electromagnetic and time-dependent scattering problems. For the electromagnetic case,
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Glisson [6] rederived Marx’s equation and noted that irregular frequencies may occur;
he has also demonstrated this numerically [7].

The equation obtained by Maystre and Vincent [15] and Marx [13], [14] (which
we shall henceforth call the MVM equation) is an integral equation of the first kind,
with a weakly-singular kernel. It was derived using a pair of auxiliary potentials. A
simpler derivation has been given recently by Knockaert and De Zutter [11]. They
also derived a different integral equation. We observe that their equation (which we
shall henceforth call the KDeZ equation) is the (Hermitian) adjoint of the MVM
equation.

A similar method to that used in [11] had previously been given by DeSanto [5].
He obtained two different single integral equations for the infinite-interface problem;
we describe his equations at the ends of §§ 5 and 6 below. Yet another single integral
equation has been obtained by Wirgin [22], using both the interior and the exterior
exact Green’s functions, satisfying homogeneous Neumann conditions on S. These
exact Green’s functions are not available for an arbitrary S and would have to be
determined by solving additional integral equations.

In the present paper, we begin (in § 4) by giving a fairly detailed discussion on
methods for solving the transmission problem using pairs of coupled integral equations.
In particular, we obtain some new results on the direct method, in its manifestation
as a Fredholm system of the second kind [8].

However, the bulk of the paper is concerned with the derivation and analysis of
single integral equations. We extend the ideas implicit in [11] and give a systematic
derivation of four different integral equations. The method used shows that single
integral equations can be derived by using a hybrid of the direct and indirect methods.

We give conditions for the unique-solvability of the four equations and for the
subsequent construction of the solution to the transmission problem. The four equations
can be grouped into two pairs, each pair consisting of one equation and its (Hermitian)
adjoint. We discuss two special cases of each equation in detail. Of these eight, four
are Fredholm integral equations of the second kind, two are of the first kind (the MVM
and KDeZ equations) and two are hypersingular equations. Given that the transmission
problem itself has at most one solution (see § 3 below), we prove that its solution can
be obtained by solving any one of the eight equations, except for certain irregular
values of the exterior wavenumber k,: four equations lose unique-solvability when k2
is an eigenvalue of the interior Dirichlet problem, and four lose it when k2 is an
eigenvalue of the interior Neumann problem. These eight equations are summarized
in Table 1; see § 8 below.

In § 7, we derive two different Fredholm integral equations of the second kind,
both of which are uniquely solvable for all values of k2. These equations are reminiscent
of the combined single-layer and double-layer integral equation and the combined
Green’s formula integral equation, both of which can be used to solve the exterior
Dirichtet problem for all values of k2 (see, e.g., [2, §§ 3.6, 3.9] for references).

Computational considerations suggest that it is better to solve a single integral
equation for a single unknown, rather than a pair of equations for a pair of unknowns.
This was the original philosophy behind Maystre and Vincent’s work [15]. See also
Appendix B of [5]. In the present paper, we derive two known, and several new single
integral equations, and give a theoretical foundation for solvability which was hitherto
absent.

2. Statement of the problem. Let B; denote a bounded domain in either R? or R?,
with a smooth closed boundary S and simply-connected unbounded exterior, B,. We
consider the following problem.
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Transmission problem. Find functions u.(P) and u;(P), which satisfy

(2.1) (V2+k)u,(P)=0, PeB,,
(2.2) (V+ k) u,(P) =0, Pe B,
and two transmission conditions on the interface:

(2.3a) u(p)=u(p), peS
and

(2.3b) f%= ;7“" PEeSs,

where the total potential in B,,
(24) u(P) = ue(P)+ uinc(P)a P€ Be,

and the given incident potential, u;,., is assumed to satisfy (2.1) everywhere, except
possibly at isolated points in B,. In addition, u, must satisfy a radiation condition
ou

—— ikeue> >0 asrp->00,
drp

(2.5) rsp(

where s=2in R> and s=1 in R®.

The exterior wavenumber k., interior wavenumber k; and density ratio p are given
complex constants.

We shall use the following notation: capital letters P, Q denote points of B, U B;;
lower-case letters p, ¢ denote points of S; and 4/9n, denotes normal differentiation at
the point g, in the direction from S towards B,. We choose the origin 0 at some point
in B;;rp is the position vector of P with respect to 0, and rp = rp|.

It is known that the transmission problem has at most one solution, provided
some restrictions are placed on the choice of k., k; and p. Sufficient conditions are
given in the next theorem.

UNIQUENESS THEOREM. Let k, be such that

(2.6a) k. is real and positive, or Im (k,) > 0.
Let k; and p be such that
(2.6b) p#0 and Im (pk,)=0 and Im (pkk?)=0.

Then the transmission problem has at most one solution.

Proof. We sketch a proof; similar arguments were used in [3] and [12]. Let v,
and v, solve the homogeneous transmission problem in which u;,. = 0. Two applications
of Green’s theorem and use of (2.3) give

j 228 g j {lerad o, Ko} av + j 5{lgrad o= 2o} av,
Sr on Be,r B;

where Sg ={Pe€ B,: rp = R}, B,g ={P€ B,: rp <R} and the overbar denotes the com-
plex conjugate. Multiply by k., and take the imaginary part to give

Im{ke J ve% ds} =1Im (k,) j {lgrad v.]*+ |k ]*} AV
2.7) " Br

+Im ( pk.) J’ lgrad v;]* dV + Im ( pk.k?) I |v;|* dV.
i B;

B

If Im (k,)> 0, the left-hand side of (2.7) tends to zero as R-> (since v, decays
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exponentially), whence (2.6) imply that
J lgrad v.|* dV =0,
B,

and the result follows by standard arguments [12]. If k, is real and positive, the
right-hand side of (2.7) is nonnegative, whereas the radiation condition (2.5) gives

A
kej lv.? ds+ImJ Ve ° ds=0(1) asR-oo.
Sr Sk on

The result follows by appealing to Rellich’s lemma [2, Lemma 3.11].

