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Scattering of water waves by submerged plates
using hypersingular integral equations
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The interaction of surface water waves with submerged plates is considered. The
problem is formulated in terms of a hypersingular integral equation for the
discontinuity in the potential across the plate. Once found, the discontinuity may
be used for direct calculation of the reflection and transmission coefficients. A
numerical solution is employed, whereby the discontinuity is approximated by a
truncated series of orthogonal polynomials, multiplied by an appropriate weight
function. The choice of polynomials is dictated by physical arguments. Published
results are reproduced for horizontal and vertical plates. New results are
presented for inclined plates, showing the variation of the reflection coefficient
with angle of inclination and depth of submergence.

1 INTRODUCTION

The two-dimensional scattering of linear water waves by
thin rigid plates has been treated in several ways by
many authors. One reason for this attention is that thin
plates have been used as simple models for certain
floating breakwaters; Sobhani et al.' discuss this
application and give further references. Another reason
is that thin plates can lead to boundary-value problems
that can be solved exactly; this is very unusual in linear
hydrodynamics, but is also very valuable in that
such solutions provide benchmarks against which
approximate solutions can be assessed.

Previous work on scattering by thin plates can be
classified according to whether the depth of water is
finite or infinite, and whether the plate is completely
submerged or pierces the free surface. Moreover, most
previous work assumes that the plate is flat. In what
follows, we only refer to work on scattering by a single
plate of finite length.

1.1 Infinite depth

Ursell® solved the problem of wave scattering by a fixed,
surface-piercing, vertical plate. He constructed the
potential on each side of the plate by using an
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expansion theorem due to Havelock.> Continuity of
motion across the plane of the plate gave him an integral
equation for the horizontal velocity, which he solved
exactly. The reflection and transmission coefficients were
obtained from the limiting forms of the potential at
large distances from the plate.

John* considered surface-piercing plates making an
angle of 7/2n to the horizontal, where 7 is an integer. He
showed that this problem can be solved by complex
function techniques. However, as »n increases, the
method quickly becomes unwieldy; in fact, it seems
that even the case n =2 has not been worked out in
detail.

Evans® considered the scattering of surface waves by a
fixed, vertical plate, submerged beneath the free surface.
His method of solution is similar to that used by John,
whereby a complex potential is introduced, from which
a reduced potential may be defined. The choice of
reduced potential ensures that the boundary conditions
on the free surface and on the plate take the same form
for this new problem. This simplification allows the
reduced potential problem to be solved, from which the
desired result follows by integration.

Burke® treated the problem of scattering by a fixed,
submerged, horizontal plate, using the Wiener—Hopf
technique. Unfortunately, no numerical results were
given.

Finally, we mention a paper by Shaw,” who
considered the problem of scattering by a surface-
piercing plate, whose orientation is altered slightly from
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the vertical, and whose shape is slightly altered from
being flat. Using perturbation techniques, Shaw found
that to first order, the problem is the same as that solved
by Ursell.> A new second order correction is found,
however, with corresponding corrections to the reflec-
tion and transmission coefficients.

1.2 Finite depth

For water of constant finite depth, it is conventional to
divide the fluid domain into three, namely a finite
(rectangular) domain containing the plate, and two
semi-infinite domains. In the latter, the velocity
potential can be written as a series of eigenfunctions
(with unknown coefficients). In the finite domain,
different methods have been used. Thus, Patarapanich®
used the finite element method and calculated the
reflection and transmission coefficients for a submerged
horizontal plate. The main disadvantage of this method
is that it does not readily account for the inevitable
singularities at the two edges of the plate, where inviscid
theory predicts infinite velocities. Moreover, care must
be taken in matching with the eigenfunction expansions
in the two semi-infinite domains, so as to satisfy the
radiation conditions and to avoid spurious reflections.
Finite elements have also been used by Sobhani ez al.' in
their study of inclined, surface-piercing plates, wherein
the plate is hinged at the sea-floor and the effects of a
mooring line are also included.

