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The linear theory for water waves impinging obliquely on a vertically sided porous
structure is examined. For normal wave incidence, the reflection and transmission
from a porous breakwater has been studied many times using eigenfunction
expansions in the water region in front of the structure, within the porous medium,
and behind the structure in the down-wave water region. For oblique wave incidence,
the reflection and transmission coefficients are significantly altered and they are
calculated here.

Using a plane-wave assumption, which involves neglecting the evanescent
eigenmodes that exist near the structure boundaries (to satisfy matching conditions),
the problem can be reduced from a matrix problem to one which is analytic. The
plane-wave approximation provides an adequate solution for the case where the
damping within the structure is not too great.

An important parameter in this problem is I, = w?h{s—if)/g, where v is the wave
angular frequency, k the constant water depth, g the acceleration due to gravity, and
s and f are parameters describing the porous medium. As the friction in the porous
medium, f, becomes non-zero, the eigenfunctions differ from those in the fluid
regions, largely owing to the change in the modal wavenumbers, which depend on I,.

For an infinite number of values of I',, there are no eigenfunction expansions in
the porous medium, owing to the coalescence of two of the wavenumbers. These cases
are shown to result in a non-separable mathematical problem and the appropriate
wave modes are determined. As the two wavenumbers approach the critical value of
I',, it is shown that the wave modes can swap their identity.

1. Introduction

Porous structures, such as rubble-mound breakwaters, are used to protect
harbours, inlets, and beaches from wave action. Further, they are often used as
absorbers in laboratories to remove unwanted waves during experiments. The
functional efficiency of these structures is evaluated for vertically sided structures by
calculating the reflection and transmission of waves. The reflection and transmission
coefficients depend on the characteristics of the waves (wave height, H, wave period,
T, and angle of incidence, 6) and of the structure (such as its geometry and its
composition).
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Theoretical solutions for the reflection and transmission coefficients for porous
structures have been derived previously by several authors, using eigenfunction
expansions in the fluid and in the porous medium. The existing solutions are valid for
structures with rectangular cross-sections under normally incident linear waves.
Dissipation of energy inside the structures is taken into account through a linearized
friction term, involving a friction coefficient, f, which is evaluated by fulfilling
Lorentz’s condition of equivalent work (Sollitt & Cross 1972; O. Madsen 1974;
O. Madsen & White 1976; P. Madsen 1983; and others). These models have been
reasonably verified in laboratory experiments.

Trapezoidal breakwaters have been analysed by considering an equivalent
breakwater of rectangular cross-section (Sollitt & Cross 1972) or through boundary-
element models (Sulisz 1985). An additional dissipation of energy may be included in
order to evaluate wave breaking on the slope (Sollitt & Cross 1972; O. Madsen &
White 1976). Further, several laboratory studies have been conducted to investigate
the reflected and transmitted waves for specific types of permeable structures under
normally incident waves (Iwasaki & Numata 1970; Dattatri, Raman & Shankar
1978).

In this paper the theory of wave transmission and reflection by an infinitely long,
homogeneous porous structure is extended to the case of linear waves at oblique
incidence, providing the basis for treating an incident directional spectrum. Further,
a plane-wave approximation, which neglects the evanescent wave modes, is given for
several geometries. It will be shown that for almost all the practical cases, the plane-
wave approximation, which has the long-wave solution as a special case, is sufficient
to describe the wave behaviour, thus providing a far simpler solution technique. This
plane-wave analysis has analogues in other fields of physics, for example, the
transmission and reflection of plane acoustic waves by a porous medium (e.g. Morse
& Ingard 1968, §6.3) or of TM electromagnetic waves by a conducting surface (e.g.
Yeh 1988).

For a given structure, there may be a large number of wave conditions for which
the eigenfunction approach, based on the Sturm-Liouville theory, is no longer
applicable. These cases correspond to the situation when two eigenfunctions have the
same eigenvalue (wavenumber). We show that for this case the boundary-value
problem is no longer separable and must be treated by a Green’s-function analysis.
In acoustics, this phenomenon has been observed by Tester (1973), who examined
the attenuation of acoustic waves in rectangular ducts, with absorbing sides. He
showed that this new wave mode varies linearly with propagation distance, but in
fact is the most rapidly decaying of all the modes in the problem.

