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A time-harmonic sound wave is scattered by a fluid inclusion immersed in a different fluid. This problem can be reduced
to various pairs of coupled boundary integral equations over the interface between the inclusion and the surrounding fluid.
The simplest and most commonly used pair is shown to have at most one solution if, and only if, the exterior wavenumber
is not an eigenvalue of the associated interior Dirichlet problem. A similar result obtains for the corresponding inclusion
problem in elastodynamics.

1. Introduction

It is well known that the problem of time-harmonic acoustic scattering by an impenetrable obstacle can
be reduced to an integral equation over the boundary of the obstacle, S. In fact, this can be done in many
ways, leading to various integral equations. The simplest of these suffer from irregular frequencies (or
‘characteristic frequencies’ or ‘fictitious eigenfrequencies’), at which the integral equations can have
infinitely many solutions or no solutions. These frequencies can usually be identified as a countable set
of values coinciding with the eigenfrequencies of a related interior problem.

Irregular frequencies are a nuisance, both analytically and numerically. They are induced by the choice
of integral equation, and can be eliminated by making a different choice. This usually means choosing a
more complicated equation, or supplementing the original equations in some ways; see, e.g. [1]. In
computational practice, these complications are often discarded: a simple integral equation is used. If
one uses such an equation and computes, say, the scattering cross-section of the obstacle as a function
of the frequency, one obtains a smooth curve, with narrow spikes around each irregular frequency. These
spikes are spurious: one can interpolate graphically through them. This pragmatic approach succeeds
because one is not usually interested in high frequencies, and so only a few well-spaced irregular frequencies
will be encountered; moreover, the spiky response near these frequencies is quite different to the response
away from them.

Suppose now that the obstacle is penetrable, so that waves can propagate through the interface S. The
solution to this problem has a more complicated structure, often with many sharp peaks and troughs in
the frequency-response curves. This response can sometimes be analysed in terms of the resonant
oscillations of the obstacle. Thus, if the coupling parameter in the interface conditions (p in (2.3b) below)
is small, then the obstacle is nearly rigid (Neumann boundary condition), and so we expect a larger
response whenever the frequency is such that the interior wavenumber k; is an eigenvalue of the interior
Dirichlet problem. A similar expectation obtains if the coupling parameter is large. These remarks are
the impetus behind the so-called Resonance Scattering Theory; the developments for spherical
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homogeneous obstacles are reviewed in [2] and [3]. Kriegsmann et al. [4] have obtained asymptotic
expansions of the solution, when p is small (or large), which are uniformly valid in the frequency; these
hold for any obstacle, and give the correction to the corresponding ‘background field’, i.e. the solution
when p is zero (or infinite).

The scattering problem for a homogeneous penetrable scatterer can also be reduced to integral equations
over S. Usually, a pair of coupled integral equations is derived, although single integral equations are
available [5]. Many of these have been analysed, and their irregular frequencies (if any) have been
identified. However, the simplest, and most commonly used pair of equations does not seem to have been
studied before. This pair is derived by applying Green’s theorem both inside and outside the obstacle to
the unknown field and the appropriate fundamental solution, and then letting the field points approach
S (see Section 4). We call this the ‘simple direct method’: it is ‘simple’ because normal derivatives of
double-layer potentials are not required; and it is ‘direct’ because the unknown quantities on S are
physically meaningful (e.g., pressures and velocities). In this paper, we prove that the simple direct pair
of integral equations does have irregular frequencies. These occur only when the exterior wavenumber
k., coincides with an eigenvalue of the associated interior Dirichlet problem. This result is in accord with
the numerical results of Morita [6].

- Clearly, it is important to know where the irregular frequencies are located; they induce spurious
additional spikes in a frequency-response curve which actually can be spiky. We observe that since the
irregular frequencies are independent of k; and p, they can be detected by comparing the frequency-response
curves (as functions of k.) for different values of k; or p.

Finally, we note that all of our results can be extended to the corresponding problem in elastodynamics,
in which a stress wave is scattered by a homogeneous elastic inclusion. This problem is discussed briefly
in Section 5.

