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Boundary Integral Equations for the Scattering of Elastic
Waves by Elastic Inclusions with Thin Interface Layers

P. A. Martin!

Received February 27, 1992; revised July 20, 1992

Elastic waves are scattered by an elastic inclusion. The interface between the inclusion and the
surrounding material is imperfect: the displacement and traction vectors on one side of the interface
are assumed to be linearly related to both the displacement vector and the traction vector on the
other side of the interface. The literature on such inclusion problems is reviewed, with special
emphasis on the development of interface conditions modeling different types of interface layer.
Inclusion problems are formulated mathematically, and uniqueness theorems are proved. Finally,
varjous systems of boundary integral equations over the interface are derived.
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1. INTRODUCTION

Consider a bounded obstacle embedded in an un-
bounded solid. Both the obstacle (the “‘inclusion’”) and
the surrounding solid (the “‘matrix*”) are composed of
homogeneous, isotropic elastic materials. We consider
the scattering of elastic waves by the inclusion. For small
time-harmonic oscillations, this leads to a vector trans-
mission problem, which we call the inclusion problem,
in which conditions are specified on the smooth inter-
face, S, between the matrix and the inclusion.

Usually, the matrix and the inclusion are assumed
to be welded together, i.e., the displacement and traction
vectors are both continuous across S, which is then called
a perfect interface. The opposite extreme is when there
is no interaction (“‘complete debonding’”). Intermediate
situations arise when the two solids can slip or separate,
or when there is a thin layer of a different material (such
as glue or lubricant) between the solids. In this paper,
we are especially interested in those intermediate situa-
tions that can be modeled by simple linear modifications
to the perfect-interface continuity conditions.
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To begin, we step back and consider plane inter-
faces between two elastic solids (Section 2). We give a
brief review of the literature (updating an earlier re-
view),® showing the development of various model in-
terfaces. For example, one model assumes that the
discontinuity in the displacement (traction) vector across
the interface depends linearly on the average of the trac-
tion (displacement) vectors on the two sides of the in-
terface (see (7) below). Another assumes that the
displacements and tractions on one side of the interface
are related to both the displacements and the tractions
on the other side of the interface (see (8) below). These
two models include most of the phenomenological models
of imperfect interfaces in the literature. They are used
subsequently for problems with bounded inclusions. Such
problems are formulated in Section 3 and relevant lit-
erature is reviewed in Section 4.

In Section 5, we consider the question of unigue-
ness: given an interface model, does the inclusion prob-
lem have at most one solution? Conditions are found
which are sufficient to guarantee uniqueness. Some models
suffer from non-uniqueness; an example is the ““lubri-
cated interface™ (see (13) below), for which Jones fre-
quencies might occur (Section 5.2).

In Section 6, we describe methods for reducing in-
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clusion problems to boundary integral equations over the
interface §. We limit ourselves to singular integral equa-
tions (with Cauchy principal-value integrals), as these
are amenable to standard boundary-element methods.
However, our aim is also to derive systems of integral
equations for which a theoretical framework can be given,
so as to establish solvability. These mathematical aspects
will be discussed elsewhere.

2. IMPERFECT PLANE INTERFACES:
A REVIEW

Consider a plane interface x; = z = 0 between two
elastic solids. Let uy and 7% be the components of the
displacement vector and stress tensor, respectively, in
+z > 0. The traction vectors on z = 0 are given by
t3 = 75. If z = 0 is a perfect interface, we have

[t] = 0and [u] = 0 1)

where square brackets denote discontinuities across the
interface:

t] = t+ — t- and [u] = u* — u-,

evaluated onz = 0.

The perfect-interface conditions (1) were first modified
by Newmark in 1943.® He was concerned with the
transmission of static loads between straight beams, and
explicitly allowed slipping to occur, replacing (1) by

ft] =0, [us] =0 and [u] = Mt, 2

where o = 1 or 2, and M is a positive constant. Note
that M = 0 corresponds to a perfect interface, whereas
M = « corresponds to a ““lubricated interface,” i.e.,
one where there is a thin layer of inviscid fluid between
the two solid.