The approach we foliow is to present the coupled boundary-value problem and the
matching conditions between the fluid and porous medium; then the full
eigenfunction solution is examined. In §4, the plane-wave approximations are
developed for several structure geometries. In §5, the cases where the modal
wavenumbers coalesce and mode swapping occurs are discussed and the solution for
these special cases is presented. Finally, results from the full eigenfunction solution
and the plane-wave approximation are presented and compared.

2. Theoretical formulation

We consider the interaction of a gravity wave train with a single homogeneous,
isotropic, porous structure of width b between two semi-infinite fluid regions of
constant depth, A, as shown in figure 1. The obliquely incident wave train
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Ficure 1. Schematic diagram.

encountering the breakwater face is partially reflected and partially transmitted.
The wave motion inside the porous structure decays as it propagates through the
pores. Then, as it encounters the leeward breakwater face, it is partially reflected
back into the structure and partially transmitted into the leeward semi-infinite fluid
region. Inside the breakwater, the transmitted and reflected waves are subsequently
reflected and transmitted back and forth between the two outside faces.

For an incompressible fluid and irrotational motion, the wave field outside the
structure can be specified by velocity potentials: @, in the seaward region (denoted
region 1) and @, in the leeward region of the breakwater (region 3). The linear
boundary-value problem for water of constant depth 4 is well known.

In the rigid porous medium, region 2, the incompressible fluid motion for the
discharge velocity (flow per unit area) is also describable by a potential and a
modified free-surface boundary condition. These equations have been derived by
Sollitt & Cross (1972) and are provided for completeness in Appendix A.
Characteristics of the porous medium are its porosity, €, the linear friction factor, f,
and the inertial term, s, which are taken to be constant here. For all computations
in this paper, ¢ =0.4 and s = 1.

The boundary-value problem can be completely solved if the potential @,(x,y,
z,t) is known in the ¢th region, where ¢ = 1,2, 3. We suppose that a wave, travelling
at an angle 6 to the z-axis, is incident on the breakwater, which lies along the y-axis.
Then, we can write

D,(x,y,2,1) = Re [@,(x,2) e WD) §=1,23, (2.1)

where the parameter A is related to the progressive mode wavenumber k, by the
angle of incidence, k,sin § = A. (To satisfy the matching conditions at each vertical
interface, the y-variation of the solution in each region must be the same (Snell’s
law)). The potentials ¢, must satisfy the following boundary-value problems.

In region 7:

0%, 0°
af;-l- a;i—/\qui:O’ _hszso"
% =0 at z=—h, (2.2)
o I, _ _
E h¢i—0 at 2—0, )

where I'| = I'; = w?h/g and I, = w?h(s—if)/g.
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Since the solutions in adjacent regions must be continuous at each interface,
continuity of mass flux and pressure at 2 = 0 (between regions 1 and 2) and at x = b
(between regions 2 and 3) is required.

At z =0,
¢1:¢ = €¢2:u
atz =b, b1 = (s—if) ¢2;} (2:3)
€¢21 = ¢3x’
(s—if) b2 = s } 24)

where the subscript indicates derivative with respect to the variable, z.

3. Full solution
In region 1, the function ¢,, by separation of variables, is
¢.(x,2) = Iy(2){exp [ —ix(ki— A% + Rexp [iz(k2 — A2}

+ 2 I(2) Ry expliz(k}, A%, (3.1)
n=1

where a family of evanescent modes is included to satisfy the matching conditions at
the porous structure ; here, and below, we choose the branch of the square root that

satisfies . 2
Re{(k*—A%} 20 and Im{(k2—A%)%} <0, (3.2)
Note that the subscript zero refers to the incident and reflected waves whereas the
subscripts, n > 0, refer to the evanescent modes. R (= R,) is the reflection coefficient

and is a complex quantity.

The depth dependency of the problem is provided by the I,(z), which are given by

_ igcoshk,(h+2)
" © coshk,h ’
and the k, satisfy the linear dispersion relation
I'n=k,htanhk,h, n=0,12,.... (3.4)
This transcendental equation has real roots +#k, where &k, > 0, and an infinite
number of purely imaginary roots.