2. Formulation of the transmission problem

In this paper, we use the same notation as in [S]. Thus, let B; be a bounded region in either R’or R,
with a smooth closed boundary S and unbounded exterior B.. We suppose that B, and B; are filled with
different compressible fluids, with constant wavenumbers k. and k;, respectively. A given time-harmonic
incident wave, with potential u;,, is scattered by the penetrable obstacle, B;. (As usual, a time-dependence
of e ™' is suppressed throughout.) The field scattered to infinity, u., and the interior field, u;, are then
seen to solve the following problem.

2.1. Transmission problem

Find functions u.(P) and u;( P) that satisfy
(V2 +k)u(P)=0, PeB, (2.1)
(V*+kHu(P)=0, PeB, 2)
and two transmission conditions on the interface:

ou ou;
=y, —=p— S, 2.3a,b
u(p)=u(p) and an, pan,,’ PES, ( )
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where
u(P) = ue(P)+“inc(P), Pe Be (24)

is the total potential in B,. Also, u. must satisfy a radiation condition at infinity.

The wavenumbers, k. and k;, and the coupling parameter (density ratio) p are given constants. In
(2.3b), 9/0n, denotes normal differentiation at p€ S in the direction from 8D towards B..

If we restrict the choice of k., k; and p, we can prove that the transmission problem has precisely one
solution. Sufficient conditions are that k., k; and p be real and positive [5]; these conditions are assumed
below. .

Note that we can move the parameter p from (2.3b) to (2.3a) by a simple change in the dependent
variables.

We shall also need to consider the following problem.

2.2. Interior Dirichlet problem (1IDP)
Find a function w(P) that satisfies
(V2+k*)w(P)=0, PeB,
and the Dirichlet condition
w(p)=0, peSs.

If this problem has a non-trivial solution, we say that k” is an eigenvalue of the interior Dirichlet problem.
It is known that these eigenvalues are all real.

3. Acoustic potentials and Green’s theorem

We define single-layer and double-layer potentials by

~

(Sau)(P)=| wp(q)G.(P,q)ds,, PeB.uSUB, (3.1)

o

and

(D.v)(P)= sv(q)%G,(P,q)dsq, PeB.UB, (32)

o

respectively, where

~3iH§(kuR) in R?,

—exp(ik,R)/(2wR) in R®, (33)

G.(P, Q)={

R =|rp —ry| is the distance between the two points P and Q, H{"(z) is a Hankel function, and a =¢ or
i. The jump relations on S are ‘

D,v=(¥I+R%v and éi— = (FI+K)u, (3.4)
(4
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where the upper (lower) sign corresponds to P> pe S from B.(B;). K, and K* are boundary integral
operators, defined for pe S by

3
K= —
=] ulq) ™ G.(p, q) ds,

(4

and

.

3
K*y= — G,(p, q) ds,.
v Js"(q)an,, (p, q) ds,

We shall also need the normal derivative of the double-layer potential, defined by

d
N, v=—"1{(D,v).
on,
In order to derive integral equations, we shall use Green’s theorem; this is the so-called ‘direct’ method.
If we apply Green’s theorem in B, to u. and G., we obtain the Helmholtz formula,

.
du, 3 2u,(P), PeB,,
G(P,q)——u.(q) — G.(P, ds, = 3.5

‘S{ o ,q)anq u(q)anq ( q)} Sq {o, PeB. (3.5)
If we apply Green’s theorem in B; to u;,. and G., and add the result to (3.5), we obtain

[ du 3 2u(P), PeB,, (3.6a)

P gq)—-— — G.(P, ds, =

Js {G°( @) 5, ~ul@) 5 - G ")} Sa {—Zuinc(P), PeB, (3.6b)
Finally, if we apply Green’s theorem in B; to u; and G;, we obtain

i { ou; ) } {o, PeB,, (3.7a)

