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SUMMARY

Plane time-harmonic elastic waves are scattered by a cylindrical elastic inclusion.
This plane-strain inclusion problem is reduced to a pair of coupled singular integral
equations over the interface. In fact, two different quasi-Fredholm systems of
singular integral equations are obtained, one using an indirect method and one using
a direct method. Both systems are shown to be uniquely solvable, and lead to simple
existence proofs for the two-dimensional inclusion problem.

1. Introduction

ConsIDER an infinitely long cylinder embedded in an unbounded solid. Both
the cylinder (the ‘inclusion’) and the surrounding solid (the ‘matrix’) are
composed of homogeneous, isotropic elastic materials. Choose Cartesian
coordinates (x, y, z) = (x;, x2, x3) so that the z-axis is parallel to the
generators of the cylinder. We consider the scattering of plane elastic waves
by the inclusion, where the motion is confined to cross-section planes,
z = constant (plane strain). For small time-harmonic oscillations, this leads
to a vector transmission problem, which we call the inclusion problem;
Kupradze et al. (1) call it the basic contact problem. In transmission
problems, one usually specifies jumps in function values across an interface,
whereas in boundary-value problems one specifies the function values
themselves. Here, we assume that we have perfect bonding across the
interface between the inclusion and the matrix (‘welded contact’). Thus, we
require that both the displacement vector and the traction vector be
continuous across the interface. Note that antiplane motions are simpler to
analyse, for they lead to a scalar transmission problem in acoustics; see (2)
for references.

The literature on inclusion problems is extensive, especially on problems
in elastostatics. Walpole’s survey (3) allows for anisotropic materials, and
concentrates on ellipsoidal inclusions. Mura (4) gives a brief review,
supplementing his book (5).

We are interested in integral-equation methods for inclusion problems,
both for their use in obtaining numerical solutions, and for their use in
answering questions of solvability. Historically, this second use came first.
Thus, for two-dimensional static problems, complex-variable methods are
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available; see Parton and Perlin (6, §22) for references. Dynamic problems
are considered by Kupradze ez al. (1), but only in three dimensions. They
reduce the inclusion problem to a pair of complicated coupled integral
equations, over the interface, for a pair of unknown vector-valued
functions.

Integral equations have also been used in numerical computations;
typically, they are solved using a boundary-element method. Integral-
equation methods are usually classified into two types: direct methods, in
which the unknowns are physical, such as displacements and tractions; and
indirect methods, in which the unknowns are not physical, such as source
densities in elastic potentials (see section 3 below). For applications of these
methods in elastodynamics, see (7, 8).

Rizzo and Shippy (9) have used a simple direct method for two-
dimensional static inclusion problems, whilst Tan (10) and Kobayashi and
Nishimura (11) have used a similar method for dynamic problems. Indirect
(and direct) methods, in plane elastostatics, are described in (12, §7.5).
Kupradze et al. (1) make extensive use of indirect methods, but do not give
numerical results.

All of the work cited in the previous paragraph concerned integral
equations over the interface. Other types of integral equation can be
derived. Thus, for example, one can use the fundamental Green’s tensor
(see section 3 below) for the matrix to derive an integral equation over the
whole inclusion. This approach is especially attractive for inhomogeneous
inclusions; see, for example, Gubernatis ez al. (13) or Willis (14).

In this paper, we reduce the inclusion problem to a pair of coupled
singular integral equations over the interface. We do this in two ways, using
an indirect method in section 5 and a direct method in section 6. In both
cases, we prove that the system of integral equations is a quasi-Fredholm
system, and hence that it is uniquely solvable. Both systems are new; both
make use of a simple regularization of the operator N,, defined by (3.9)
below as the tractions corresponding to an elastic double-layer potential;
and both lead to simple existence proofs for the inclusion problem.
Unfortunately, the method does not extend to the three-dimensional
inclusion problem.