It is well known that the set of eigenfunctions, {coshk,(h+2),n=10,1,2,..},is a
complete orthogonal set, with

I n=0,1,2,..., (3.3)

f cosh k,(h+2)cosh k,,(h+2)dz =4, N?, (3.5)
-n
where Ne(k,) = SnB 2’”2’:‘ +2k, k. (3.6)

In region 2, the velocity potential is given by

b= 3 Py(2) {4, exp[—ix(K: — A%+ B, exp[iz—b) (K3 — A%}, (3.7)

n=1

where the depth dependency is now

_ igcosh K, (h+2)

@) w coshK,h

, m=1,2,.... (3.8)
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A, and B, are the complex amplitudes of the waves inside the porous structure and
K, satisfies the complex dispersion relation

e
yﬂcnhmu{nh, n=12, ... (3.9)

I, =Tr,(s—if)
The eigenfunctions, {coshK,(A+z), n=1,2,...} are also an orthogonal set of
functions with the normalization factor, N*(K,). However, under certain cir-
cumstances discussed later in §5, the expansion (3.7) may be incomplete and an
additional non-separable mode must be introduced.
Finally, in region 3 the function ¢, should be

$s = Tly(z) exp[—i(x—b) (k3 — A2+ 2 T, 1,(z) exp[—i(z—b) (k2 —A%)i], (3.10)
n=1
where I, and I, are defined as before in (3.3), 7' (= 7T;) is the (complex) transmission
coefficient and 7),,n > 0, are the complex amplitudes of the family of evanescent
modes present at the leeward interface. Furthermore, k, and k,, also satisfy (3.4) as
the depth is constant in all regions.

Substituting ¢,, ¢, and @, into (2.3) and (2.4) in order to match the solutions at
the interfaces, x = 0 and x = b, a system of equationsin R, R, T, 7,, A, and B, is
obtained. To simplify the solution of the large system, some algebraic manipulation
is done. First, the orthogonality of the P, series over the depth domain (—#4,0) is
used, resulting in a new system of equations in 4,, and B,,. Next 4,, and B,, are
eliminated from this system of equations, giving a system of coupled equations in E,
T(=T), R,,and T;,n > 0:

S Xnm _€ - 3 Xom __¢ _q__€
EOXO’mRn(Mn"—s_if"/{m)-}'EmEOX(.an Mn s_if-'”m =1 S—If‘/l
3 Zump (M——e M\ +E: 3 Kam T(M+ ./l)=1+——€ M
n=0X0,m " " S—If n-oXO m f " S_if i
(3.11)
for m =1,2,..., where the following definitions have been adopted :
K2 — A%\ K — a2\t
d’lm (k2 /\2) Mﬂ (kz /\2) 4
E = exp[+ib(K2— A2}, (3.12)

_ ___ gls—if—1)
Xnm = J:.I"P"‘ b= oK)

It is straightforward to show that (3.11) transforms into equations given by Sollitt
& Cross (1972, p. 1837) for the normal incidence case (except for a misprint in £, in
the second equation where the negative sign should be a plus). Once R,, and 7}, have
been evaluated, 4,, and B,, can be calculated from

1 M, if
An = 53X, = f)[E,X” n B (G_Z —¥) ) ( Jtm)]’

! ” (3.13)
B = 5ex, om f)EoX”"‘T"( ﬂ:<s-¢)).

In practice, the infinite summations in (3.11) and (3.13) must be truncated to a finite
number of terms.
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4. Plane-wave approximations

In the plane-wave assumption, only the most progressive mode (least damped) of
all the modes in each region is used in satisfying the matching condition. For small
[, the only wavenumbers used in the problem are k = k, and K = K, obtained from
(3.4) and (3.9). Clearly this leads to a great simplification of the mathematics;
however, significant problems can arise if K, is not the most progressive mode (cf.
§5.2 for large f).

4.1. Rectangular breakwater

Inside the structure of width b, only a transmitted wave at x = 0 and a reflected wave
at x = b have to be considered. Then the velocity potentials in each region simplify
to

61 = Lfexp [ —iz(k* =A%)+ Rexp [iw(k*— X)),
¢, = P{d, exp [~ ix(K*— A*)]+ B, exp[i(x—b) (K> — A*)]}, (4.1)
¢y =1, Texp[—i(x—b) (k*—A2)H].