: ——u(q)— Gi(P, ds. =

J G P D - ul@ - GiP a4 =]_,, p) peB. (3.7b)
These formulae yield boundary integral equations if we let P approach S.
4. A simple pair of coupled integral equations

If we use (3.6a) and (3.7b) with (2.3), we obtain the representations

2u(P)=(S.v)(P)-(D.u)(P), P€B, (4.1a)
and

~2uy(P)=p~'(S;v)(P)—(Du)(P), Pe€B, (4.1b)
where we have set

ou
=— 4.2

v(q) on, (4.2)
Letting P> pe S in (4.1), using (2.3a) and (3.4), we obtain

(I+KHu~S.v=2up, p(I-KHu+Sv=0 4.3)

which is a pair of coupled boundary integral equations for u(q) and v(g), g€ S.
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The system (4.3) is probably the most commonly used for the numerical solution of the transmission
problem. Representative examples are Morita [6] (two dimensions with p =1), Tobocman [7], Schuster
and Smith [8] (their system S.I., with p =1) and Seybert and Casey [9]. As we have already remarked in
Section 1, other (non-simple) systems can be derived: see [8, 10, 11] for some alternative direct methods,
some of which do not suffer from irregular frequencies. However, although these methods may be
theoretically attractive, they are seldom used for computations; for an application of the method in [10],
see [12].

It is clear from the derivation that if u(P) and u;(P) solve the transmission problem (we already know
that such functions exist and are unique), then their boundary values will satisfy (4.3). We start with a
partial converse to this result.

Theorem 1. Suppose that u(q), v(q) solve (4.3). Then, u.(P) and u;( P), defined by (4.1), solve the transmission
problem, provided that k? is not an eigenvalue of the interior Dirichlet problem.

Proof. Clearly, u.(P) satisfies (2.1) and the radiation condition, and u;( P) satisfies (2.2). On S, we have
2u.=S.v—(-I+K¥u=(I+K¥u—-2up.—(—I+K¥)u

=2u — 25, (44)
using the first of (4.3). Similarly,
_2ui=P—lSiU_’(I+K_i*)u=—2u. (4.5)

Adding (4.4) and (4.5), we see that the first transmission condition, (2.3a), is satisfied (for all values of k2).
For the second transmission condition, (2.3b), we have to show that

2{2':‘%%— z—:} =(K.+K))v—(N+pN)u+2 a;‘:‘°=0. (4.6)
To do this, we construct functions & and © by

u(P)=(S.v)(P)~ (D.u){P)+2u;,.(P), PeB, (4.7a)
and

5(P)=(Siv)}(P)~p(Du)(P), PeB,. (4.7b)
Then,

(V2+Kk3)i(P)=0, PeB, (V*+k)#(P)=0, PecB.,
and o satisfies a radiation condition (with wavenumber k;). The integral equations (4.3) imply that

u(p)=0 and ©(p)=0, peS. (4.8)
The second of these, together with uniqueness for the exterior Dirichlet problem then imply that 5(P)=0
for Pe B,. In particular, we have, on S,

av

‘37=0=(I+Ki)v—pNiu. (4.9)

The first of (4.8), together with the assumption that k? is not an eigenvalue of the IDP, imply that
u(P)=0 for Pe B;. Hence, on S,
au

OUine
—=0=(— - —Ane
an 0=(—I+K,)v— N, u+2 o (4.10)



190 P.A. Martin / Identification of irregular frequencies

Adding (4.9) and (4.10), we see that (4.6) is satisfied, i.e. the second transmission condition is satisfied.
This completes the proof.

Our next result identifies all the irregular frequencies of the system (4.3).

Theorem 2. The pair of integral equations (4.3) has one solution if, and only if, k2 is not an eigenvalue of
the interior Dirichlet problem.