For submerged horizontal plates, one can also use
eigenfunction expansions within the finite domain. This
leads to the method of matched eigenfunction expan-
sions. It has been used by Mclver’ for scattering by
moored, horizontal plates, although she also computed
the reflection and transmission coefficients for a fixed
plate.

Liu and Abbaspour'® have used a simple boundary
integral equation method within the finite domain for
inclined, surface-piercing plates. They partitioned the
finite domain into two by introducing an additional
boundary, extending from the lower edge of the plate
to a point on the sea-floor. They then solved
Laplace’s equation in each sub-domain using Green'’s
theorem and a simple (log R) fundamental solution.
Again, this method does not account for the plate-edge
singularities in a natural way: special elements are
introduced so as to incorporate the expected singular
behaviour.

1.3 The present paper

In this paper, we use an integral-equation method for
plates submerged beneath the free surface of deep water.
An application of Green’s theorem to the velocity
potential ¢ and an appropriate fundamental solution G
shows that ¢ must be represented in the water as a

distribution of normal dipoles, with strength [¢], over
the surface of the plate; {¢] is the discontinuity in the
potential across the plate. To find this discontinuity, the
boundary condition of no flow through the plate is
applied. The resulting equation can be written as a
so-called hypersingular integral equation over the plate
for [¢] (sections 3 and 4). This approach has several
advantages over the methods discussed above. For
instance, the radiation condition is automatically
satisfied by the choice of G. Similarly, the behaviour
of [¢] at each edge of the plate, where there are square-
root zeros, can be easily enforced. Moreover, the
method is applicable to curved plates as well as flat
plates. In fact, apart from some simple quadratures, the
only approximation required i1s that of a bounded
function defined on a finite interval. We do this by
choosing an appropriate set of orthogonal polynomials,
namely Chebyshev polynomials of the second kind, and
then using a collocation method on the governing
integral equation (section 5). Similar methods have
been used by Frenkel'' and by Kaya and Erdogan,"
and the method is known to be convergent.'*'* Having
computed an approximation to [¢], the reflection and
transmission coefficients can then be calculated directly
(section 6).

We have used the method outlined above to compute
the reflection and transmission coefficients for a single
flat, inclined plate. This is for simplicity rather than any
inherent limitation of the method. We find excellent
agreement with published results for horizontal and
vertical plates. We also give new results for inclined
plates, and investigate the variation of the reflection
coefficient with angle of inclination and depth of
submergence. In particular, we find that the most
noteworthy feature of scattering by a horizontal plate,
namely the zeros of the reflection coefficient, is absent
for a nearly-horizontal plate.

The method can also be applied to surface-piercing
plates. However, the nature of the singularity at the
point where the plate pierces the free surface is then
different.'® This leads to some complications. which we
are currently studying.

2 FORMULATION

A Cartesian coordinate system is chosen, in which y is
directed vertically downwards into the fluid, the
undisturbed free surface lying at y = 0. We choose the
z-axis perpendicular to the direction of propagation of
the incident wavetrain. A plate, lying parallel to the
incident wavecrests, is introduced below the free surface
of the fluid, the submergence of the plate being
independent of z. The problem is assumed to be two-
dimensional, by considering a plate infinitely long in the
z-direction, and the motion is taken to be simple
harmonic in time. We use the assumptions of an
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inviscid, incompressible fluid, and an irrotational
motion, to allow the introduction of a velocity potential
R{d(x,y)e ™"} to describe the small fluid motions. The
conditions to be satisfied by ¢(x, y) are

o &
(a )¢(x y) =

along with the free-surface condition

K¢+§f_o
8y

in the fluid, (1)

on y =0, ()

where K = w / g and g is the acceleration due to gravity.
On the plate, the normal velocity vanishes, that is

%
on
where in general, T is a finite, simple, smooth arc. The

choice of a linear theory of water waves enables us to
split the potential into two parts,

¢ = Qg + ¢inc7 (4)

where ¢, is the known incident potential and ¢, is the
scattered potential. Reformulated in terms of ¢, the
boundary-value problem now reads

=0 onT, (3)

& 82 . .
( p )qbsc = in the fluid, (5)
09 _ _
Koy + 3y 0 ony=0, (6)
ag:c = - —ag;:c onT, @)

The fact that ¢ is due to the presence of the plate
indicates the need for a radiation condition on ¢, that
waves travel outwards towards infinity. Mathematically,
this may be written as

0y
or

In the sequel, we use capital letters P, Q to denote
points in the fluid, and lower-case letters p, g to denote
points on the plate T'.