2. The inclusion problem

Let B; denote a bounded domain, with a smooth (twice differentiable)
closed boundary curve S, and a simply-connected unbounded exterior B..
The plane domain B, is filled with homogeneous isotropic elastic material,
with Lamé moduli 4, and u,, Poisson’s ratio v,, and mass density p,
(o =e,i). A stress wave is incident upon the inclusion; it can propagate
through the interface S before being scattered to infinity. This leads to the
following problem.
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INcLUsiON ProBLem. Find displacement vectors u,(P) e C*(B,)N C'(B,)
(a =e, i), which satisfy

L., =0, PeB,, 2.1)
L,ll, = 0, Pe Bll (22)
and two interface conditions
u(p)=u(p), peS, (2.3a)
and
Tu(p)=Tu(p), peS, (2.3b)
where the total displacement in B, is
u(P)=u.(P)+u.(P), PeB.. (2.49)

In addition, u, must satisfy radiation conditions; these are specified below in
section 2.1.

The given incident wave w;, is assumed to satisfy (2.1) everywhere,
except possibly at isolated points in B,. The operator L, is defined by

Lu=k,?graddiva— K;%curlcurlu + u, (2.5)
where the wave numbers &k, and K, are defined by

the time-dependence e~ is suppressed throughout and, for simplicity, we

assume that A,, u, and p, are all positive constants (a =e, ). In our
two-dimensional context, we interpret (2.5) as follows: set u = (u,, u,) and
then

w13 (auz aul)
u,

L -
(Lam): = k2 Eor ax, Kiox,\ox, ox,

and

Lou),=——" +——
(Lou), = ox, 9x,

1 & 1 3 (8u2 au,)
uz;
k% ox,0x, KZox, z

here, and below, we use the usual summation convention; for example,
uv; = u v, + uyv,. The traction operator T, is defined on S by

ou, 8
(T (P) = Autn o +p,n,<a—u-+§1) 2.6)

where n(p) is the unit normal at p € S, pointing into B.,.

We shall use the following notation: capital letters P, Q denote points of
B. U B;; lower-case letters p, g denote points of S; rp is the position vector
of P with respect to the origin O, which is chosen at some point in B;; and

rp = |rp|.
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2.1 Radiation conditions and uniqueness

The formulation of radiation conditions is given in (1, pp. 124-130) for
three dimensions; for two dimensions, see, for example, Barratt (15), Tan
(10) or Hudson (16, §6.9). One formulation (there are others) is the
following: write

w, =ul +od
where
wf=-k;?graddive, and uvi=u, —uf;

then we require that

ouf
r%,( < —ik,nf)—»O as rp—>® (2.7a)
orp
and )
ou
r},(—‘ - iK,uf> —0 asrp—x (2.7b)
orp

These are the radiation conditions. It is common to require also that both
07— 0 and ui— 0 as r,— ». However, it is straightforward to show that
these conditions are implied by (2.7).

We shall require the following theorem.

UN1QUENESs THEOREM 1. The inclusion problem has at most one solution.

This theorem is proved in (1, p. 137; 17, p. 61). It also holds for certain
complex wave numbers and for certain inhomogeneous inclusions (18, 19).
In fact, we shall also require a slight generalization of Uniqueness Theorem
1, in which the interface conditions (2.3) are replaced by

u(p)=rKu(p), PpEeS, (2.8a)

Lu(p) =k Tu(p), pEeS, (2.8b)

where k, and x, are non-zero constants.

and

UNIQUENESS THEOREM 2. The modified inclusion problem, in which the
interface conditions (2.3) are replaced by (2.8), has at most one solution.

This theorem is proved in (17, p. 61).

3. Elastic potentials
We introduce two fundamental Green’s tensors, G,(P; Q) (a=e, i):

1 1
(Go(P; )y = {W.5, +

- - (w, -, } 3.1
Pa Kf;ax,ax,( « ) 3.1)

where
@, = —3iH{(k,R), W.=—}iH{"(K,R), (3.2)
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H{Y(z) is a Hankel function and R = |r, — rp|. Now G, (G,) satisfies (2.1)
((2.2)) everywhere, except at P=Q. Also, G, satisfies the radiation
conditions (2.7).