If we have uniqueness (i.e., if the homogeneous transmission problem, with
parameters k., k; and p, has only the trivial solution), we shall say that U(k.; k;; p)
holds. Later, we shall also require uniqueness with k, and k; interchanged, and p
replaced by o, say; thus, we would then require that U(k;; k.; o) holds. We shall also
use the following notation: if U(k,; k;; p) holds and k; satisfies (2.6a), we say that
U’'(k,; k;; p) holds.

The conditions of the Uniqueness Theorem are met in all of the following examples.

Example 1. All parameters are real [2, Thm. 3.40]

0<k, <00, 0=k <o, 0<p<oo.
Example 2. The scattering of surface water waves by a seaweed farm [4] leads to
0<k,<oo, Im(k}))>0, p=1.
Example 3. The cooking of meat in a microwave oven [19] leads to
0<k,<oo, Im(k)>0, p=k./k.

- Note that uniqueness does not obtain for all choices of k., k; and p; for a simple
counterexample, see [12].
Finally, we shall always assume below that

1+p#0.

3. Potential theory. We begin by introducing two free-space wave sources, G,,
defined by
—LiH{"(k,R) in R?,
—exp (ik,R)/(27R)in R®
where R =|rp — 10| and a = e or i. G.(G,) satisfies (2.1) ((2.2)) everywhere, except at

P = Q. Also, G, satisfies the radiation condition (2.5) if Im (k,)=0.
Next, we define single-layer and double-layer potentials by

(3.1) G.(P, Q)={

(3.2) (Sau)(P)=LM(q)Ga(P, q)ds,, PeB.,UB;
and
(3.3) (D,v)(P)= j v(q) a% G.(P,q)ds,, PeB.UB,

respectively. (S,u)(P) is continuous in P as P crosses S, whereas both D, and the
normal derivative of S, exhibit jumps given by

3.4) Dv=(FI+K*v
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and

0
) —S.u=(xI+K
(3.5) o, it = ( o) s

respectively, where, in each case, the upper (lower) sign corresponds to P> p € S from
B.(B;). Here, K, and K¥ are boundary integral operators defined by

R
)
(3.6) K.p = u(q);—Ga(p,q)dsq, peS
JSs np
and
_ i 9
(3.7) Kiv= SV(q)aTGa(p,q)dsq, PES,
L4 q

where K# is the Hermitian adjoint of K, : the asterisk denotes the adjoint with respect
to the inner product in L,(S), defined by

(3.8) (u,v)= L u(q)o(q) ds,.

In all of the above formulae, it is sufficient that the densities u and v be continuous
on S. However, we shall also require the normal derivative of the double-layer potential
D,v, defined by

ad
(3.9) N,v=—(D,»).
on,

Continuity of » is sufficient to ensure that the right-hand side of (3.9) is continuous

across S. However, the existence of N,v requires that » be smoother: a sufficient

condition is that » have Holder-continuous first tangential derivatives on S [2, p. 62].
The adjoints of S, and N, are given by

(3.10) S*=§, and N*=N,.
We shall also make use of the formulae

(3.11) NS, =—-I1+K?
and

(3.12) S N, =—I+(K¥?>

The results (3.10), (3.11) and (3.12) are proved in [20].
We shall make extensive use of Green’s theorem. Thus, if we apply Green’s
theorem in B, to u, and G,, we obtain the Helmholtz formula

(3.13a)  2u.(P)]| _
(3.13b) 0 }_L{G"(P’q)

PeB,,
Pe B,.

Ju,
n

)
—_ — P
an, ue(q)anq G.( ,q)} ds,

Similarly, applying Green’s theorem in B; to u;,. and G,, and adding the result to
(3.13), we obtain

(3.14a) 2u.(P) _ u 9 PeB,,
(3.14b) —2u,-,,c(P)} = L{ Ge(P, q) an, u(q) an, Ge(P, q)} %  pcp,
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where we have used (2.4). Also, applying Green’s theorem in B, to u; and G;, we obtain

(3.15a) 0 } J‘ { ou; F) } PeB,,
= (P, q) ——u;(q) — G,(P,
3asb)  —2u(pP)) )| P D, ~u @G -GiRa)pds, g

Letting P> pe S in (3.14) and (3.15), we obtain

_ 0
(3.16) (I+K:F)u—sea—;‘=2u.-m(p), pes.
and
- oy;
(3.17) (I—K;k)u,.+s,.3;=o, peSs.

We shall also need the normal derivatives of (3.14) and (3.15), evaluated on S; these
are

u u;
. I-K,)—+Nu=2—7=
(3.18) ( ) P u n
and
ou;
(3.19) (I+ K,) a_n— Mui = 0.

4. Pairs of coupled integral equations. The standard method for solving the trans-
mission problem is to solve a pair of coupled boundary integral equations. We shall
describe a few variants.