—iKpe =0  asr=(+y) o o0, (8)

3 GREEN’S THEOREM AND THE INTEGRAL
EQUATION

We formulate the problem as an integral equation by
choosing an appropriate fundamental solution with an
application of Green’s theorem. We use the fundamental
solution

(x=8*+(y—n)
(x=&+ (y+n)’
dk

— —k(y+n)
ZL}JO Y™ cos k(x — f) —% (9)

1
G(x,y;€,m) = Elog

which satisfies eqns (5) and (6); G has a logarithmic
source singularity at the point (x,y) = (,n); the
integration path is indented below the pole of the
integrand at k = K so that G also satisfies the radiation
condition at infinity. Applying Green’s theorem to
o« (P) and G(x,y;¢,m) = G(P,Q), we find

0ulP) = 52 [ Locla) D s, (10)
where P is any point in the fluid, 9/0n, represents
normal differentiation at ¢ on T, and [¢(q)] is the
discontinuity in the scattered potential across the plate
at the point g. Since [¢i,c] =0, we can replace [¢g]
in eqn (10) by [¢]. The potential defined by
eqn (10) satisfies eqns (5), (6) and (8). We finally need to
impose the boundary condition on the plate. We find
that

1 J[¢( )]aG(pqq)dsq=—%, pel. (11)

o Bn On,,

This is an integro-differential equation for [¢(g)], ¢ € T.
It is to be solved subject to the conditions

[¢] =0

physically, because the plate is completely submerged,
we expect the discontinuity in pressure across the plate
to tend to zero as we approach each edge of the plate.

Let us now interchange the order of integration and
normal differentiation at p in eqn (11). Although this
leads to a non-integrable integrand, Martin and Rizzo'®
have shown that this procedure is legitimate, provided
that the integral is then interpreted as a finite-part
integral. By adopting this procedure, we find

7} 0@ 5 ~ One,

P

at the two edges of T'; (12)

G(p q)ds, =

pel. (13)

which is to be solved for [¢], subject to eqn (12). The
cross on the integral sign indicates that it is to be
interpreted as a two-sided finite-part integral of order
two. The definition of such integrals is given in the
Appendix.

Hypersingular integral equations, such as eqn (13),
are unfamiliar. However, they arise naturally for many
problems involving thin bodies upon which a Neumann
boundary condition is imposed. They can be treated
directly (as herein), or they can be rewritten in a more
familiar form by a process of regularisation; this may
lead to a different integro-differential equation or to an
equation involving tangential derivatives of [¢] (which
are singular at the edges of I'). However, the
hypersingular integral equation (13) is quite general: it
is valid for water of constant finite depth and in three
dimensions, with an appropriate choice for G. There-
fore, it is worthwhile to develop general methods for
their treatment, rather than relying on special methods
that only work for special geometries.
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4 THE KERNEL

It is convenient to first find a general expression for the
kernel of eqn (13), which may then be used for any
choice of I'. We do this by denoting the unit normals at

p and g€l by n(p)=(nf.n]) and n(q) = (n],n}),
respectively, and applying the formula
&G , 0°G nl , °G
on,on, 'l 5xae * " an
&G , 0°G
14
+n2nla a€+ 2(9))67) ( )
After differentiating, and rearranging, we find that
&’G A 20
g 2(nnd — nPnf
an,,an,, " R? TR R* + 2n{ns — nin)
08, XY .
K= V(XY
(15)
where
Y- x? 2KY 5
= 2K°9¢(X. Y
AX,Y) (X2+Y2)2+X2+ 7z t2K o(X.Y)
o0 dk
o4(X,Y) :JJO costk——K (16)
X=x-§ Y=y+n, A =n(p).n(g), ©=(n(p).R)
(n(q).R), R=(x—-¢&, y—-n) and R = |R|. (Equation

(15) corrects a formula given by Martin;'® the error is
only significant for non-flat plates) We note that &, can
be com _Puted using an expansion derived by Yu and
Ursell:!