Next, we define elastic single-layer and double-layer potentials by

(S.O(P) = f f(q) . Go(q: P) ds, (3.3)

and
(DO(P) = f €q) - T2G.(g; P) ds,, (3.4)

respectively, where T% means 7, applied at geS. Now (S, f)(P) is
continuous in P as P crosses S, whereas both D, and T%S, exhibit jumps
given by -
D f=(FI+K)f 3.5)
and
TESE= (21 + K, (3.6)

respectively, where, in each case, the upper (lower) sign corresponds to

P—p €S from B, (B;), and I is the 2 X 2 identity matrix. Here, K, and K
are singular integral operators, defined, for p € §, by

K.f= j €(q) - T5G.(q: p) ds, 3.7)

and
K= L f(g) . TiG.(q; p) ds,. (3.8)

More precisely, if we write

(K0, = f £@Ki(q; p) ds,,

then K,; and K,, are continuous functions for p € § and g € §, but K,, and
K, have Cauchy singularities; that is, the corresponding integrals must be
interpreted as Cauchy principal-value integrals; see (A.4).

In all of the above formulae, it is sufficient that the density f be Holder
continuous on § (1, Chapter 5): fe C*#, 0 < =<1. However, we shall also
require the tractions corresponding to the elastic double-layer potential,
defined by

N = u;'T2D,f. (3.9)

The existence of N,f requires that f be smoother: a sufficient condition is
that the tangential derivative of f(q) be Holder continuous for g €S
(fe C'P), and then the right-hand side of (3.9) is continuous across S (1,
p- 320). Although N, is a hypersingular operator, we show in the next
section that it can be regularized in a simple manner.
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4. Regularization
We have

1
M= T‘:,J; f(q) . TSG.(q; p) ds,, @.1)

The fundamental solution G, ~log R as R— 0, whence we expect that
T5T.G,~R™? as R—0 (these results are confirmed in Appendix A).
Thus, we cannot immediately write (4.1) as an integral operator by applying
T, to the integrand. However, we shall show that the combination

(1 - VI)NI - (1 - Ve)Ne (42)

is a singular integral operator.
In Appendix A, we calculate T5T%G,,, and extract the singular terms; the
result can be written as

A[ToTAGu(q; P)lmn = 28R {[(2Ae = DR R o — Aub,aIn(p) . n(g)
+ (A, — Dnm(@)na(p) — Aanm(P)na(q)} +o(R7Y) (4.3)
as R—0, where R ,, = 3R/9x,, and
1-2v,
A= 2(1—v,) (4-4)

The non-integrable singularity R™2 is apparent, since the expression in
braces is O(1) as R— 0. We can simplify this expression, using the following
lemma.

LemMA 1. Let S be a twice-differentiable curve. Then
n(p) .n(g) =1 (4.5)

R = 8pnn = 31 (PI1(@) + 1a(P)rm(@)}, (4.6)
both with an error of o(R) as R— 0.

Lemma 1 is proved in Appendix B. Note that (4.5) also holds if S is a
smooth surface in three dimensions, whereas (4.6) does not.
Using Lemma 1, (4.3) becomes

AMTETIGa(q; P)lwn = HaR 7 {2(Aq — 1)0,,
+ (44 = D[nm(9)n.(p) — na(@)na(p)]} + o(R™).
Substituting for A, from (4.4), we obtain
7ps (1= Vo )lTeTiG(q; P)lmn
= =0 R7+ (1= 3%)[nn(@)n,(P) — 1u(@Inn(P)IR 2+ 0(RT).
The first term on the right-hand side is not integrable, whereas the second

and



SCATTERING OF ELASTIC WAVES 281

term is O(R™') and leads to Cauchy singular integrals. Forming the
combination (4.2), we obtain

[(1 = v)N, = (1~ v,)N.]t = j t(q) . N(g; p) ds,
= Nf,

say, where

7N (g5 P) = 3(Ve — ¥)[1m(@)na(P) — na(@)n(P)IR™> + 0(RTY).
Thus, we have a simple regularization of N, (in two dimensions): N is a
singular integral operator.
Note that N is a weakly-singular operator if v, = v;; this special case is
well known to give rise to a simpler inclusion problem (1, Chapter 12, §5; 6,
§36).

