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Introduction

Improper or weakly singular integrals, once thought to be a handicap in com-
putations, are now accepted as a source of effectiveness and stability in the
numerical solution of many problems in mechanics. Such integrals naturally
arise, for example, in the Boundary Integral Equation (BIE) method, and the
literature contains many examples of successful computations based on Boundary
Element-type (BEM) solutions of the BIEs (e.g. [1,2]). For some vector prob-
lems, the BIE/BEM process gives rise to a stronger type of singular integral
which exists in the sense of the Cauchy Principal Value (CPV) (cf. [3])). This
integral also has been treated numerically with success. Less commonly, but
with growing frequency it seems, the gradient or normal derivative of such
boundary integrals is taken, especially in the formulation of mechanics prob-
lems involving cracks. Then integrals more (hyper) singular than the CPV can
explicitly arise. Usually, however, rather than confront such hypersingular
integrals directly, a process of regularization (e.g. [4,5,6,7]) is employed to
lower the singularity of the integrands. Such regularization usually carries a
formulational complexity and computational cost if it is even possible. How-
ever, the alternatives to regularization seem to be divergent integrals or
numerical computation with integrals more singular than the CPV with, perhaps,
even questionable definition.

The purpose of this brief paper is to examine a reasonable alternative to the
mentioned regularization. Indeed, we consider the essential analytical issues
surrounding the occurrence of hypersingular boundary integrals in the context
of a crack problem. Then we suggest certain computational strategies. The
relevant integrals are contrasted with truly divergent integrals and conditions
under which they exist in the finite-part sense of Hadamard [8] are stated.

The relation of such integrals to both one-sided and two-sided CPV integrals is
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examined as well. The critical role of smoothness of relevant functions in the
integrands for existence of these integrals is emphasized. Our goal is to en-
courage understanding and use of finite-part integrals in mechanics. We wish
to discourage the practice of going to considerable lengths to avoid them as
seems presently the case. How to compute them, analytically or numerically, is
a rich area of research. Indeed, we recommend the works [9,10,11,12,13,14,15]
wvhich are probably not sufficiently familiar to the mechanics community. While
we confine attention here to an easy-to-describe (scalar) sound-scattering
cracklike problem in two dimensions, extension of the present ideas to (vector)
problems for static loading or wave scattering by crack surfaces in three
dimensions is relatively clear.

Analysis

Consider the scattering of a plane time-harmonic sound wave in a compressible
fluid by a rigid thin plate I'. Ve seek the complex potential ¢(x,y;k) which
satisfies

2 2
ie,2%, k%¢ = 0 in the fluid, (1)
x oy

and 2 _ o on It (2)
ant

Here, k ® w/c¢ where ¢ is the vavespeed and w is the wave frequency (both real),
3/3n? denotes the normal derivative into the fluid at a point on 1t vhere I¢
are the two sides of an open smooth arc I, ¢ = ¢i + ¢s vherein ¢i is the given
incident vave and ¢° is the scattered wave satisfying a radiation condition at
infinity, and x,y are Cartesian coordinates.

To solve this problem, consider the fundamental solution G defined by (Hgl) is
the Hankel function)

G(P,0) = G(x,y; &M = - 5 1B D (k|p-a)) (3)
and let

[4(a)] = #(a*) - #(a) (4)

vhere qt are corresponding points of I, Then, an application of Green’s
Theorem to ¢s and G, vith application of the boundary conditions (2) (letting P
> pi in ) gives

i
5,?—J [#(2)] 32 G(p,q) ds_ = 2 %};(p), per (5)
Iy

P q

where p can be thought of as being on either side (i) of T since both limits
are identical and the superscripts (i) can be deleted.
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In Equation (5) we seek the jump [$(q)] among the class of functions Ci’°%f3,
0<axfl. This means that [¢] has one Holder-continuous tangential derivative on
T and vanishes at the end points 3T of T (T = Tuar). 1If [$(q)] can be found as
the solution of (5), it will have the expected square-root behavior, i.e.

2

[#(q)] ~ st/2 as s » 0 (6)

wvhere s is the arclength on T of q from an edge 3I. Moreover, the field ¢°
will be given by the representation integral

() = - %J [#a)] 5= G(P,q) ds 0
T q
obtained as an intermediate step in deriving (5).

To solve (5) for [é(q)], it is tempting to simply take the normal derivative
under the integral sign, but this leads to a nonintegrable integrand. Instead
it is common to regularize (5) by one of various schemes transferring one of
the normal derivatives of G to a tangential derivative of [¢(q)], e.g. [4]

{ { 33_ [¢(q)] 33—-G(p,q) + k2 n(a) + n(p) G(pya) [#(a)] } ds
rv ¢ P

q
ast
=2 an (r), perl, (8)
P

in which the dash through the integral sign signifies a CPV. Equation (8) is
unattractive because of the appearance of a[¢]/asq rather than [¢] itself, the
latter being the desired quantity, and the former being unbounded at 3I. 1In
addition to these unattractive features, the regularized counterpart of (8) for
vector problems in three dimensions (cf. [16]) is considerably more complicated
than is the vector counterpart of (5) when compared with (5) itself. Also,
numerical procedures, whenever a[¢]/asq appears explicitly as a function of q,
can require extraordinary care (cf. [17]). An alternative approach involves
the following concept.