Proof. Suppose that uy(g) and v4(q) solve the homogeneous form of (4.3), i.e.
(I+K_:=)u0—sel70=0, p(I_K_;k)uO+SiUO=0. (4.113, b)

Assume that u, and v, are not both identically zero. We show that this can only occur if k2 is an eigenvalue
of the IDP, using the same argument as in the proof of Theorem 1. Define u.(P), w;( P), #(P) and 5(P)
by (4.1) and (4.7), but with u(q) and v(q) replaced by uy(q) and v,(q), respectively, and with u;,.(P)=0
in (4.7). We deduce that, on S,

u(p)=u(p)=usp), @(p)=0 and (p)=0. (4.12)
The last equation gives 6(P)=0 for P < B., whence

%:—=0=(I+Ki)vo—pNiuo. (4.13)

Similarly, if k2 is not an eigenvalue of the IDP, we can deduce that #(P)=0 for P ¢ B;, whence
y

i
5;—‘-=0=(—I+Kc)vo—Neuo. (4.14)

But, we have
U,
22 (1+K.)vo— N.oto
an
and

-=(-I+ K;)vo— pNiu,,

ou;
_2 —_—
P on

whence comparison with (4.13) and (4.14) shows that

ou oy;
C=p—=1,. 4.15
on P on bo ( )

Thus, u.(P) and u;(P) solve the homogeneous transmission problem (with u;,.=0). The uniqueness
theorem for this problem implies that u.=0 and u;= 0, whence (4.12), and (4.15) imply that u,= v,=0,
which is contrary to our assumptions.

We have just shown that non-uniqueness for the system (4.11) (or (4.3)) implies that kZ is an eigenvalue
of the IDP. We now prove the converse. At such a value of k2, we know that there is a function u(q),

not identically zero, satisfying

(I+Ke)“40=0 and SCI.L():O
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(see, e.g. Theorem 3.2.1 and Corollary 3.2.1 in [13]). Clearly, u, also satisfies
{I+K)(I+K)—pNiSo=0, (4.16)

which is a homogeneous Fredholm integral equation of the second kind (it is (5.26) in [5]). Hence, there
exists a non-trivial solution, v,, of the corresponding adjoint equation, namely

{I+K¥HI+K¥)-pS.N}vo=0 (4.17)
((6.21) in [S]). Now set

uo=(I+K¥)f and v,=-pN.f
for some f(q). It follows that (4.11b) is satisfied identically, for any f, since

SN, =(K*?-1I
Moreover, (4.11a) is also seen to be satisfied if we choose

f(g)=wvo(q),

by comparison with (4.17). Thus, we have found a non-trivial solution to the system (4.11). This concludes
the proof of Theorem 2.

5. Scattering of elastic waves by an elastic inclusion

The methods described above for the scalar transmission problem are easily extended to the correspond-
ing vector problem in plane elasticity. In this two-dimensional inclusion problem, the regions B, and B;
are filled with different homogeneous elastic materials. The conditions on the (perfect) interface S are

u(p)=u(p) and Tu(p)= Tu(p), peSs,

where u = u.+ ;. is the total displacement in B., u; is the displacement in B;, u;,. is the given incident
wave and T, is the traction operator corresponding to the material in B,. For more details on this problem,
see, e.g. ([14], Chpt. 12), ([15], p. 462) or [16].

The inclusion problem can be reduced to a system similar to (4.3), namely

IU+K¥u-S.t=2u,,, (I-KHu+St=0 (5.1)

where u(q) and #(q) = T.u are unknown vector-valued functions of position g€ S; here, S, and K* are
the elastodynamic analogues of the operators defined in Section 3 [16, 17]. The system (5.1) has been
used by several authors; see, e.g. [18-20].

The irregular frequencies for (5.1) can be characterized using the following interior problem. Suppose
that the region B, is filled with the elastic material from the exterior region, B, and that the displacement
vector vanishes everywhere on the boundary of B, S. This object can oscillate freely at an infinite discrete
set of values of the frequency w. These frequencies coincide with all the irregular frequencies of the system
(5.1). This result can be proved by a simple modification of the proof in Section 4. Note that the elastic
versions of (4.16) and (4.17) are quasi-Fredholm singular integral equations, as can be readily shown
using results in [16]. This is the only part of the proof where the restriction to two dimensions is required.
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