5. Integral equations: indirect method
We look for a solution of the inclusion problem in the form
0, (P) = (Dufs)(P) + (S.8.)(P),  Pe€B,, (.1
where £, e C"?, ge C*f and o =e, i. Applying the interface conditions
(2.3), making use of the jump relations (3.5) and (3.6), we obtain
I+ KD~ (1 + KDL+ Sg — S.8. = Ui, }
N — p N + (=1 + K))g, — (I + K.)g. = TLuyp,.
This is a pair of coupled integral equations for the four unknown
vector-valued densities, f,(q) and g,(q) (a =e, i), defined for g € §. Thus,
we can impose two constraints in order to get two equations in two

unknowns; this can be done in various ways.
Since the operator N, is troublesome, one choice is

f.(g)=f(q)=0, gqeS.
This implies the representations as elastic single-layer potentials,

(5.2)

u,(P)=(S.8.)(P), PeB, (5.3)
for a« =e, i, where g, and g; solve
Slgi - che = Uinc» }
5.4
(U - K+ (I + Koo = —piotin -4
and
betinc(q) = Tuin(q), qE€S. (5.5)

Note that (5.4), only involves weakly-singular integral operators, whereas
(5.4); involves singular integral operators. This makes the system difficult to
analyse. We are also unaware of any published numerical results obtained
with (5.4), although its static version is used in (12, §7.5). Further remarks
on (5.4) are made at the end of this section.
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A second choice is motivated by the regularization described in section 4.
Thus, we make the choices

L@)=0-v)lq), fi(q)=1(1—v)(q)

(q) =&(q) = p.8(q),
where 7= u,./u; > 0. This implies the representations

ue(P) = (1 - Ve)(Der)(P) + “G(Seg)(P)) Pe Be: (563)

w(P)= 11~ v)(DOP) + . (SENP), PeB,  (5.6b)
where the densities f(g) and g(q) solve

[+ - v)T +K7) + (1= v )T — KD+ p(S; — S.)g= um,} 5.7)
—NI+[(I-K)+(I+K.)g= —ti. :

This is a system of four coupled singular integral equations for the four
components of the two densities f(g) and g(q). It is the elastodynamic
analogue of the system derived by Kress and Roach (20) for the scalar
transmission problem.

In order to analyse the system (5.7), we first construct the corresponding
4 X 4 symbol matrix o (see Appendix C for a sketch of the classical theory).

and

and

With
0 1
1=(5 o)
-1 0
we find that
o=(% )
-M 0'2’
where

a=t(1-v)(I+i6AJ)+(1—-v.)I—i6AJ),
0= 2l + le(Ae - A"I)J;
M is the 2x2 symbol matrix of the singular integral operator N (its
elements are not required here), amd A, is defined by (4.4); the 2x2
symbol matrices of K, and K, are given in Appendix C; and compact
operators, such as §,, have zero symbols. Note that o is a function of 6,

where 6 can take only the values +1 and —1.
Next, we prove the following result.

LEMMA 2. Suppose that —1<v, <1} (aée, i) and t=u./p;>0. Then the
symbol matrix of the system (5.7), o, is regular; that is,

det (o) #0.
Proof. We show that det (o) >0. We have
det (0) = AIAz,
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where
Al = det (ol) = [t(l - Vi) + (1 - Ve)]z - [T(l - VI)AI - (1 - ve)Aelz (58)

and
A,=det(0)=4-(A.— A)~ (5.9)

Now, since —1<v, <3, we see that 1 — v, >0 and 0 <A, <3. Thus
It(l - Vi)A,' - (l - Ve)Ael < 3[1(1 - V[) + (1 - e)]

whence A, > 0. Similarly, |A, — A;| <3, whence A,>0.