Finite-Part Integral

A tvo-sided finite-part integral of order 2, for fe Cl’“ for x,t points on the

line a,b, is defined as (cf. [18,19]):

-€
£(0) dt _ g0 { () ar | [ £ dv _ 26(x) } )
x-6)2  en || (x-0)° (x-t)? €
a a X+ €
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A one-sided finite-part integral of order u, where 1<u<2, with the same smooth-

ness requirement on t, is similarly defined as:

-£
£ dt _ 1y, { fogt) dt _ _£(x) } (10)
a

L - e (x-t)"  (u-1)e*-1

A similar definition exists for the one-sided finite-part integral from x to b
by simply interchanging t and x in the denominator of the terms in (10) with an
obvious change of limits. Based on these definitions and that of the CPV, it
is possible to prove that

d | £(t) dt | £(t) dt 1)
= 5 -
dx a (x-t) a (x-t)

Generalizing these definitions to sufficiently smooth curved lines and normal
derivatives instead of x derivatives, one can prove [20] the following theorem.
For the stated smoothness requirement on [¢(q)] and twice continuously differ-
entiable T, then

2
= I [4a)] 5= G (p,q) ds = f [4a)] 525 € (Py0) ds, (12)
P Ur g r p Mq
such that (5) becomes
& —-33———-c ds_ = 2 a¢! (p) in T, (13)
(D] 57776 (P0) ds; = 2 53— (p pin I
r p g p

Thus wve may indeed take the normal derivative at p under the integral sign in
(5), but the resulting integral in (13) is very special. It must be inter-
preted in the sense of the Hadamard finite part (cf. (9) and (10)) according to
the location of p on T or the end points 3r.

Numerical Treatment

Equation (13) is a hypersingular integral equation for the unknown function [ ¢]
in which the integral is a Hadamard finite-part integral of even order 2 if p ¢
I and of fractional order 3/2 if p € 3T (cf. [19]). On T, it is essential that
[4] be at least Cl’u at p for the very existence of the finite-part integral.
Thus, with any boundary element approach to the solution of (13), one is faced

with two choices: (a) represent |¢] using shape functions with sufficient
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smoothness on and betwveen elements so that collocation points may be placed
anyvhere, or (b) place collocation points only where sufficient smoothness
exists, i.e. away from element edges with the usual isoparametric elements
(e.g. [1]). Choice (a) is the most attractive conceptually and is not pro-
hibitive for line boundaries T such as a crack in two dimensions. However, for
similar problems in three dimensions, choice (b) seems more attractive from an
implementation standpoint. We have some preliminary computational experience
with a test problem for a line crack T in two dimensions for the limiting case
of zero frequency. Good results with acceptable effort have been obtained
based on choice (a) using Overhauser splines and choice (b) using quadratic
isoparametric line elements but collocating only at element interiors (cf.
[21,22]). Ve also have some new results for scattering of surface water waves
by a submerged plate in two dimensions and for scattering of an acoustic wave
by a penny-shaped rigid plate in three dimensions. Specific computational
strategies and numerical results will be presented elsewhere for these prob-
lems. However, we observe here that, in every case, it was possible to
evaluate finite part integrals analytically as they occur over entire crack
surfaces, or elements on those surfaces. Of note, by way of contrast, are the
procedures of Lin and Keer [23], who identify and compute a finite-part inte-
gral after discretizing a plane crack surface into subdomains (elements), and
those of Budreck and Achenbach [24], who likewise discretize first, then
regularize, but do not identify finite-part integrals as such. Regardless,
special quadrature rules for finite-part integrals, such as those of Kutt
[25,26], although sometimes effective, appear not to be necessary in the BEM
implementation. Numerical quadrature seems to be needed only for regular or
nonhypersingular integrals.

Discussion

Vhenever the normal derivative of an integral like (5) is taken, leading to a
nonintegrable second derivative of the kernel function G, the common practice
of regularization, to transfer one of the normal derivatives of G to a tangen-
tial derivative of the density function (here [¢]) as in (8), ought to be
reexamined. The alternative of taking the proper limit and identifying the
Hadamard finite-part integrals as in (13) should at least be considered and, we
submit, is to be preferred in most cases. It should be emphasized that the
choice is not between regularization and a divergent integral, as might first
appear, but rather between regularization and the finite part of the divergent
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integral. This latter strategy is conceptually more attractive and clear in
its smoothness requirements such that the finite-part integrals exist. More-
over, a variety of computational strategies are available which offer rich

ground for research.

Acknovledgement

Thanks are due D. Shippy, Z. Jia, L. Schmerr, G. Krishnasamy, T. Rudolphi, and
A. Karageorghis for contributions to this work. Partial support was provided
by the U.S. Office of Naval Research under Contract N00014-86-K-0551.