Following the same procedure as before, the following solutions are obtained :

- i(1 —m?)sin [(K*— A2)2b] )
~ 2mcos [(K*— Ab] +i(1 +m?) sin [(K*— A)Fb]
= o (4.2)

~ 2mcos [(K2— X*)b] +i(1 +m?) sin [(K*— A%)ib]’

T r 1 T r 1
A‘zzE(s—ifﬁ[”ﬁ]’ BI=2E<s—if>§[1_E]’J

F=JT] 12de, X=,F 1, P, dz,
-n ~h

— expl—ibEI—AY], m= (K22
E =exp[—ib(K*—A%zE], m= s—if(kz—/V)'
R and T are functions of only two parameters: m, the dimensionless admittance of
the breakwater and b(K*—A%):, a dimensionless width of the structure. The
admittance m is defined as the ratio of the normal velocity at the breakwater to the
pressure at the wall and is a measure of the hydraulic characteristics of the structure
and the angle of incidence. Note that as m? approaches unity, then the reflection goes
to zero (independently of b).

where

(4.3)

4.2. Long-wave approximation for rectangular breakwater

For this case, which is the shallow-water limit of the plane-wave approximation, no
evanescent modes are needed in order to match the solutions between regions as the
horizontal velocity of linear long waves is uniformly distributed over the vertical.
The system of equations for this case is exactly the same as for plane waves ; however,
the values of K and & can now be obtained from the asymptotic approximation to the
dispersion relations in §3:

w? = gk?h, *(s—if) = gK*h. (4.4)

R, T, A, and B, are as given by (4.2). To obtain the long-wave solutions of Sollitt &
Cross (1972) and O. Madsen (1974), it is necessary to assume normal wave incidence,
A =0, and that the breakwater is short compared to a wavelength, kb < 1. For
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oblique incidence, when m? € 1 we obtain the following approximations for the
reflection and transmission coefficients:

i
Y (45)
p-_1_ (4.6)
o 1+id’ '

where 4 = b(K2—A%)/2m.

4.3. Semi-infinite porous breakwater

For this case, there are neither transmitted waves nor reflected waves inside the
breakwater at & = b, where b— c0; that is, 7' = B, = 0. By fulfilling the matching
conditions at x =0, a system of two equations with two unknowns, R and 4,, is
obtained. Solving, we obtain from the plane-wave approximation:

R= I—_m,
1+m

4.7

2(I/x) ()

YT =) (1 +m)’
The symbols are defined as in (4.3). This solution has a minimum at m = 1.

4.4. Finite breakwater backed by an impermeable wall

For this case, the breakwater is limited in width by an impermeable vertical wall at
x = b. This case has been analysed by P. Madsen (1983) for long waves at normal
incidence ; it may represent the seaward half of a vertical mound breakwater with an
impermeable core or a wave absorber in a laboratory wave tank placed next to a wall.
With the plane-wave approximation, the velocity potentials are

$1 = Iofexp [ —iz(k*— A%)i] + R exp [ia(k* — 2*)]}

¢, = P{d, exp[—ix(K®— A%} + B, exp [i(x—b) (K> — A%):]}, (4.8)

¢y =0.
The matching conditions between regions 1 and 2 remain the same as before, while
atz =5

Per = 0. (4.9)
Substituting the potentials into the matching conditions and using the orthogonality
relationships yields
' cos[(K2— A?)ib]—im sin [(K2— A%)ib]
cos [(K2— A?):b] + imsin [(K2— A2)ib)’

K (4.10)
where m= ——6— - ,
s—if\k2— A%
which can be transformed into
l—m(l —Ez)
2
R = 1+E (4.11)

- 14+4m 1—E*
1+E2
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In order to compare this solution with Madsen’s solution for normal incidence, let
A = 0 and let K and % be obtained from the long-wave forms of the linear dispersion
relations (4.4). Introducing these values into the expression for m, the following new

definition is obtained:
e (K €
m=—r-l-|=— (4.12)
s—if\k (s—if)e

which coincides with equation 4 of Madsen. Finally, (4.11) becomes

_1—m+(14+m)e*
"~ 14m+(1—m)e 2k’

(4.13)

which is the result obtained by Madsen (his equation 13).

5. Wavenumbers and mode swapping

Solutions of the dispersion relation within the porous medium, (3.9), as a function
of I',, which are necessary for both models, are obtained primarily by a
Newton—Raphson procedure. For large values of the parameter f, it is important that
good starting values are used. This is particularly true when the wavenumbers of two
different modes are close together (or when they coincide).