Oy(X,Y) = KY{(log KR — im + v) cos KX
(—KR)"
m!
X 1+1+ -+l cos mf3 (17)
172 m) C™

where v = 0-5772.. .. is Euler’s constant and /3 is defined
by X = Rsinf3 and Y = Rcos .

5 METHOD OF SOLUTION

An appropriate way of tackling eqn (13) is to define the
plate in terms of a single parameter, thereby reducing
the problem to the solution of a one-dimensional
hypersingular integral equation. In this paper, we
consider only flat plates of length 2a, inclined at an
arbitrary angle o to the vertical. Henceforth, we take
a=1 without any loss of generality. A suitable
parametrisation of the plate is given by

£(r) =tsina p(t) =d+tcosa —1<1<

where ¢ = (¢,7) and |a| < 7/2; d is the submergence of
the mid-point of the plate, and satisfies ¢ > cosa to
ensure that the plate is completely submerged. The point
p = (x,y) on I" has the same parametrisation, but with ¢

replaced by s. It follows that n(p) = n(g) = (—cosa.
sin o), and then eqn (15) simplifies to
2 1 ,
R 2 a) (1)
m,dn, (s — 1) |
If we introduce the new unknown function

S(1) = [p(q())], representing the discontinuity in ¢
across the plate at the point ¢, eqn (13) becomes

)(‘ S/(1) dt+Jl F(OA (X, Y)dt = h(s),
1 ~1

(s —1)?
-l<s<l, (19)
where
h(s) = 2nKexp[—K(d + scos «)
+i(Kssino — a — 7/2)] (20)

X=(s—f)sina and Y = (s+ f)cosa + 2d. The func-
tion A(s) is appropriate when

Gine = ¢~ (21)
corresponding to an incident wave travelling towards
X = +00.

Note that we have isolated the hypersingular part in
the first term on the left-hand side of eqn (19); the other
term is an ordinary non-singular integral. Using the
relationship of eqn (A3) in the Appendix, we can also
write eqn (19) as

[t A4, )
- &}_, Sdi+ Lf(t)f(x, Y)dr = h(s).

—l<s<l, (22)

which is another integro-differential equation for
f=1¢]. In fact, for flat plates, we can derive eqn
(22) directly. Write G =Go+ G, where Gy =
log{(x — &>+ (¥ —n)’} and G, = G — G,. Then, the
left-hand side of eqn (11) is proportional to

9G, G,
oo |10 sy + [ Lol 5t as,

Formally, the first term is

J [¢]82G0 _Jr[¢]?;TGg(]dsq: J [¢}dG°

where 0/ (')tq denotes tangential differentiation at g, and
we have used Laplace’s equation. It is difficult to justify
this formula, and it does not generalise to curved plates.

Let us return to eqn (19) (or eqn (22)). It can be
shown'® that any solution of eqn (19) that satisfies
f(£1) =0 actually behaves as f(1) ~ 1 F1f. as
t — *1, where f, are constants. We build this into
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our numerical procedure for solving eqn (19) by first
writing

f(B)=V1-12g(). (23)

This ensures that the edge conditions are satisfied for
any bounded function g. We then consider the
hypersingular part of eqn (19), that is we look at

F V1-12g(r)
1 (s—1)?