As det (o) does not depend on 6, we deduce immediately (since ®(¢) = 1
in (C.6)) that the system (5.7) has index zero. This means that (5.7) is a
quasi-Fredholm system of singular integral equations; that is, all the usual
Fredholm theorems hold, just as if (5.7) was a system of Fredholm integral
equations of the second kind, with weakly-singular kernels. In particular,
we can deduce the existence of a unique solution to (5.7) merely by showing
that the corresponding homogeneous system, namely

[#(1 = v)(I +K) + (1= v )T~ KD + (S, - S.)g = 0’} (5.10)
-Nf+[(I-K)+(I+K.)g=0 '

has only the trivial solution (see Appendix C).

In order to do this, we first consider the inhomogeneous system (5.7).
Usually, the functions w,,.(p) and t;,.(p) are very smooth; we shall always
assume that w,,. € C'"# and t,,. € C®”. Suppose that we look for solutions of
(5.7) with f and g both in C*# (see Appendix C). We must deduce that £ is
necessarily smoother (f € C"#), for then any solution of (5.7) will generate a
solution of the inclusion problem, using the representations (5.6). Now,
from (5.7),, we have

[+(1 = v)(I +iAJS) + (1 - v)(I —iAIS)f=h,

say, where he C*?, § is defined by (C.2), and we have noted that
weakly-singular operators (such as S,) map C®#— C"£. Solving this system,
explicitly, for the two components of f, using (C.3), we find that

AfeCl B
where A, is defined by (5.8). Since A, >0, we deduce that fe C*#, as
required.

Now, in order to prove existence, we adapt the arguments in (20) and
suppose that f(q) and g(g) solve the homogeneous system (5.10). Substitute
f and g into the representations (5.6); since fe C# and ge C*?, the
displacements u.(P) and u,(P) satisfy

u.(p)=u(p) and Tu(p)=Tu(p), PpES,

by (5.10); that is, they solve the homogeneous inclusion problem (with
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;.. = 0). Uniqueness Theorem 1 then implies that

u,(P)=0, PeB, (a=e,i).
In particular, ’

u,(p)=0 and T,u,(p)=0, peS (a=ei).
Define displacements U, and U, by

q Uz(P) = (1 - Ve)(Der)(P) + M,(S,g)(P), PeB,
an
Uy(P) = t(1 - v)(DA(P) + u(Sg)(P), PeB..

We have
LeUe = 0) Pe Bb L[U[ = 0, Pe Bey

also, U, satisfies the radiation conditions (with k, and K, replaced by k; and
K,, respectively). Letting P—p € S, we have

U.(p)=(1 - v.)I+ K+ p.S.g

' =2(1 - v)M(p)
since -
ue(p) =0= (1 - ¢)(_I + K:)f+ “cSeg'
Similarly,
Ui(p) = —21(1 - v)I(p), (5.11)
and
TLU(p) =2p.8(p)-
Hence,
U(p) = x,U.(p), PES,
and
TU(p)=-T.U.(p), pES,
where
_—3(1-wv)
K = B v, #0. (5.13)

Thus, U,(P) and U,(P) solve a modified homogeneous inclusion problem,
where the materials of the matrix and the inclusion are interchanged.
Uniqueness Theorem 2 for this problem implies that

U.(P)=0, PeB, U(P)=0, PeB..

Then, (5.11) and (5.12) imply that f(q) =0 and g(q) =0, respectively. Thus,
we have proved the following theorem.

THEOREM 5.1. The system of singular integral equations (5.7) has precisely

one solution (f(q), g(q)), with fe C? and ge C*P. Moreover, the cor-
responding displacement fields (5.6) solve the inclusion problem.
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We conclude this section with some remarks on the system (5.4). Its
symbol matrix is

!
1—i6AJ [+iBAJ/)’

clearly, det (0) =0; that is, o is degenerate, and so the classical theory, as
used to analyse the system (5.7), does not give any useful information here.
We are not aware of any theoretical results on the solvability of (5.4).