4.1. Indirect method. Set

(4.12) u.(P)=(S.u)(P)+p(Dr)(P), PeB,
and
(4.1b) u,(P)=c(Su)(P)+(Dw)(P), PeB,

where c is a constant at our disposal. Imposing the transmission conditions (2.3) gives

(1+p)v—(pK¥—K¥)v— (S, — cS)p = thine,
(4.2)
auinc

(1+pc)u+p(N,— N)v+ (K, —pcKi)pu = — on

This is a pair of coupled integral equations to be solved for w(q) and v(q). Note that
the combination N, — N; occurs; this is an integral operator with a weakly-singular
kernel [8], [12]. We have the following.

THEOREM 4.1. Assume that (i) U'(k,; k;; p) holds. Choose c so that (ii) 1+ pc#0
and (iii) U(k;; k.; pc) holds. Then the system (4.2) is uniquely solvable.

This theorem is proved by Kress and Roach [12]. The constant ¢ can always be
chosen so that conditions (ii) and (iii) are satisfied: from the Uniqueness Theorem,
we see that it is sufficient to set

arg (c) =arg (k;)—arg (p) if Re(k.)=0
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and
arg (¢) =arg (k;) —arg (p)— = if Re (k.) <O,

adjusting |c| if necessary, in accordance with condition (ii). We note that conditions
(i) to (iii) are all satisfied in Example 1 (k; #0; take ¢ =1), Example 2 (take c =k;)
and Example 3 (take ¢ = k7).

If (4.2) is uniquely solvable, then the transmission problem has precisely one
solution, for any u;,., and this solution can be represented by (4.1), where u and »
solve (4.2). In particular, irregular frequencies do not occur with this method. Numerical
solutions of (4.2), with ¢ =1, have been presented by Rokhlin [21].

4.2. Direct method. If we use (2.3) in (3.14a) and (3.15b), we obtain the representa-
tions

0
(4.32) 2u(P)=(8.2%) (P)-(Da(P),  PeB.
and
1 ou
(4.3b) "2“,(P) =; (S,a_n) (P)'—(D,u)(P), PE Bi'
Similarly, using (2.3) in (3.16)-(3.19), we obtain
(4.4) (I+K*)u —sea—“ = 2Ujne,
on
(4.5) p(I-R¥yu+822-0,
on

(4.6) (I-K.) 224 Ny =g S

on on
(4.7) (I+K) L pNu=o0.

on

These are four boundary integral equations in the two unknowns u(q) and du/an,.
Which equations, or linear combination of equations, should we solve?
The simplest choice is to use only (4.4) and (4.5). However, it is known that this
pair is not always uniquely solvable: irregular frequencies occur; see, e.g., Morita [16].
A second choice can be motivated by considering (4.3) as a layer ansatz; on S,
we have

1 _ _
(4.8a) 2(ue+u.~,,c—u,-)=(Se+-Si)z—:—(Kf+K§")u+2ui,,c
p
and
ou, Ju; ou; ou u;
4.8b 2l —=+—=-p—) = K.+ K;)——(N,+pN; +p e
(4.85) (0n on pan) ( )an( PN:Ju on

and so the transmission conditions (2.3) give

P(IZ’:"‘ IZ?)“ —(pSe+ Sl) ::_:= 2puinc:
4.9)

ou ou;
N.+pN)u—(K,+K;) —=2—=.
( pN)u—( )an o
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This system is p (4.4) —(4.5) and (4.6) — (4.7). Costabel and Stephan [3] have shown
that (4.9) is always uniquely solvable, and the corresponding u.(P) and u;(P), given
by (4.3), solve the transmission problem; they require that both U(k,; k;; p) and
U(k;; k.; p~") hold. Note that (4.9) is a system of the first kind, involving the hypersin-
gular operator N,+ pN,.

A third choice can be motivated by a desire to obtain a system of the second kind
with weakly-singular kernels. Thus, we consider (4.4) +(4.5) and p(4.6)+(4.7):

(14 p)u+ (RE=pRF)u=(S, = 5) 32 = D,

(4.10)
au Bu auinc

1+p) —+p(N,— N)u—(pK,— K;) —=2p—2<,

( p)an p( Ju—(p )an P on
This system has been studied by Kittappa and Kleinman [8]; they give references to
earlier work, and prove that (4.10) is solvable by iteration for sufficiently small |k, — k;|
and |1-p|. However, they considered neither the solvability of (4.10) for arbitrary
k., k; and p, nor the solvability of the transmission problem using (4.3). We shall
correct these omissions here.

THEOREM 4.2. Assume that (i) U(k;; k.; p) holds and (ii) Im (k,)=0. If u and
du/on solve the system (4.10), u.(P) and u;(P), given by (4.3), solve the transmission
problem.

Proof. Clearly, (4.3) satisfies (2.1), (2.2) and (2.5). It remains to show that (2.3)
are satisfied, i.e., that u and du/dn satisfy (4.9). To do this, consider # and o, defined
by

u(P)= (Sej—-:) (P)=(D.u)(P)+2uy,.(P), PeB;
and

ﬁ(P)=(s,~j—;‘)(P)—p<D.-u)(P>, PeB..

Letting P p € S, and using (4.10), we see that
Y . a0 ou
v=u and —=p—,
on on
whence condition (i) implies that =0 in B, and 4 =0 in B;. In particular, we have

o+pti=0 and -a—y+-a—zi=0
on dn
on S; it follows that (4.9) are satisfied.

We now prove that (4.10) is uniquely solvable.

THEOREM 4.3. Assume that (i) U(k.; k;; p) holds and (ii) U(k;; k.; p) holds. Then
the system (4.10) is uniquely solvable.