5.1. Small f

For very small values of f and for s = 1, approximate values for K, can be obtained
using the k, obtained in the water region. Define D(K) as

DK, ,,)=K, hsinhK, h—TI,coshK,  h, (5.1)

such that D(K,,,,) = 0 for a solution. Expanding about the f = 0 solution, k,, which
is equal to one of the solutions in the water domain from (3.4), for K, ,, we obtain

D(K ) = D(ky) + D (k) (K iy — k) +3D" (k) (K iy — k) + - (5.2)

where the primes denote differentiation with respect to k,. To first order in
(Kpy1—Fk,), we have

~ D(k,)
Kpn=k,— Dk’ (5.3)
where D(k,) = ifl";coshk, h, (5.4)
D'(k,) = h(sinhk, h+k,hsechk,h). (6.5)

The first mode, K, is real for f = 0, corresponding to a progressive wave in the
water region (k,), and (for small f) it is the most progressive mode in the porous
medium. The other modes, K,,n = 2,3, ..., are purely imaginary for f = 0. From
(5.3), the influence of the fis to damp the wave motion by adding (only) an imaginary
part to K, and real parts to the K,,,n > 1.

A higher-order approximation for K, follows by substituting (5.3) for one of the
(Kpi1—k,) in the last term of (5.2) and solving to obtain

D(k,)

D(k,)D"(k,)\
(D’(k,,)— (AP ,,))

where D’(k,) = 2h®cosh k, h.

Kn+1 = kn -

(5.6)
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Ficure 2. First five wavenumbers in the porous medium as the friction factor, f, varies from 0 to
12, for I', = 0.2012. Solid line corresponds to K, ; dashed lines correspond to K,, n = 2-5.

For the wavenumber corresponding to k,, this more accurate approximation now
results in a change in the real part of K, which changes the wavelength of this mode.
For a dimensionless water depth I'; > 1, the wavelength of this mode is lengthened ;
the opposite is true for I, < 1.

Both of these approximate solutions, valid for small f, also provide a first
approximation for K, in a Newton—Raphson numerical solution procedure for larger
values of f. This does not always result in a successful search for each of the infinite
number of modes. Often, for large values of f, the starting value in the
Newton—Raphson procedure is taken as a K, value for a slightly smaller value of f.

5.2. Mode swapping

Unnoticed by previous investigators, the Newton—Raphson procedure, based on
iterating (5.3), fails when D’(K,) is equal to zero. At these K, values, the
eigenfunction expansion in the porous medium also fails, since for this value the
normalization parameter, N*(K,) is equal to zero. An entirely new solution procedure
is needed for these situations.

Figures 2-6 illustrate the behaviour of the dispersion relationship with dimen-
sionless depth and the situations where the eigenfunction solution fails. The plots
show the complex wavenumber for the first five non-dimensional modes (K, k,n =
1-5) for various values of f and a given value of I';. To help identify the individual
roots: K, b is the upper-most curve in each figure, with the largest real part for
f=0; the K, h,n = 2-5 are ranked from smallest to largest imaginary part for

f=o.
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Fieurg 3. First five wavenumbers in the porous medium as the friction factor, f, varies from 0
to 4, for I'; = 1.6010. Solid line corresponds to K.

For a shallow-water case, I, =0.2012, figure 2 shows the dimensionless
wavenumbers in the porous medium as f varies from O to 12. For this case, Re {K,}
first increases (as predicted by (5.6)), then decreases with f. Re {K,} exceeds Re {K,} for
f > 10, which means that the plane-wave approximation is not valid for large values
of f. No mode swapping appears for shallow water.

In figure 3, a value of I, much greater than unity is used (1.610) and K, has an
immediate decrease in magnitude as f increases. For this I}, K, is greater than K, for
relatively small values of f.

For the value of I', = 1.65061, corresponding to intermediate water depth, the
curve of K, h versus f osculates with that of K, %, as shown in figure 4 at K, h =
(1.12536, —2.10620), corresponding to an f-value of 1.24801. For slightly smaller
values of I'} the dimensionless K, curve passes above the K, curve. For a slightly
greater value, the K, curve passes below the K, curve; in fact, the trajectory followed
by each curve is the same as that followed by the other mode at the slightly smaller
value of I'|. This is referred to as mode swapping (e.g. Craik 1985).

As I', increases towards deeper water conditions, the dimensionless K, curve may
intersect other higher K, modes. Figures 5 and 6 show the double roots of K, » with
K, hand K, h. In the last curve, it is clear that the value of K, & oscillates around the
vertical line, Re {Kh} = I.