6. Integral equations: direct method

If we apply Betti’s reciprocal theorem (Green’s theorem) in B, to u, and
G,, we obtain

Zue(P) = (Sz(Tene))(P) - (Deue)(P)’ Pe Be' (61)

Similarly, applying Green’s theorem in B, to u;,. and G,, and adding the
result to (6.1), we obtain

2u.(P)=(S.(T.w))(P) -~ (D.u)(P), PeB, (6.2)

where we have used (2.4). Also, applying Green’s theorem in B, to u, and
G,, we obtain

—2u,(P) = (S:(T;w,))(P) — (Dw;)(P)
=(S(T.w))(P) - (Dm)(P), PeB, (6.3)

after using the interface conditions (2.3). Letting P—p e S in (6.2) and
(6.3), we obtain

(I+KHu—pSt=2u,, peS, (6.4)
and _
(I-K')a+puSt=0, PES, (6.5)
where we have set
utq)=Tu(q), qeS. (6.6)

Similarly, if we calculate the tractions on § corresponding to (6.2) and (6.3),
we obtain

Nu+(I—-K)=2,(p), pEeS, (6.7)
and :
-Nu+t(I+K)t=0, peS, (6.8)

where t=p./u; >0 and t, is given by (5.5). Thus, we have four integral
equations on § in the two unknowns u(g) and t(q); we must choose two
equations, or two linear combinations of the four equations.

The usual choice (for numerical computations) is (6.4) and (6.5), but this
system has a degenerate symbol; see the discussion at the end of section 5.
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Another choice is (6.4) + (6.5) and (1 — v.)(6.7) + (1 — v,)(6.8), namely
[t(l - 'V,)(] + Kl) + (1 - Vc)(l - Ke)]t - Nll = 2(1 - Ve)t'lncr} (6 9)
pe(S; = S+ [(I = KF) + (I + K?)]u = 2uy,. '

This is the elastodynamic analogue of the system studied by Kittappa and
Kleinman (21) for the scalar transmission problem. Comparison of (6.9)
with (5.7) shows that (6.9) is a quasi-Fredholm system of singular integral
equations.

Suppose that we can solve (6.9) for u(q) and t(q). We then use (6.2) and
(6.3) to construct displacement fields

2ll¢(P) = "e(sct)(P) - (Deu)(P)’ PeB,, (6103)
—2u,(P) = u(St)(P) — (Du)(P),  Pe€B, (6.10b)

We have the following result.

and

THEOREM 6.1. Suppose that u and t are Holder-continuous solutions lof the
system (6.9). Then, u.(P) and wu,(P), given by (6.10), solve the inclusion
problem.

Proof. The representations (6.10) certainly define solutions of (2.1), (2.2)
and (2.7). It remains to show that (6.10) satisfy (2.3). First, we apply the
argument following (5.10) to (6.9),. This implies that A,u € C"?, where A,
is defined by (5.9). Since A,>0, we deduce that me C"#, and so we can
define the quantity N,u. We have, from (6.10),

200, + Wi — W) =204 + 1 (S. + St — (K2 + K, peS, (6.11a)

and
2(T¢u¢ + ”’etmc - T;l];) = 2"etinc + I‘e(Ke + Kl’)t - (["cNe + ulNl)u7 PE S.
(6.11b)
Let
| O(P) = p(S.t)(P) - (D.u)(P) + 20, (P), PeB, .
an

V(P) = pu(S8)(P)— (Du)(P), PeB..
Letting P—p € S, and using (6.9), we find that
V=U and TV=-x;'T.U,
where «; is defined by (5.13). Uniqueness Theorem 2 implies that U=0in
B, and Y=0in B,. In particular,
U+V=0 and TV+TU=0

on §, and these imply that the right-hand sides of (6.11) vanish, as required.
If we use this theorem in a straightforward adaptation of the proof of
Theorem 5.1, we obtain the next theorem.
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THEOREM 6.2. The system of singular integral equations (6.9) has precisely
one solution (u(q), t(q)), with ueC"“? and te C*P. Moreover, the
corresponding displacement fields (6.10) solve the inclusion problem.