References

1. P. K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering
Science, McGraw-Hill Book Company ( mite 1)

2. Proceedings of IUTAM Symposium, "Advanced Boundary Element Methods," San
Antonio, Texas, April 13-16, 1987, T. A. Cruse, Ed., Springer-Verlag,
Berlin Heidelberg (1988)

3. N. I. Muskhelishvili, Singular Integral Equations, P. Noordhoff Ltd.,
Groningen, Holland, (1

4. A. V. Maue, "Zur Formulierung eines allgemeinen Beugungsproblems durch
eine Integralgleichung," Z. Phys., 126, 601-618 (1949)

5. A. J. Burton and G. F. Miller, "The Application of Integral Equation
Methods to the Numerical Solution of Some Exterior Boundary-Value
Problems," Proc. Roy. Soc. Lond. A. 323, 201-210 (1971)

6. J. Weaver, "Three-Dimensional Crack Analysis," Int. J. Solids and Struc.,
13, 321-330 (1977)

7. H. D. Bui, "An Integral Equations Method for Solving the Problem of a
Plane Crack of Arbitrary Shape," J. Mech. Phys. Solids, 25, 29-39 (1977)

8. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential
Equations, New Haven: Yale Univ. Press (1923)

9. N. I. Ioakimidis, "Application of Finite-Part Integrals to the Singular
Integral Equations of Crack Problems in Plane and Three-Dimensional
Elasticity," Acta Mechanica, 45, 31-47 (1982)

10. K. Takakuda, T. Koizumi and T. Shibuya, "On Integral Equation Methods for
Crack Problems," Bulletin of JSME, 28, 236 (February 1985)

11. L. V. Schmerr, "The Scattering of Elastic Waves by Isolated Cracks Using a
New Integral Equation Model,” Review of Progress in Quantitative NDE, 1,
511-515, D. 0. Thompson and D. E. Chimenti, Eds., Plenum Press, NY (1982)

12. N. Nighimura and S. Kobayashi, "An Improved Boundary Integral Equation
Method for Crack Problems," Proceedings of IUTAM Sumposium, San Antonio,
Texas, April 13-16, 1987, "Advanced Boundary Element Methods," T. A.
Cruse, Ed., Springer-Verlag, Berlin Heidelberg (1988)



13,

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

SINGULAR BOUNDARY INTEGRAL EQUATIONS 71

P. J. T. Filippi, "Layer Potentials and Acoustic Diffraction," Journal of
Sound and Vibration, 54(4), 473-500 (1977)

T. Terai, "On Calculation of Sound Fields Around Three-Dimensional Objects
by Integral Equation Methods," Journal of Sound and Vibration, 69(1), 71-
100 (1980)

A. C. Kaya and F. Erdogan, "On the Solution of Integral Equations with
Strongly Singular Kernels," Quarterly of Applied Mathematics, XLV(1), 105-
122 (1987)

v. Slédek and J. Slédek, "Three-Dimensional Crack Analysis for an Aniso-
tropic Body," Applied Mathematical Modelling, 6, 374-380 (1982)

E. Z. Polch, T. A. Cruse and C. J. Huang, "Traction BIE Solutions for Flat
Cracks," Computational Mech., 2, 253-267 (1987)

P. Linz, "On the Approximate Computation of Certain Strongly Singular
Integrals,” Computing, 35, 345-353 (1985)

K. V. Mangler, "Improper Integrals in Theoretical Aerodynamics," Aero.
Res. Council, Current Papers, No. 84 (1952)

P. A. Martin and F. J. Rizzo, "On Boundary Integral Equations for Crack
Problems," Proc. Roy. Soc., A, (to appear) (1989)

T. J. Rudolphi, G. Krishnasamy, L. W. Schmerr and F. J. Rizzo, "On the Use
of Strongly Singular Integral Equations for Crack Problems," Proc. 10th
International Conf. on Boundary Element Methods, Southampton, England
(1988)

G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr and F. J. Rizzo, "Hyper-
singular Integral Formulas and Wave Scattering with the Boundary Element
Method," Proc. lst Japan-US Symposium on Boundary Elements, Tokyo (1988)

W. Lin and L. M. Keer, "Scattering by a Planar Three-Dimensional Crack,"
J. Acoust. Soc. Am., 82(4), 1442-1448 (1987)

D. E. Budreck and J. D. Achenbach, "Scattering from Three-Dimensional
Planar Cracks by the Boundary Integral Equation Method," J. Applied Mech.,
55, 405-412 (1988)

H. R. Kutt, "The Numerical Evaluation of Principal Value Integrals by
Finite-Part Integration," Numer. Math., 24, 205-210 (1975)

H. R. Kutt, "On the Numerical Evaluation of Finite-Part Integrals Involv-

ing an Algebraic Singularity," CSIR Special Report WISK 179, published by

The National Research Institute for Mathematical Sciences, Pretoria, South
Africa (1975)