The coalescence of the two modes implies that another new mode must be present,
as occurs for example when double roots are obtained in the characteristic equation
while solving an ordinary differential equation with constant coefficients. The new
mode at the coalescence point is

eti&?(+ircosh K, (h+2)+ (h+2)sinh K, (h+2)) (6.7)
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FiouRE 4. First five wavenumbers in the porous medium as the friction factor, f, varies from 0 to

4, for I' = 1.6506, showing the coalescence of the first two modes, K, and K,. Solid line corresponds
to K.
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Fiaure 5. First five wavenumbers in the porous medium as the friction factor, J, varies from 0 to
4, for Il = 2.0579, showing the coalescence of K, and K,. Solid line corresponds to K.

21 FLM 224
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k.h
Ficure 6. First five wavenumbers in the porous medium as the friction factor, f, varies from 0 to
4, for I', = 2.2785, showing the coalescence of K, and K,. Solid line corresponds to K.

Mode Kh r, S
2 (1.12536, —2.10620) 1.65061  1.24801
3 (1.55157, —5.35627)  2.05785  2.59239
4 (1.77554, —8.53668)  2.27847  3.74051
5 (1.92940, —11.6992)  2.43112  4.80798
6 (2.04685, —14.8541)  2.54799  5.82647
7 (2.14189, —18.0049)  2.64270  6.81048

TaBrLE 1. Osculation points in the dispersion relationship

as shown in Appendix B using a Green’s function approach. This mode coexists with
the usual mode for this wavenumber,

cosh K, (h+2)eifr®,

All of the originally (at f=0) evanescent modes swap identities with K, at
appropriate values of I'| and f, as D’ in (5.5) has an infinite number of roots, some
of which are given in table 1. There are no triple roots, however, as D" is never zero.

6. Results and conclusions

First, for a finite-width breakwater, we examine the reflection coefficient as a
function of wave period (or depth) and the friction factor and wave direction. In
figures 7 and 8, the magnitude of the reflection coefficient, |R|, is plotted versus k,A
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Ficure 7. Reflection coefficient versus relative water depth for breakwater with f=1, b/h =1,
6 = 0°. Full long-wave model, - - --; long-wave theory, (4.2), ———; plane-wave approximation ; —-—-;
full solution,
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FioUrE 8. Reflection coefficient versus relative water depth for breakwater with f = 1.5, b/k = 1,
6 = 0°. Full long-wave model, - ---; long-wave theory, (4.2), ———; plane-wave approximation, —-—-;

full solution,

for the various methods of solution with b/h = 1 for normal wave incidence. The
complete solution (with 6 terms in the porous medium expansion) and the plane-
wave approximation (4.2) are shown along with two long-wave approximations: the
first with the wavenumbers chosen by the shallow-water relationships (4.4) and the
second with the further approximation that (K2—A?)ib < 1 (O. Madsen 1974). This
second long-wave model will be called the full long-wave model.

For figure 7, the friction factor is fixed as unity, f = 1, and for figure 8, f = 1.5. For

21-2
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Fioure 9. Reflection coefficient versus relative water depth for breakwater with f=1, b/h =1,
6 = 30°. Full long-wave model, ----; long wave theory, (4.2), ———; plane wave approximation,
—-—-; full solution, ——.

both figures, the full long-wave model diverges from the complete solution with
increasing depth more rapidly than the other solutions. By comparing the two long-
wave solutions, half of the error in the full long-wave model follows from the use of
the incorrect dispersion relationship in intermediate-depth water and the other half
from the assumption that the breakwater is short with respect to a wavelength. The
plane-wave approximation diverges from the full solution in deeper water than the
long-wave models and provides a reasonable estimate of the reflection coefficient, for
this case. For k,h < 1.5, the relative error between the plane-wave approximation
and the full solution is less than 5%. As the relative depth increases, the error
becomes larger.

In figure 9, the wave angle of incidence is 30° and f = 1, which can be compared
with figure 7, the normal incidence case. The non-zero wave angle results in smaller
reflection coefficients for all methods (and correspondingly increased transmission
coefficients). Again the plane-wave approximation works well for k) h < 1.5.