Proof. Since 1+p #0, (4.10) is of the form (I,+ A)u=f, where I, is the 2x2
identity matrix, A is a 2X2 matrix whose components are weakly-singular integral
operators and u and f are two-dimensional vectors. Such a system is governed by the
standard Fredholm theory, and so it is sufficient to show that the homogeneous system
(f=0) has only the trivial solution. Thus, suppose that u, and v, solve (4.10) with u;,. = 0:

(1+p)ue+ (sz “PIZ?)“o‘(Se —8)v,=0,

(4.11)
(1+p)ve+ p(N. — Ni)uy— (pK,. — K;) vy =0.
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If we set uy=v and vy= —pu, we see that u and v satisfy the homogeneous form of
(4.2), but with k, and k; interchanged, and ¢ = 1. The result follows from an application
of Theorem 4.1.

5. Single integral equations, 1. In this section, and the next, the basic idea is to
use a layer ansatz in one region (B,, say) and Green’s theorem in the other; different
combinations lead to different integral equations with different properties. In this
section, we shall use a layer ansatz in B, and Green’s theorem in B;, whereas in § 6,
we shall do the opposite.

Assume that u,(P) can be represented as a linear combination of single-layer and
double-layer potentials, with the same density u(q):

(5.1) u,(P)=a(S.u)(P)+b(Dep)(P),  PeB..

Here, the constants a and b are at our disposal. From Green’s theorem in B;, and
(2.3), we have the representation (4.3b), namely

(5.2) _2ui(P)=l(Si%>(P)—(Diu)(P), PeB,.
P on
Letting P> pe S, (5.1) gives
(5.3a) u.(p)={aS.+b(~I+KH}u=Lop
and
ou,
(5.3b) —={a(I+K.)+bN,}u =M.

P

(The operators L, and M, occur frequently below.) Similarly, (5.2) gives (4.5) and
4.7), i.e.,

(5.4) p(I—IZ;*‘)u+s,ﬂ‘=o
on
and
u
(5.5) (I+K,~);—pNiu=O,

where we have again used (2.3). If we substitute (5.3) into (5.4), using (2.4), we obtain

(5~6) {p(I—IZ?:)Le_FSiMe}M =f
where

e a“inc
(5'7) f(p)=_p(I_K:k)umc—Sl'_a7,_

Similarly, (5.5) gives

(5.8) {=pN.L.+(I+K)M.}u=¢g
where

auinc
(59) g(P)=pMuinc—(I+Ki)—_

on
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Equation (5.6) is a boundary integral equation which is to be solved for u(q). Equation
(5.8) is another boundary integral equation for u(q). Having solved either, u.(P) and
u;(P) are to be constructed from (5.1) and

(5.10) —2u(P)= %(Si{f%u;?_*_ Meﬂ})(P) = (D{thine+ Lep })(P), Pe B,
respectively.

We note that if a =1 and b =0, (5.6) reduces to the equation obtained by Maystre
and Vincent [15] and by Marx [13], [14] (the MVM equation); the derivation above,
in this special case and with p =1, was given by Knockaert and De Zutter [11]. Later,
we shall give explicit results for the MVM equation (see Theorem 5.6 below) and other
special cases.

Since

(5.11) SN, =S;(N,— N))+ SN, =S;(N,— N;)+(K¥)*-1,

where we have used (3.12), we see that (5.6) is a Fredholm integral equation of the
second kind, with a weakly-singular kernel, provided b # 0; if b=0, we obtain the
MVM equation. Similarly, since

(512) MSe'__(M_Ne)Se+NeSe=(M_Ne)Se—'_Kz_I’

where we have used (3.11), we see that (5.8) is only a Fredholm integral equation of
the second kind when b=0; if b# 0, we obtain a hypersingular equation. Our first
two theorems do not depend on these classifications; they are concerned with solvability
of the transmission problem and with uniqueness.

THEOREM 5.1. Assume that Im (k.)=0 and Im (k;)=0. If u(q) solves (5.6) or
(5.8), u.(P) and u;(P), given by (5.1) and (5.10), respectively, solve the transmission
problem.

Proof. Clearly, u, satisfies (2.1) and (2.5), and u; satisfies (2.2). It remains to verify
that (2.3) are satisfied. On S, we have

2p(“e+uinc_ ui) =2p(uinc+Lel")+Si (é;%'i'Me“‘) _p(I+IZ:k)(uinc+Lel")
(5.13) _
=SiMeu+p(I = K¥)Lop — f
and
du, du; u;
5.14 2l —=+—"—-p— ) = I+ K )M, —pN;Lu—g.
(5.14) (anan an)( )M —pN,Lp —g

If w(q) solves (5.6), then (5.13) shows that (2.3a) is satisfied, whereas if wx(q) solves
(5.8), then (5.14) shows that (2.3b) is satisfied.
Define a function w by

w(P)= (Si{%'l' Mel-"})(P) —p(D{uy+ Lu})(P), PeB..

w(P) satisfies (2.2) in B, and the radiation condition (2.5), with k, replaced by k;.
Moreover, on S, we have w(p) =0 if u(q) solves (5.6) or dw/an, =0 if u(q) solves
(5.8). In either case, we can deduce that w=0 in B,. Then, in the first case, w/dn, =0
implies that (2.3b) is satisfied, whereas in the second case, w(p) =0 implies that (2.3a)
is satisfied.
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The next theorem is concerned with uniqueness for (5.6) and (5.8), i.e., with
nontrivial solutions of the homogeneous forms of (5.6) and (5.8); these are

(515) p(I_IZ;k)Le/J'O-"SiMeMO:O
and
(5.16) PNLepo—(I+ K;) M, puo=0.