This is known as the dominant equation. The magnitude
of the hypersingular part of eqn (19) will, in general, be
larger than the other integral in that equation. For this
reason, and because the hypersingular requirement of
eqn (19) is hard to enforce using standard quadrature
methods, we look at some exact solutions of the
dominant equation. In particular, we consider the case
where g(7) is a Chebyshev polynomial of the second
kind, U,, defined by

sin(n + 1)0
sinf

dt = h(s). (24)

U,(cosf) = (25)
If we combine formula (22.13.4) from Abramowitz and
Stegun,18 namely

VUV -2 ULt

[ R0y,

-1 s—1
where T, is a Chebyshev polynomial of the first kind,
with eqn (A3), we obtain

f(‘ V1 -2 U ) dr
1 (s—1)?

whereby g(z) = U,(#) is the exact bounded solution of
eqn (24) when A(s) = —w(n + 1)U,(s). Since the Cheby-
shev polynomials of the second kind form a complete set
over the interval [—1, 1], we approximate g(¢) by a series,

= —7(n+ 1)Uy(s) (26)

g(t) =) a,U,(1) = gn(0) (27)
n=0

say, where N is finite and the unknown coefficients g, are
to be found. Substituting eqn (27) into eqn (19), we find

XN:a,,A,,(s) = h(s) -l<s<1 (28)
n=0
where
A, (s) = —m(n+ 1)U,(s) + Jil V1-2U, ()X (X,Y)dt
(29)

and h(s) is defined by eqn (20). To find the unknown
coefficients, we choose a family of functions ¥;(s), where
j=0,1,...N, called trial functions. Multiplying both
sides of eqn (28) by ¢;(s) and integrating from —1 to 1
leads to the Petrov—Galerkin system

Aa=h (30)

where

1
An= [ 40000

1
hy = J h(s);(s)ds.
-1

One choice for y;(s) is V1 —s® Ujs), leading to a
classical Galerkin method; Golberg”’14 has analysed the
convergence of this method. A more pragmatic choice,
which avoids double integrals, is 1;(s) = 6(s — 5;), where
5;(j=0,1,...,N) are points, with |s;| < 1. This yields

N
> a,4,(s) =h(s) j=0,1,...,N (31)
=0

which is a straightforward collocation scheme, with

collocation points s;. A suitable set of collocation points
is

5 = cos((gg”) j=01,...N (32)

these being the zeros of Uy, (s). This is expected to be a
good choice, since, if the coefficients a, are decaying
rapidly, the error in eqn (27) is roughly proportional to
Un.1(s); see p. 228 of Atkinson.!” Another possible
choice is

— cos(F 1)
g _cos( IN+2

these being the zeros of Ty, ((s). Golberg'>!* has shown
that eqns (32) and (33) are both good choices: he has
proved that they both yield uniformly-convergent
methods,

j=01,...,N (33)

max |g(t) — gn(t)| — 0 as N — oo.

—-1<1<1
The rate of convergence depends on the smoothness of
the kernel J¢" in eqn (19) and is exponential here, since,
for submerged flat plates, " is infinitely differentiable.
In all our numerical computations, we have used the set
given by eqn (33).

The problem now requires evaluation of the non-
singular integrals of A,(s;). For computational pur-
poses, we substitute ®y(X,Y) from eqn (17) into eqn
(29). If we consider a vertical plate (o = 0), we find that
the simplifications enable all but one of the seven
integrals arising in that problem to be evaluated
analytically. For a plate at any other inclination,
however, the symmetry of the problem is lost and the
problem becomes more difficult.

The reasons for wishing to evaluate the integrals
analytically are less to do with accuracy, but rather the
quicker computation achieved with a closed formula, as
opposed to using some quadrature scheme, such as
Simpson’s rule. In practice, it was found that the
computer time needed for a vertical plate, in which, as
already stated, the integrals were found analytically, was
much less than for the equivalent method using
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Simpson’s rule. Unfortunately, for a plate with a general
angle of inclination, it appears that the only straight-
forward integration is

Jl 1 V1 =12 U,(t) exp [-K(s; + 1) cos o]
x cos [K(s; — t) sina] dt

= ‘.R{ exp(—l(sje”io‘)Jl1 V1-t2U,(1)

x exp(—Kt ¢ dt}
= R{exp (~Ks;e ") (L, — Lus2)} (34)
where
L, = (n/2)(~1)"L,(Ke") (35)

and I, is a modified Bessel function; here, we have used
eqn (25) and a standard integral representation for 7.
We note that eqn (34) represents the only imaginary
entry of the matrix A.