As the friction factor increases, the plane-wave approximation begins to break
down, as K, may no longer be the dominant progressive wave. For this reason, the
plane-wave approximation in most cases should be restricted to small f-values, with
‘small’ depending on the value of dimensionless water depth I';. The smaller this
parameter, the larger f may be for the plane-wave approximation to still provide
good estimates of R. For example, for I, > 1.6501 (corresponding to dimensionless
depths greater than that necessary for the first coalescence of the wavenumbers in
the porous medium), values of f less than one result in good (less than 10% error)
estimates from the plane-wave theory, when compared to the complete solution.
(Note that K, reaches a local minimum and K, reaches a maximum for f ~ 1 in figures
5 and 6.) However, in shallow water, for the case that I'; = 0.2012, f can equal 10
with less than 2% error between the plane-wave approximation and the complete
solution.

Figure 10 shows the magnitude of the reflection coefficient for the case of a
rectangular breakwater with b/h =1 for different (small) friction factors as a
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6 (deg.)
Ficure 12. Dimensionless skin depth versus 6 for a semi-infinite breakwater for two dimensionless

water depths and f-values. For I, = 0.2012: f=1,
..__;f=0.5, e,

. f=2, = For I, = 1.6010: f=0.25,

function of angle of incidence, using the plane-wave approximation. If the friction
factor is high, the reflection coefficient is generally larger than the case for a
breakwater with a smaller friction factor. Figure 11 shows the same variables but for
deeper water.

The minimum in the reflection coefficient, which occurs for large angles is shown
in this figure, corresponds approximately to a maximum in the transmission
coefficient. This minimum occurs at different angles of incidence as f (or m) changes
(and, for small b(K2— A2)! is independent of the width of the breakwater). This case
is similar to the non-dissipative case of waves incident on a submerged obstacle or a
step change in water depth. For the case of a small submerged obstacle, Miles (1981)
has shown that the reflection coefficient is zero for 45° incidence regardless of the
shape of the bottom obstacle. For a step, which is analogous to the case of the
reflection and transmission of light from two dissimilar media, a zero reflection
coefficient occurs at the Brewster angle, which can be shown to occur at tan 6, = k,/k,
in the long-water-wave analogy. The explanation for no reflection in optics is that the
transmitted wave direction is at a 90° angle to the reflected wave angle. Therefore
there can be no energy transferred into the reflected wave mode. If one of the two
media is dissipative, such as the case of electromagnetic waves impinging on a
conductor, which is analogous to our present topic, the minimum in the reflection
coefficient is known as the principal angle of incidence, Mathieu (1975).

For an infinitely wide structure, the oscillations induced by the incident waves
decay with distance into the structure. A measure of this decay is the skin depth,
which is the distance over which the motion has decayed to e™'. We non-



Reflection and transmission from porous structures 641

dimensionalize the skin depth § with the wavenumber k, and define it for the plane-
wave approximation as

ko

kybd=—"—3.
*(Ki-A%

(6.8)

It is shown versus incident angle in figure 12 for I', = 0.2012, and 1.6010, each with
two values of f. For all cases the penetration into the structure is reduced for larger
f-values and with increasing angles of incidence. Furthermore, the skin depth is less
than the wavelength (2r/k,)} for all cases, so that structures wider than a wavelength
can be considered semi-infinite structures.
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Appendix A. Equations in the porous medium

In order to describe the wave field inside a breakwater of porosity e, it is necessary
to describe the fluid motion of the incompressible fluid in the pores of the rigid
structure in terms of the seepage velocity vector, ¢, which has components in all
three coordinate directions, and the pore pressure, p. These quantities are obtained
by averaging over a finite volume, containing both the solid phase of the porous
medium and the pores.

Following Sollitt & Cross (1972), the conservation-of-mass equation can be
expressed as

V.g=0.

The equation of motion includes resistance forces described by Forchheimer’s model
and an additional term which evaluates the added resistance caused by the added
mass of discrete grains within the porous medium (Sollitt & Cross 1972; Hannoura
& McCorquodale 1978). This equation may be written as

oq P v Cre ]
A4 _ _ gl —=—+2= , A
sat V(pw+gz) |:R,,+R§, qleq (A1)

where ¢ = |¢q| and the fluid has density p,, and kinematic viscosity v. Two hydraulic
properties of the porous medium used in this equation are the intrinsic permeability,
R, and the turbulent resistance coefficient, C;; s is an inertial coefficient, defined by

s = 1+%0M, (A 2)

where C,, is the added-mass coefficient of the grains. The parameter s is often taken
as unity in practice, although Le Méhauté (1957) and Sulisz (1985) report better
correlations with laboratory data with values approaching 2. Here we have taken s
to be unity.