We show that uniqueness depends on the eigenvalues of the following.
Associated interior problem. Find a function v(P) which satisfies

(V*+k2)v(P)=0, PeB;

and

v
+b—= .
av(p) n 0, PES.

P

If this problem has a nontrivial solution, we say that k2 is an eigenvalue of the associated
interior problem. If b=0, the associated interior problem reduces to the interior
Dirichlet problem; in this case, it is known that all eigenvalues are real. If b # 0, the
associated interior problem reduces to the interior Robin problem with impedance
A =a/b; in this case, a simple application of Green’s theorem gives

(5.17) Im (A)J |v]* ds =2 Re (k.) Im(ke)I |v]* dV,
S B;

which shows, for example, that if k, is real and Im (A) # 0, then v=0.

THEOREM 5.2. Assume that U'(k.; k;; p) holds. Then the homogeneous equations
(5.15) and (5.16) have a nontrivial solution if and only if k2 is an eigenvalue of the
associated interior problem.

Proof. Suppose that u,# 0 solves (5.15) or (5.16). Construct v, and v; by

0(P) = a(Suo)(P)+ b(D.uo)(P), PeB,
and
=2v,(P)= P—I(SiMel-‘«o)(P)"(DiLelJvo)(P)’ PeB,.

By Theorem 5.1, these functions solve the homogeneous transmission problem, whence
v.=0in B, and v;=0 in B;. Now construct

0(P) = a(Seto)(P) + b(Depo)(P),  PeB;.

On S, we have

(5.18) v.—v=—2bu
and

v, 9V
(5.19) in an-2a;,¢.

But v.(p)=9dv./dn, =0, whence

d
(5.20) av(p)+b-2=0, peS.

on,
Then, either v is an eigenfunction of the associated interior problem or v(P)=0. But
this latter possibility can be eliminated, since it implies that v(p) =dv/dn, =0, whence
n =0 by (5.18) or (5.19), contrary to hypothesis.
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Suppose now that k2 is an eigenvalue of the associated interior problem. Let
vo(P)#0, P B;, be a corresponding eigenfunction. Then, Green’s theorem gives

(I-R*)vg+8.22=0
on
and
F)
(I+K,) 22— Nv,=0.
on

Using the boundary condition (5.20), these give L.v,=0 and M,v,=0, respectively.
Hence, vy( p) is a nontrivial solution of both (5.15) and (5.16), if b # 0; if b=0, dv,/dn,
is a nontrivial solution.

If the homogeneous integral equations have a nontrivial solution, we say that k?
is an irregular value.

THEOREM 5.3. Assume that (i) b# 0 (ii) U'(k.; k;; p) holds and (iii) k2 is not an
irregular value. Then, the integral equation (5.6) is uniquely solvable for any f.

Proof. By condition (i), (5.6) is a Fredholm integral equation of the second kind,
and so it is sufficient to show that the homogeneous equation, namely (5.15), has only
the trivial solution; conditions (ii) and (iii) guarantee this by Theorem 5.2.

Next, we consider those equations that are not Fredholm integral equations of
the second kind.

THEOREM 5.4. Assume that (i) b#0, (ii) U'(k,; k;; p) holds and (iii) k2 is not an
irregular value. Then, the integral equation (5.8) is uniquely solvable.

Proof. Given u;,.(P), Theorem 5.3 asserts that we can determine u uniquely by
solving (5.6). We then construct u.(P) and u;(P), using (5.1) and (5.10). By Theorem
5.1, these functions solve the transmission problem. In particular, the transmission
condition (2.3b) implies that u solves (5.8). Thus, we have proved the existence of a
solution to (5.8), albeit for the particular g given by (5.9). Uniqueness follows from
Theorem 5.2.

We now consider some special cases of the integral equations (5.6) and (5.8).
Suppose first that we set a=0 and b=1 in (5.1), (5.6), (5.8) and (5.10); this gives

(5.21a) u.(P)=(Du)(P), PeB,
and
(5.21b)
—2u;(P) =% (Si{a:—:c"‘_ Neﬂ}>(P) —(Di{thne—(I-KHu})(P),  PeB,
where w(q) solves
(5.22) {p(I-K¥H)(I-K¥)~SN}pu=~f
or
(5.23) {pPN(I-K¥H)+(I+K)N}u=g

Since 1+ p #0, (5.22) is a Fredholm integral equation of the second kind and (5.23)
is a hypersingular equation. Specializing Theorems 5.1, 5.3 and 5.4, we obtain the
following.

THEOREM 5.5. Assume that (i) U'(k.; k;; p) holds and (ii) k? is not an eigenvalue
of the interior Neumann problem. Then, given u, . (P), both of the integral equations
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(5.22) and (5.23) are uniquely solvable. Moreover, the representations (5.21) solve the
transmission problem.
Suppose now that we set a =1 and b = 0; this gives

(5.24a) u,(P)=(S.u)(P) PeB,
and

(5.24b) —2u;(P) =% (Si{%lﬁ'ﬁ"‘(l"'Ke)ﬂ})(P) —(Di{thine+ Sep}), PeB,

where w(q) solves

(5.25) {S(I+K)+p(I-K)S}u=1
or
(5.26) {(T+K)(I+K.)=pNSc}u=g.