7. Discussion

We have described two methods for reducing the elastodynamic inclusion
problem, in two dimensions, to a pair of coupled singular integral equations
over the interface between the inclusion and the surrounding matrix. Each
system is uniquely solvable at all frequencies. Each system seems to be new,
although each has a counterpart for the transmission problem of
acoustics (2).

The-method used a simple regularization: the quantity (4.2) is a singular
integral operator. This result is not true in three dimensions. Kupradze et al.
(1, Chapter 12, §2) treat the three-dimensional inclusion problem by
introducing the generalized traction operator T, defined by (cf. (2.6))

- G b P 2 B p 2,

(T (p) = (A + p(1 - )., o, TP t P
where B is a constant; we have T = T when g = 1. The analysis in (1) is very
complicated, as it uses generalized traction operators applied to generalized
elastic double-layer potentials D,(P) in both B, and B;; here, D,(P) is
defined by (3.4), with T replaced by T9. We should like to find a simpler
solution. One possibility was sketched in (22). Let u,N,=T%?D,, and
consider N, — N,. We can show that

pi'TiTIG(p; q) — u'TETIG.(p; q) =o(R'™) as R—0,

if B is chosen as
2(‘Ve - Vi) .
(1-v)d-2v)’

this result holds in n dimensions, where n =2 or n = 3. However, this is not
sufficient to obtain a useful regularization: the price one pays for introduc-
ing D, is that, unlike Nf, Nf is discontinuous across S, with a jump
involving various derivatives of f (1, p. 322). This fact was overlooked in
(22). Note that 8 =1 when v, = v;,, whence N, — N, is a regularization (even
in three dimensions). As we have already noted, the special inclusion
problem for equal Poisson’s ratios is well known to be simpler than the
general case.

p=1-
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APPENDIX A

Singularities
Let P and Q be at (xj, x;) and (x, x;), respectively. Set X;=x,—x; and
X,'/:X;Xl. Then

u(G(Q; P)), = W, + K™[8,D(¥ — ®) + X, D*(¥ — )],

where D denotes the operator R™'d/dR. Applying the traction operator (2.6) at q,
we obtain

[T'G(g; P)lox = 7nLXD® + [06, + niX,]DY
+2K"[n% X, + niX,, + 68,,)D*(¥ — )
+ 60X, D’ (¥ — )}, (A.1)

where y=v/(1-v), 0 =njX; and nf = n,(q). Applying the traction operator at p,
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we obtain
pT TP T'G(q; P)lma = K'Y’ RINE® — 2[NS ., + nonf] DY — 4yniniD®

- [¥X.., + ©9,.. + B2%, + BT |D*W¥ —2y[B%, + BZ,|D*®

— 4K ([N bpn + nENZ + ninf ] DH(W — ©)

+ [¥#X,., + ©F,., + B2 + B2L + BZ, + BZ| D> (W — @)

+ 60X, D'(¥ — d)}, (A2)
where

N=nfnf, ©=niniX,, B =ninjX,.

The above formulae are exact; they also hold in three dimensions if one sets

We now examine the singular behaviour as R = [, — 1| = (X,,)9—>0. From (3.2)
we have

ad={1-1ik’R*+ O(R)}logR as R—0,
whence
aD®=R7?+ O(logR), aD*® =—2R"* - 1k*R*+ O(log R),
aD*® =8R*+k*R™*+ O(R™), aD*®=—48R°*—4k’R™*+ O(R™)
as R—0, with similar estimates for W. It is well known from classical potential
theory (see, for example, (23, §199)) that

OR*

n;’—a— (logR)=0(1) as R—0. (A3)
ox;

Thus, 6DW, 6D*(¥ — ®) and 60X, D*(¥ — ®) are all o(1) as R—0 (X, = O(R) and
X, = O(R?)), whence

A[T*G(q; p)lme = AR™*(niX,, — n2X,) +0(1), (A.49)
where
1-2v
=2(1—v)' (A.5)

The formula (A.4) is well known in two-dimensional elastostatics; see, for example,
(24) or (6, p. 214). It shows that the integral operators K, and K3, defined by (3.7)
and (3.8), respectively, involve singular integrals in contradistinction to classical
potential theory.