Newmark’s theory is for two beams in two dimen-
sions, but it has been generalized to

] =0, [us] =0 and [u] = ﬁ; Megts  (3)

where M, can be a function of £, and [u,] (giving a
nonlinear model). Toledano and Murakami®® have re-
viewed applications of the model (3); usually, Mg is
assumed to be a positive diagonal matrix.

Similar boundary conditions have been used by
Murty® to model the propagation of waves through a
“loosely-bonded interface.”” Banghar et al.©) have de-
rived the conditions (2) by assuming that there is a thin
interface layer of viscous fluid. Now, the parameter M
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is given by
ih
M=— 4
- @
where £ is the thickness of the layer, m is the shear
viscosity coefficient of the fluid, and a harmonic time-
dependence of e~ is implied.
Jones and Whittier® have modeled wave propa-
gation through a ““flexibly-bonded interface’ by allow-
ing both slip and separation. They replaced (1) with

[t] =0 and [u] = F.t 8]

where F = diag {M,, M,, M,} is a constant diagonal
matrix. Several authors have used (5).%- Mal and Xu('?
and Pilarski and Rose? have given the formulae

h h
M =L d =
o an "N+ 2u

(6)

where A and p are the Lamé moduli of a thin elastic
layer modeling the bond. Other formulae, for thin layers
made of other materials, have been given by Persson
and Olsson.®? Klarbring® has derived (5) and (6) for
a plane interface between two bounded elastic bodies.
Baik and Thompson6:1”) have argued that inertial
effects should be included. Thus, they replaced (5) with

[t] = G(w) and [u] = F.(t) (7

where angled brackets denote (vector) averages across
the interface:

ty = %(t* + t~) and

1
(n) = E(u+ * u~) evaluated onz = 0.

The matrix G was assumed to be diagonal with negative
real elements. We call (7) the Baik-Thompson model.
It is well known that the problem of wave propa-
gation through a layer of viscoelastic solid between two
semi-infinite elastic solids can be analyzed exactly.(®
However, the extraction of approximate conditions, con-
necting the displacements and tractions across a thin layer,
has not usually been the aim of such analyses.(” A
recent exception is the paper by Rokhlin and Wang.%
They start with the plane problem for incident plane
waves, and then approximate its known exact solution,
assuming that the wavelength in the layer is much greater
than A. This results in interface conditions of the form

[t] = Gou~ + B.t- and [u] = F.t~ + A.u-
8

where A, B, F, and G are 2 X 2 matrices: F and G are
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real diagonal matrices, and 4 = BT (the transpose of B)
is skew-diagonal with negative imaginary elements; in
particular, F = diag {M, M,}, where M, and M, are
given by (6). We call (8) the Rokhlin-Wang model.
Rokhlin and Wang®® show further that, in certain cir-
cumstances, the coupling terms embodied in 4 and B
can be neglected, leaving

[t] = Gu- and [u] = Fit- )]

which is similar to the Baik-Thompson model, (7). Fi-
nally, neglecting inertial effects is equivalent to setting
G = 0, whence (9) reduces to (5).

3. INCLUSIONS PROBLEMS

Let B; denote a bounded domain, with a smooth
closed boundary S and simply-connected exterior, B,.
We seek displacements w, (P} and w,(P) so that

Leue(P) = 0, Pc Be and
LuP) =0, PEB
where
u(P) = u,(P) + u,,(P) for P € B,

;. is the given incident wave and u, satisfies a radiation
condition at infinity. In addition, we shall impose certain
continuity conditions across S; these are specified below.
The operator L, is defined by

Lyu =ki?graddivu — K;?curl curl u + u
where the wavenumbers k, and K, are defined by
Pa0® = (A, + 2ua)ks
= K2 and a =cori (10)

The density of the solid in B, is p,, A, and p, are the
Lamé moduli, and the time-dependence e~** is sup-
pressed throughout, The traction operator 7, is defined
on § by

oy 7 dite
Ta m = )\a ma. -+ a — + —
(Tl = A u(ax ax,,,)

where n(p) is the unit normal at p e §, pointing into B,.
If § is a perfect interface, we impose

=0 and [u]=0 (11)

where t = T,u and t; = T,u, are traction vectors and
square brackets denote discontinuities across the inter-
face:

(] =t~1t and [u] =u —u, evaluatedonS.
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The corresponding inclusion problem has been studied
extensively (see, e.g., Kupradze et al.?Y and Mura®®?)
Martin®® has given a simplified treatment of the two-
dimensional problem, and further references.