6 REFLECTION AND TRANSMISSION
COEFFICIENTS

When an incident wave is scattered by a fixed body,
some of the wave energy will be transmitted past the
body, and some will be reflected back. To quantify this,
we introduce the complex numbers £ and 4, which are
known as the reflection and transmission coefficients,
respectively. The magnitudes of Z and 7 are related to
the amplitude of the reflected and transmitted waves,
respectively. Similarly, the arguments of # and 7
correspond to a phase shift in the scattered waves. For
an incident wave given by eqn (21), # and 7 are defined
by the asymptotic behaviour of ¢ as |x| — co. More
precisely, we have

T e KX a5 x — 400

6(x,7) ~ { it (36)

as x — —00

From eqn (4), we can define # and 7 solely in terms of
the scattered potential,

g __ ~Ky+iKx
(T —1)e asx — +oo (37)

R e~ Fikx as x — —o0.

Bse(x, ) ~ {

Now, ¢ is given by eqn (10). Since

K(y+m+iK(x—¢€)

G(x,y;€,m) ~ —2wie” asx — oo  (38)

the integral representation of eqn (10) gives
. Kyt 0 _knti
bulx,9) ~ =ie R4 | (6 m)] eI,
T On,

as x — *oo. (39)

Simple comparison of eqns (37) and (39) now yields the
formulae

. 8 e
R =—i Jr [#(q)} o Kntike ds, (40)
q
and
7 - 0 -Kn-ike
T —1=—i r[d)(q)]%e dSq. (4])
q

From these formulae, we see that once the discontinuity
in ¢ across the plate has been found, the values of # and
J may be found directly, without having to find &,
everywhere in the fluid first. Thus, by substituting eqn
(27) and parametrising as before, we find that # and .7
are given by

N
R = _Ke_Kd_m Zan[l:n - I:n+2] (42)
n=0
and
N
T —1=Ke XN " gL, - L) (43)
n=0

respectively, where L, is defined by eqn (35) and L, is
the complex conjugate of L,. Note that, as the plate
submergence d is increased, # — 0 and J — . This
behaviour is to be expected on physical grounds.

It is known that # and .7 satisfy certain relations, for
any scatterer. Let #, and J, be the reflection and
transmission coefficients when the incident wave
propagates towards x = +oo. Similarly, define #_ and

J_ for incident waves propagating towards x = —oo.
Then
T=9 =7, say, (44)
|‘@+| = |g—‘ = |‘%|’ say, (45)
R+ |7 =1 (46)
and
TR +TR_=0. (47)

These relationships are well known,? and can be used as
an independent check on the method of solution
employed.

7 RESULTS

Figure 1 shows graphs of |4, for a vertical plate, plotted
against Kb, where K is the wavenumber and b =d + a is
the distance from the undisturbed free surface to the
lowest point on the plate. Graphs are given for three
values of u = (d — a)/(d + a), the submergence ratio of
the top edge of the plate to the bottom edge; this ratio
occurs in the exact analytic solution obtained by Evans.’
Comparison of our results (with N = 15) with his shows
excellent agreement for all values of x shown. However,
as the plate approaches the free surface (x — 0) more
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15 2 25 3

Kb

Fig. 1. Reflection coefficient for a vertical plate, for various u.

polynomials need to be used to ensure convergence until
finally the method used becomes unsuitable in the form
used.