Proceeding similarly for (A.2), we note that €D*¥, OD* (W - ®) and
6X,,.D*(W — @) are all o(1) as R—0, whereas B*.D*W and B?,D*(W — ®) are
both o(R™') as R—0; that is, they are both weakly singular (as are terms involving
log R, such as ® and D®). The remaining terms can be rearranged to give the
following formula:

i~ (TPT'G(q; P)lma = —2R"*{ANS,,, + (1 - 24)¥X,..R”?
+ Anfni+ (1-3A)n2n%} +o(R7")
as R—0, where A is given by (A.S).
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APPENDIX B

Proof of Lemma 1
Parametrize S, so that p and q are at (x(p), y(p)) and (x(q), y(q)),
respectively. Let

v=(x'2+y'2)i and x=(x'y"—x"y')v™*,

where all quantities are evaluated at p; we assume that v#0; vk is the (signed)
curvature of S at p. We have

n;=y'lv, nf=-x'lv, R=vl|qg—p|+0O(q-pl).
Define A; = nj] — nf, whence
XN =nfn] =1+ nfA,,
since nfnf = 1. Straightforward calculation shows that
miA = +(q -p)x'y’x,  niA;=+(q—p)y”x
nif,=—(q —p)x'y’x,  nif,=—(q-pk"x,

all with an error of o(R) as R— 0. Equation (4.5) follows immediately. We also
have

XY/R*=x"[v*~(q —p)x'y'x
X}/R =y v’ +(q —p}'y'x
Xo/R=x'y' [V’ + (g — p)x"* -y )k,

again with errors of o(R) as R—0. Equation (4.6) follows, once we write its
right-hand side as

On = Honth — Y(nf AL + NAL).

APPENDIX C
Systems of singular integral equations on a closed curve

We sketch the theory; see (25, Chapter 6, §8), (26, Chapter 19) or (27, §8) for
details. Consider the system

12::1 {3 (Due(t) + b (£)(Sue)(2) + (Tpu)(0)} = £i(2) (C.1)

forj=1,2,...,n and t € §, where T}, are compact (weakly-singular) operators and S
is a closed contour in the complex plane. Also

“(Z) u(z(9))
(Su)(e) = f f oo dsy + compact, (C2)

where we have parametrized S using z = z(g) = x(¢q) +iy(q), t=z(p) and v(g) =
{(x'(9))* + (¥'(9))*}}. Note that

Su=u. (C.3)

Let A = (a,), B = (by) and write the system (C.1) as Lu ={. The symbol (matrix)
of L, o(L), is defined by

o(L)=A(t) + B(1)6, (C.4)
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where te€ S and 6 = £1. Note that compact terms in L do not contribute to o(L).
We call ¢ regular (or normal or non-degenerate) if, for all teS and 6= %1,
det (o) # 0. Suppose that o is regular and that

®(f) =det[(A + B) '] det {A - B]; (C.5)
then, the index of L, Ind (L), is calculated using
27 Ind (L) = [arg ®(1)]s
= change in arg ® as t makes one positive circuit of S. (C.6)

The main result of the theory is that if Ind (L) =0, then the Fredholm theorems hold
exactly; see (26; §56). In particular, we have the following.

THEOREM. Suppose that the system (C.1) has index zero, and that f(t) e C*°,
0<a=l,j=1,2,...,n Then, if the homogeneous form of (C.1) (that is, (C.1) with
f;=0) has only the trivial solution, the inhomogeneous system (C.1) has a unique
solution u()e C**, j=1,2,...,n.

In order to apply the theory, we first have to compute the symbol matrix. For
example, from (A.4), we have

A[TLG.(q; P)]i2= AR (niX, — niX,) + o(1)

~A.lv(g)g ~-p)]™"
as |g —p|—0, where A, is defined by (4.4) and we have used formulae from
Appendix B. Hence, comparison of (C.1) and (3.8) gives

— 0 1
A
o®D=ioa.(", )
Similarly, we find that
o(K.) = —(a(K2))" = o(K2),

where the superscript T denotes matrix transpose.