Modifications to the perfect-interface conditions (11),
analogous to those described in Section 2, are reviewed
next.

4. INCLUSIONS WITH IMPERFECT
INTERFACES: A REVIEW

Suppose that the interface § is imperfect. For ex-
ample, the inclusion might be surrounded by a thin layer
of a different elastic material. For simple geometries,
such problems can be treated exactly.*2 The first ap-
proximate treatment, using continuity conditions across
§ similar to those described in Section 2, was given by
Mal and Bose.®® They considered spherical inclusions
with the following interface conditions:

[t] =0, [u] =0, and [u,] = Mt,. (12
Here, we decompose vectors as
up) = u8; + uys, +unforp e

where s, and s, are unit vectors in the tangent plane at
D, satisfying s;°s, = O and n = s; X s,. The parameter
M can be a complex function of w: M = 0 for a perfect
interface; M is given by (4) for a thin layer of viscous
fluid; and M = w for a lubricated interface, whence

[t] =0, ty, =0 [u,] = 0. (13)
Similar interface conditions have been used in models
of composite materials, where identical inclusions are
arranged periodically prior to analysis using homogeni-
zation techniques. Let e be a length scale associated with
the periodicity. For elastostatics, Lene and Leguillon®?”
used M = ke, where k > 0. For time-harmonic waves,
Santosa and Symes®® used M = ie/(wc), where ¢ is a
““viscous constant’ (Eq. 4).
Aboudi®®39 has used flexibly-bonded interfaces in
a different model of composites, with

[ =0, [] =M, and [u] = M, (14)

He identified M, and M, as h/E and h/p, respectively,
where the thin elastic interface layer has thickness 4,
Young’s modulus E and shear modulus w (Eq. 6).

Kitahara et al.®V consider an inclusion in ““spring
contact” with the exterior solid, This is intended to model
a thin compliant interface layer and leads to

[t] = 0 and [u] = 2F.¢t (15)
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where the matrix F (called the ““flexibility matrix’”)1
is a given positive diagonal matrix and the factor 2 is
inserted for algebraic convenience. Later, we shall allow
F to be a full matrix, with elements that vary with po-
sition p on S.

Interface conditions of the type (15) have been re-
viewed by Hashin®?, For a thin elastic interface layer,
he showed that 2F = diag {M,, M,, M,}, where M, and
M, are given by (6). The derivation assumes that § is
smooth, and that both the inclusion and the matrix are
much stiffer than the layer. Hashin®® has also given
similar results for inhomogeneous layers, in which the
material properties vary through the layer (see also Datta
et al. )G

More complicated interface conditions were ob-
tained by Datta et al.,®*3 by including all terms to
O(h) for an elastic interface layer of thickness z. Non-
local terms, involving various tangential derivatives, are
present (see also Nayfeh and Nassar).®® The simplest
(local) conditions discussed by Datta et al. 3435 are

[]=0 (16

where the layer has density p. A generalization of (16)
is

[t] = —phow’un  and

[t] =2Gu  and [u] =0 (17)

where the elements of the given matrix G could vary
with position p on S.

As a further generalization, we consider a model
that includes both (15) and (17), namely, the Baik—
Thompson model Eq. (7).

[t] = 2G.(u) and [u] = 2F.(t) (18)

where angled brackets denote (vector) average across the
interface:

1
(t) = E(t +t) and
evaluated on S.