Equation (5.25) is a Fredholm integral equation of the first kind with a weakly-singular
kernel; this is the MVM equation. Since 1+ p # 0, (5.26) is a Fredholm integral equation
of the second kind. Both can be analyzed by trivial alterations to Theorems 5.3 and 5.4.

THEOREM 5.6. Assume that (i) U'(k,; k;; p) holds, and (ii) k2 is not an eigenvalue
of the interior Dirichlet problem. Then, given u;,.(P), both the MVM equation (5.25)
and (5.26) are uniquely solvable. Moreover, the representations (5.24) solve the trans-
mission problem.

It is convenient to describe one of DeSanto’s two single integral equations [5]
here. He represents u.(P) as a single-layer potential, (5.24a), and then substitutes this
into (4.4)+(4.5), i.e., into the first of (4.10); the MVM equation is obtained by
substituting into (4.5) alone.

6. Single integral equations, 2. In this section, we shall use a layer ansatz in B;
and Green'’s theorem in B,. The latter gives the representation (4.3a), namely

(6.1) 2ue(P_)=(Se§—:)(P)—(Deu)(P), PeB..
Letting P> pe S, (6.1) and (2.3) give (cf. (4.4) and (4.6))
_ u;
(6.2) (I+ R ¥t~ pS, = 2ty
an
and
a“i auinc
. — — =2
(6.3) p(I-K,) on Neu; =2 o

Multiply (6.2) by a and (6.3) by b, where a and b are disposable constants; add to obtain
(6.4) oL M Ktu, = b
on

where the operators L, and M, are defined by (5.3), and

d Uinc

(6'5) h(P)=2‘1umc(P)+2b B
on,

peSs.

If we suppose that u;(P) can be represented as a single-layer potential,

(6.6) w(P)=(S»)(P), PeB,
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we obtain

(6.7) u;(p)=S,v and :;a—r'l‘—i=(—I+Ki)v, peS.

(4
Substituting these into (6.4), we obtain
(6.8) {pL¥(I-K;)+ M*S}v="h.
This is a boundary integral equation which is to be solved for »(q). Having found
v, u.(P) and u;(P) are to be constructed from
(6.9) 2u,(P) =—p(S.(I-Ki)v)(P)-(D.Sw»)(P), PeB,

and (6.6), respectively.

We note that if a=1,b=0 and p =1, (6.8) reduces to the equation obtained by
Knockaert and De Zutter [11] (the KDeZ equation); see Theorem 6.5 below.

As an alternative, we suppose that u;(P) can be represented as a double-layer
potential

(6.10) ui(P) = (wa)(P)a Pe Bia
whence

— u;
(6.11) w(p)=(I+K¥w and a7=N,-w, pES.

P

Substituting these into (6.4), we obtain
(6.12) {-pL*N;+ M*(I+K¥*)}w=nh.

This is a boundary integral equation which is to be solved for w(q). Having found
o, u.(P) and u;(P) are to be constructed from

(6.13) 2u,(P)=p(S.Nw)(P)—(D.(I+K¥)w)(P), PeB,

and (6.10), respectively.
The next theorem is concerned with the solvability of the transmission problem.
THEOREM 6.1. Assume that (i) Im (k.) =0 and (ii) k2 is not an eigenvalue of the
associated interior problem. Then: if v(q) solves (6.8), u.(P) and u;(P), given by (6.9)
and (6.6), respectively, solve the transmission problem; and, if w(q) solves (6.12), u.(P)
and u;(P), given by (6.13) and (6.10), respectively, solve the transmission problem.
Proof. In either case, the assumed representations satisfy (2.1), (2.2) and (2.5).
Suppose that w(q) solves (6.12), which we rewrite here as

a{(I + K?)(I+ Izik)w _pSeMw _zuinc}
(6.14)

+b{Ne(1+K§<)w+p(1—Ke)Mw—2%‘;4;&} 0.

Then, using (6.10) and (6.13), and letting P p € S, we obtain

(6.15a) 2(u + Ui — ;) = pS,Niw — (I + K¥)(I + K¥) @ + 2t
and
ou, Ju; ou; - ou;
.15b 2| =+—%-p—)=p(-I+K,)Now—-N,(I+K})w+2—=.
(650 2B )2 (1K) N~ N1+ R+ 222

We have to show that the right-hand sides of (6.15) vanish.
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Define a function in B; by
v(P)=(D.(I+K¥)w)(P)~p(S.Nw)(P)~2uy,(P),  Pe€B,.
Letting P p € S, and comparing with (6.14), we find that

v
av(p)+banp—0, PES.
Since v(P) satisfies (2.1) in B;, condition (ii) implies that v=0 in B;. In particular, v
and 9v/dn both vanish on S, and hence (6.15) show that (2.3) are satisfied. A similar
argument can be given when v(q) solves (6.8).

Using (3.10), we see that (6.8) and (6.12) are the Hermitian adjoints of (5.6) and
(5.8), respectively. In particular, (6.8) is a Fredholm integral equation of the second
kind, provided b #0, and (6.12) is only a Fredholm integral equation of the second
kind when b=0. For these cases, we can use the Fredholm Alternative to obtain
corresponding versions of Theorems 5.2 and 5.3. Thus, we have the following theorem.

THEOREM 6.2. Assume that (i) b#0 and (ii) U'(k.; k;; p) holds. Then, the
homogeneous form of (6.8) (h=0) has a nontrivial solution if and only if k2 is an
eigenvalue of the associated interior problem. Moreover, if k? is not one of these eigenvalues,
then the inhomogeneous equation (6.8) is uniquely solvable for any h.