Assuming time-periodic motion, with the same angular frequency as the waves, w,
this equation may be linearized on the basis of Lorentz’s hypothesis of equivalent
work, replacing the dissipative nonlinear stress term in (A 1) by an equivalent linear
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term, fwq, where f is a dimensionless friction coefficient. This yields the linearized
form of the equation,

iswg = —V(}—Og+gz)—wfq. (A 3)

Taking the curl of this equation shows that the flow in the porous medium is
irrotational and can be described by a potential, g = V®. Substituting the potential
into (A 3) results in a Bernoulli equation within the porous medium:

6d5
85 + +gz+fw¢ 0. (Ad)
Finally, substituting the potential into the conservation-of-mass equation yields
Laplace’s equation, which must hold everywhere within the medium.

At the phreatic surface, the Bernoulli equation can be combined with the linear
kinematic condition that the water particles in the surface follow the surface,

& _ 00
& O’
: D b in®_
to yield s (S-lf); =0. (A 5)

Solutions to these equations depend on the values of s, ¢, f, C; and R,,, which are
related to the type of porous structure considered and are taken as given. However,
to evaluate the linearized friction coefficient, f, an additional condition is required.
Following others, the Lorentz’s hypothesis of equivalent work has been assumed. In
doing this, f is evaluated from the following equation:

Lsfefel it
fof s

where L = 2n/A. The determination of f is therefore iterative, as f is required to
determine the q.

Here, however, f is taken as a given constant, which, in principle, could range from
zero to infinity; for porous breakwaters, it is of O(1), while for wave absorbers in
wave tanks it can be higher.

Appendix B. Green’s function approach

The eigenfunction expansion can be found through the use of a Green’s function,
which will be shown for the porous medium, where the presence of a double pole
affects the solution for discrete values of the parameter, I', = w*A(s—if)/g. First the
simple-pole case will be treated.

The Green’s function for the velocity potential at (z,z) due to a wave source at
(€,8) is given by John (1950, p. 99), for z < §, as

Gla.2:£,0) =—f°p<m%”_g’du, (B 1)

]
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#h cosh ul+ I sinh ug }
phsinh yh—I', cosh puh)’

where p(p) = 2cosh,u(h+z){ (B 2)

For f> 0, p(u) has poles in the second and fourth quadrants; note that p(u) =
—p(—p). Write (B 1) as the sum of two integrals, using

2 cos p(x— §) = el#=~Hl 4 g~ lule—4, (B 3)

Deform the contour in the first (second) integral into the positive (negative)
imaginary axis. There is no contribution from the large quarter-circles, in the limit,
by Jordan’s lemma. The two contributions from integrating along the imaginary axis
cancel. This leaves only the residue contributions to the second integral. Evaluating
these residues at the simple poles, (¢ = K,,), where K,, are the (complex) roots of

DK,)=K, hsinhK_ h—TI,coshK, k=0, (B 4)
with Re (K,,) > 0 and Im (X,,) < 0, yields

cosh K, (h+z) cosh K,,(h + {) e 1 &mi==4
2K, h+sinh2K_ h ’

G(x,2;€,8) = 4mi (B 5)

showing that the eigenfunctions are of the form
cosh K, (h+z)etiEnZ, (B6)

For those cases where double poles exist, that is, when K, coalesces with a K,, and
both D(K,) and D’(K,) are zero, the residue of P(u)/D(u) is (see e.g. Churchill 1960)

2P/ 2 P "
30 B7)
where D(u) is as before and
Pu)="h (cosh uE+ % sinh ,ug’) cosh p(h+2) e =4, (B 8)

Thus, we find that a double pole at K, contributes to the expansion of G a term

2niQ(z, §) oK 28

hcosh’K, h (B9)

where
Q(z,8) = [—ilx—£| cosh K (h+2)+ (h+2)sinh K, (h+2)] cosh K, (h+ {)

+[—%hcoshK (h+{)tanh K, b+ (h+ &) sinh K, (h+ )] cosh K,(h+2). (B 10)
This shows that the appropriate eigenfunctions at K, are of the form

{tircosh K ,(h+2)+ (h+2z)sinh K (h+2)}et®:? and coshK,(h+2)er®1%. (B 11)
1 1
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