For the case of a horizontal plate, we have an extra
parameter to consider, in that the wavelength of the
waves passing above the plate will be different from
those on either side of the plate. Figure 2 shows graphs
of |#| plotted against 2a/)\’, where 2a is the length of the
plate and ) is the wavelength above the plate, for
various values of d/); here d is the submergence of the
plate and A is the wavelength of the incident waves.
Although Patarapanich’s results® are for a horizontal
plate in water of finite depth, he does give results for the
case in which the depth of the water is twice the
wavelength of the incident waves, which he calls ‘deep’
water inasmuch as the effect of the lower boundary on
the motion of the fluid is assumed to be small. The graph
in Fig. 2 for which d/\ =015 has been chosen
specifically for comparison with the deep-water graphs

given by Patarapanich® in his Figure 4. We see very
similar behaviour to his results, except for a slight shift
towards the origin of the peaks and troughs of |#|, with
a corresponding reduction in the maximum value of ||
at the peaks. This discrepancy is possibly due to finite-
depth effects. We also found that our results agree with
those obtained by Mclver.” We remark that the main
feature of the results for horizontal plates is the
occurrence of zeros of the reflection coefficient as a
function of frequency.

Figure 3 contains the results (with N = 15) for a plate
inclined at an angle of 7/4 to the vertical, and three
depths of submergence. (Results have also been
obtained for a plate inclined at an angle of —n/4 to
the vertical; the relationships (44)—(47) were found to be
well satisfied.) The behaviour of |#)| is seen to resemble,
somewhat, the behaviour of || for a vertical plate; not
surprisingly, |#| reduces with depth of submergence,
and approaches zero as the waves become shorter.

Fig. 2. Reflection coefficient for a horizontal plate, for various d/A.
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Fig. 3. Reflection coefficient for a plate inclined at 45°, for various submergence depths d/a.

09} 0.25 .

0.8

06f ; o T
IR ; 1.0 N
“. ~~~~~ ]

0.4} P S 01T .

02t !/
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Fig. 4. Reflection coefficient for an inclined plate whose top edge is at a fixed depth below the free surface, for various inclinations 6.

07
IR|0'6 -
0.4
03F |
0.2}

Fig. 5. Reflection coefficient for a horizontal plate (§ = 0) and for a nearly-horizontal plate (5§ = 0-01).
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Let 6 =1-2a/n, so that § =0 corresponds to a
horizontal plate (Fig. 2) and 6 =1 corresponds to a
vertical plate (Fig. 1). Figure 4 contains the results (with
N=16) for four values of § and one depth of
submergence, the latter chosen so that the upper plate
edge is at a distance ¢ below the free surface and
c¢/a=01 (whence d = ¢ + acos ). From these curves,
we can begin to see the transition between vertical and
horizontal plates. In particular, for the smallest value of
6 shown, namely 6§ =01 (a=281°), |#]~1 for a
substantial range of wavelengths, 0-4 < Ka < 0-7, and
then has a local minimum at Ka ~ 1-4. In Fig. 5, we give
results for smaller §, namely § = 0-01 (o = 89-1°) and
6 = 0. These show a shift to the right as é increases,
resulting in large changes in |#| near the zeros of # for

= 0. Moreover, it seems that these zeros for § =0
disappear as soon as § becomes positive (although we do
not have a proof of this result). Thus, these zeros for
horizontal plates probably cannot be exploited in
practice, for they are destroyed by small changes in
the angle of inclination. Finally, we note that it may be
possible to analyse the problem for small 6 using a
regular perturbation scheme, as used by Shaw’ for small
a, but we have not explored this avenue.
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APPENDIX

Let f be a Holder-continuous function, f € C°?. Then,
the Cauchy principal-value integral of f'is defined by

][il%dt = 1133{1_ (.{St)tdt+J:+€f(t) dt} (A1)

Suppose that f is smoother, so that f’ € C*?, that is,
f€ CY. Then, we can define the two-sided Hadamard
finite-part integral of order two by

[ L0 gl [ 10,
(s—t) e—*o -1 (s——t)2

+J1 S0 g, zfe(‘)}. (A2)

s+e (S — l)

If fe C"?, these two integrals are related by

A S0 | S0, A3

15—t 1(s—1)?