We can also prove a similar result for (6.12) when b =0; see Theorem 6.5 below.
Let us now consider (6.12) when b # 0; in this case, (6.12) is a hypersingular equation.
Note that the arguments used in the proof of Theorem 5.4 are not immediately applicable
here.

THEOREM 6.3. Assume that (i) b#0, (ii) U'(k.; ki; p) holds, and (iii) k2 is not
an eigenvalue of the associated interior problem. Then, given u;,.(P), the integral equation
(6.12) is uniquely solvable.

Proof. First, we prove existence. By Theorems 6.1 and 6.2, we know that the
solution of the transmission problem can be represented by (6.6) and (6.9); in particular,
on S, we have (6.7). If u;(P) can be represented by (6.10), its Cauchy data are given
by (6.11). Comparing (6.7) and (6.11), we obtain

(I+K¥Ho=u(p)=Sw,

6.16 i
(6.16) Mw=-§—u-'-=(K,-—I)V.

P

Here, v(q) is the unique solution of (6.8). Thus, the right-hand sides of (6.16) are
known. But it is known [9, Thms. 5.1 and 5.3] that the system (6.16) always has precisely
one solution w(q), for any k; and for any »(q). Having determined w(q) and u;(P),
(2.3) gives u.(p) and ou./dn,, and then Green’s theorem, (3.13), gives u.(P). Then,
for any given u,,.(P), it follows that w(q) satisfies (6.12).

We now prove uniqueness. Suppose that wy(q) solves the homogeneous form of
(6.12), namely

(6.17) —pL¥*Nwo+ M*(I + K¥)w,=0.
Construct v.(P) and v;(P) by

20,(P) = p(S.Niwo)(P) = (D.(I+ K¥)wo)(P),  PeB.
and

v;(P) = (Dw,)(P), Pe B,
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By Theorem 6.1, these functions satisfy the homogeneous transmission problem
(4. =0), and hence v, =0 in B, and v;=0 in B;. Now define

v(P) = (Dyw,)(P), PeB,.

Then, 9v/dn, = Nywo=9v;/dn, =0, whence v=0in B,. The jump conditions (3.4) then
imply that w,=0, and this completes the proof.

We conclude this section with some special cases of the integral equations (6.8)
and (6.12). First, we set a =0 and b=1 to give

(6.18) {=p(I~K)(I - K)+ NS}y =222
and
(6.19) (P = KON+ N(I+ K)o =222,

Since 1+p #0, (6.18) is a Fredholm integral equation of the second kind and (6.19)
is a hypersingular equation. Specializing Theorems 6.1, 6.2, and 6.3, we obtain the
following.

THEOREM 6.4. Assume that (i) U'(k,; k;; p) holds, and (ii) k2 is not an eigenvalue
of the interior Neumann problem. Then, given u;,.(P), both of the equations (6.18) and
(6.19) are uniquely solvable. Moreover, the solution of the transmission problem is given
by (6.6) and (6.9) if v solves (6.18), and by (6.10) and (6.13) if w solves (6.19).

Suppose now that we set a =1 and b =0, this gives

(620) {(I+IZ’:)Si+pSe(I_Ki)}V=2uinc
and
(6.21) {(T+KH(I+KF)—pS.N}o =2u,.

Equation (6.20) is a Fredholm equation of the first kind with a weakly-singular kernel;
this is the KDeZ equation. Since 1+p # 0, (6.21) is a Fredholm integral equation of
the second kind; it can be analyzed immediately, as it is the Hermitian adjoint of
(5.26). The proof of Theorem 6.3 can be modified in order to treat (6.20); to prove
existence, we use [9, Thms. 5.4, 5.6]. Thus, we have the following.

THEOREM 6.5. Assume that (i) U'(k,; k;; p) holds, and (ii) k2 is not an eigenvalue
of the interior Dirichlet problem. Then, given u,,.(P), both the KDeZ equation (6.20)
and (6.21) are uniquely solvable. Moreover, the solution of the transmission problem is
given by (6.6) and (6.9) if v solves (6.20), and by (6.10) and (6.13) if w solves (6.21).

Finally, let us describe DeSanto’s second integral equation [5]. He represents
u;(P) as a single-layer potential (6.6), and then substitutes this into (4.4)+(4.5); the
KDeZ equation is obtained by substituting into (4.4) alone.

7. Single integral equations without irregular frequencies. In orderto obtain integral
equations that are uniquely solvable for all values of k2, we merely choose the constants
a and b so that k2 is not an eigenvalue of the associated interior problem. By (5.17),
this can be achieved by setting

a=-in and b=1,
where 7 is any real number satisfying

(7.1) n#0 and = Re(k.)=0.
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Then, provided 1+p #0 and U'(k.; k;; p) holds, the integral equations (5.6), (5.8),
(6.8) and (6.12) are uniquely solvable for all values of k? and any given u;,.(P). For
example, if we restrict ourselves to Fredholm integral equations of the second kind,
then we have two, namely (5.6) and (6.8). Thus, (5.1) becomes

(7.2) u,(P)=(Dp)(P)—in(Sen)(P),  PeB,
where w(q) solves (5.6), which we rewrite as

(7.3) ~(1+p)u+K*u—inS*u=f
where

K= K;(pI +K;)+ pK.(I - K;)+ (N, - N))S;
and
S=PSe(I’"Ki)+(I+IZf)Si

are compact operators; f and u;( P) are given by (5.7) and (5.10), respectively. Similarly,
(6.8) can be rewritten as

9 inc .
(74) —(1+p)V+KV—iﬂSV=2%1__2"’uinc

where
u;(P)=(Sw)(P), PeB,

and u.(P) is given by (6.9). Equation (7.4) is the Hermitian adjoint of (7.3).