(w) = %(“ + w)

Finally, we shall also consider the Rokhlin-Wang
model (Eq. 8)
[t] = G.w; + B.t; and [u] = F.t; + 4.u, (19)

where A and B are given matrices.

5. UNIQUENESS THEOREMS

Consider the problem of scattering by an inclusion
with an imperfect interface. We can prove uniqueness
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theorems for interfaces characterized by (15), (17), or
(18); for its generality, we use (18) here, and always
assume that all the elements of the matrices F and G are
finite. We adapt standard arguments given by Kupradze
et al.®) Thus, surround § with a large sphere Sy of
radius R. For P € B,, write

u(P) = u® + u®
where

u? = —k2graddive, u® =u — u®

and u,. = 0. Then, an application of Betti’s reciprocal
theorem to u and its complex conjugate, 6, in the region
between S and Sy gives

{ )2
k.(\, + Zpe)RIgnw LR [u®[? ds
+ K,p, lim I u®Pds +J =0 (20)
R—>% JSr
where

=3 ), 0 - B = om [ 0t
J = 5 S(u.t wt)ds = Im Su.t ds (21)
Jm denotes imaginary part and the radiation condition
has been used (see Kupradze et al., ?V Chap. 3, Section
2). Similarly, an application of Betti’s theorem in B; to
u; and U, gives

1

0=5

L (uyt, — Urt)ds = Im L u;t;ds.  (22)
If we can show that J = 0, we can deduce from (20)
that u® = 0 and u® = 0, whence u = 0 in B,; in
particular, we have u = 0 and t = 0 on . Next, we
use the given interface conditions. If these imply that u;
= 0and t;, = 0 on S, we can deduce further that w, =
0 in B,, as required. Let us now carry out this program
for the Baik—~Thompson model and for the Rokhlin~Wang
model.

5.1. The Baik-Thompson Model
Consider the Baik~Thompson model (18). Since

wi = urd, = 2 {0 + D - w)
+ (u + “i)'(i - Ei)}

subtracting (22) from (21) gives

25 = am [ (@F0 + HG@ a5
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after using (18). Thus, J = 0, provided that
Fy = Fy; for j # k and $m(F ) = 0 (no sum) (23)

and
Gy = Gy for j #+ k and Im(Gy) < 0 (no sum) (24)

J

So, if the elements of F and G are finite and satisfy (23)
and (24), respectively (for all p € S if F and G vary
with p), we have proved that u = 0 in B,, whence u =
0 and t = 0 on S. Then, the interface conditions (18)
give

-t =Gw and -~u = F

on S. Hence
({~GFyt;=0 and (I — FG)uy; =0

Since the matrices FG and GF have the same eigenval-
ues, we see that, provided

1 is not an eigenvalue of the matrix FG  (25)

it follows that w; = 0 and t; = 0, whence w; = 0 in B,.

Summarizing, if the matrices F¥ and G are finite and
satisfy (23), (24) and (25), this is sufficient to ensure
that the corresponding inclusion problem has at most one
solution.

5.2 Jones Frequencies

The proof in Section 5.1 fails for lubricated inter-
faces, defined by (13). We obtain J = 0, whence u(P)
= § for P e B, (and so the exterior field is unique). The
interface conditions then give

t; =0 and nw; =0 (26)

on S. It is well known that, for any S, there is an infinite
set of frequencies at which there is a non-trivial displace-
ment field u; in B, that satisfies (26),; these are just the
free oscillations of the inclusion in the absence of the
matrix. Do any of these fields also satisfy (26),? It turns
out that some of them do, but only for some geometries
and some frequencies: we call them Jones frequencies,
as they were first discussed by D. S. Jones®”) in the
present context,

It is known that Jones frequencies exist for spheres.
Thus, Lamb and Chree found that an elastic sphere could
sustain ““torsional oscillations,” in which the radial
component of the displacement is identically zero (see,
e.g., Eringen, and Suhubi, Section 8.14).%® The corre-
sponding frequencies of oscillation (i.e., the Jones fre-
quencies) are given as the roots of

(n = u(Kia) — Kigj,1(Ka) = 0
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for n = 1,2,..., where a is the radius of the sphere, j,
is a spherical Bessel function and the wavenumber X; is
defined by (10); some of these frequencies are listed by
Eringen and Suhubi,®® in their Table 8.14.1a.