The representation of u.(P) as a combined single-layer and double-layer potential,
(7.2), has been used previously for the exterior problems of acoustics. In particular,
for scattering by a sound-soft obstacle (u =0 on S), we obtain

(75) M + sz}" - iﬂSeM = ~Uinc,

an integral equation with the same structure as (7.3). Equation (7.5) is uniquely solvable
for all k., if n satisfies (7.1); for a proof, and relevant references, see [2, § 3.6, p. 91].

Similarly, the idea of using a linear combination of (3.16) and (3.18) has been
used previously by Burton and Miller [1]; for a sound-soft scatterer, this yields

ou u;
7.6 —I+K,—inS,) —=—2—=+2inu;,,
(7.6) ( inS,) o on 2

which is the Hermitian adjoint of (7.5), and so is uniquely solvable subject to the same
conditions on 7 [2, § 3.9, p. 103].

8. Discussion. In this paper, we have studied integral-equation methods for the
transmission problem of acoustics. In § 4, we described indirect and direct methods,
leading to pairs of coupled integral equations. The simplest of these suffer from irregular
frequencies [16]. However, there are three known pairs that do not. These all involve
the operators N, and N;, corresponding to the normal derivative of the double-layer
potentials, although these operators occur only in the compact combination N, — N;
in the second-kind pairs (4.2) and (4.10).

In §8 5, 6 and 7, we have given a systematic derivation of single integral equations,
using the indirect method in one region and the direct method in the other. In § 5, we
used a combined single-layer and double-layer potential in B,, and Green’s theorem
(Helmholtz formula) in B;. We obtained two different integral equations, by using the
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Helmholtz formula, or its normal derivative, on S. We obtained the two Hermitian
adjoints of these equations in § 6, using a single-layer or a double-layer potential in
B, together with Green’s theorem in B,; specifically, we used a linear combination of
the Helmholtz formula and its normal derivative, both evaluated on S. We also
investigated two special cases of each equation; these eight equations, together with
the associated representations for u, and u; are summarized in Table 1. For each pair
of representations, the unknown density can be determined from either of two equations
(except when k2 is an irregular value; see Theorems 5.5, 5.6, 6.4 and 6.5). Computa-
tionally, it may be preferable to choose a Fredholm integral equation of the second
kind, although none of these have yet been used. Indeed, only the MVM equation,
(5.25), has been used previously [7], [17, Chap. 3]. Note that if it is only the exterior
field that is of interest, then one should choose a formulation that has a simple
representation for u.(P). Moreover, if one also desires a Fredholm integral equation
of the second kind and does not want to compute quantities such as Nu;,., then (5.22)
is the appropriate choice, together with the double-layer representation (5.21a) for u,.
If both fields are of interest, then similar considerations lead to the choice of (6.18),
together with the representations (6.6) and (6.9).

In § 7, we derived two single Fredholm integral equations of the second kind,
which are uniquely solvable for all values of k2. (Other equations could also be derived.)
However, they are both more complicated than all those in Table 1, and so there is
scope for developing alternative methods. One possibility is to replace G, by a modified
Green’s function. This technique has been used extensively for other scattering problems
(see, e.g., [2, § 3.6, pp. 93-97]) as well as for the indirect formulation of the transmission
problem described in § 4.1 of [10]. Our work using a modified G, to obtain single
integral equations will be described elsewhere.

The methods used in this paper to treat the scalar transmission problem should
extend to vector problems. Thus, it would seem to be computationally worthwhile to
develop single integral equations for the scattering of electromagnetic waves by a

TABLE 1
Solutions of the transmission problem in terms of associated boundary integral equations.

Boundary integral equations Representations of the solutions
(5.26) (1+p)u+Lu=g (5.24a) u,=S,u in B,
(5~25) g*/“ =f (MVM) (5~24b) u; = _(%/p)si(vinc-"p'+Ke/"')+%Di(uinc+se“) il’l Bi
(5.22) Q+p)u—K*u=—f (5.21a) u,=D,u in B,
(5.23) N*llv =g (5.21b) u; =—(%/p)si(vinc."Ne/"')"'%Di(“inc'—M+IZ’:M’) in B;
(6.18) (1+p)v—Kv=—-20,, (6.9) u,=-4pS,(I-K;)v—iD,Sw in B,
(6.20) Sv=2u,,. (KDeZ) (6.6) u;=Sw in B;
(6.21) (1+p)w+L*w =2u,, (6.13) u, =4pS.Njw—1iD,(I+K¥)w in B,
(6.19) Now =2v;,, (6.10) u;=Dw in B;

The functions f, g and v,,., the compact operators K, L and S, and the unbounded operator N, are
defined as follows: v, =du;,./on,

f= _p(I_IZ?‘)uinc—sivinca g= pNiuinc_(I+Ki)vinc:

K=K(pI +K;)+pK (I-K;)+(N,—N,)S,,

L= Ki(pI+Ke)+Ke(I_pKe)+p(Ne _Ni)Sea
N=p(I-K)N;+N(I+K}), S=pS.(I-K)+(I+K}¥)S,




TRANSMISSION PROBLEM OF ACOUSTICS 325

homogeneous dielectric obstacle (see [6], [13] and [14]) and for the scattering of elastic
waves by a homogeneous inclusion. These problems are currently under investigation.
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