Jones frequencies also exist for any axisymmetric
body; such bodies can sustain torsional oscillations in
which only the azimuthal component of displacement is
non-zero. Rand® has computed some of the oscillation
frequencies for prolate spheroids.

Intuitively, we do not expect Jones frequencies to
exist for an “‘arbitrary’” body. This has been proved
recently by Hargg.“®

5.3 The Rokhlin~Wang Model

Consider the Rokhlin-Wang model (19). Direct cal-
culation gives

U'f - ﬁ't = ll,-'f,- —_ ﬁi't[ + ui'E'Ii - -‘i.F'ti
+ t(FT = F)-t; + u(G — G,
+ v (C-CNy; + t-(DT — D),
where

C=A4G, D=BTF and o
E=A" + B — G'F + A'B.

Integrating over S, using (21) and (22), we see thatJ =
0 provided that F satisfies (23), G satisfies (24),

Cy = Cyforj # k and $m(C,) = 0 (no sum) (27)

J
Dy = Dy;forj # k and $m(D,) < 0 (no sum) (28)

i

and E = ¢l where ¢ is a real constant. These conditions
are sufficient to ensure that u = 0 in B,, whence the
interface conditions (19) give

(I + B)'ti + G'u,- =
Ft,+ (I + Ay =0

on §. If these equations imply that u; = 0 and t;, = 0,
we can deduce that u; = 0 in B, as required.

As an example, suppose that 4, B, F, and G have
the properties described at the end of Section 2: F and
G are real diagonal matrices, whence (23) and (24) are
satisfied; 4 = BT has negative imaginary elements apart
from zeros on the diagonal, whence E is real diagonal,
but not a multiple of I; moreover, C and D are purely
imaginary and skew-diagonal, so the first parts of (27)
and (28) are not satisfied. Thus, we are unable to estab-
lish uniqueness with these choices for 4, B, F, and G.
However, it is not known whether non-uniqueness can
actually occur (as in Section 5.2).
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6. BOUNDARY INTEGRAL EQUATIONS

In this section, we derive (direct) boundary integral
equations over § for inclusions with various imperfect
interfaces, in the plane-strain case (a similar analysis can
be made for three-dimensional problems). In fact, our
aim is to derive (quasi-) Fredholm systems of singular
integral equations, for all the usual Fredholm theorems
hold for such systems.“D In particular, we can analyse
solvability by showing that the corresponding homoge-
neous system has only the trival solution.

First, we introduce two fundamental Green’s ten-
sors, G,(P; Q) (a = e, i):

1 e
Kz ax;ox;

(Ga(P; Q))z] = {‘*‘Jaaij + (lba - d)a)}

1
Pa
where ¢, = —(/2)HY (kR), ¥, = —({/2)HYK,R)
and R=|P — Q|. Next, we define elastic single-layer and
double-layer potentials by

S.)P) = | wlayGutas P) s,

and

OaP) = [ warT 6. P s,

respectively, where T4 means T, applied at g € S. Then,
three applications of Betti’s theorem (one in B, to u, and
G,, one in B, to u;,, and G,, and one in B; to v; and G;)
yield the familiar representations

2u,(P) = (St)(P) — (Dw)(P), PEB (29)
and
- 2u(P) = (St)(P) — Dm)(P), PEB (30)
Letting P — p € S, (29) and (30) give
(I + B¥u — S,t = 2u, (31)
and
- K9y + St, =0 (32)

respectively, where

Kiu = | ug)T1 Gylas p) ds,

is a singular integral operator. We can obtain two further
relations by calculating the tractions on § corresponding
to (29) and (30). However, we shall forego this possi-
bility here. This self-imposed restriction prevents us from
obtaining Fredholm systems for some choices of F and
G, including the case of a perfect interface (F = G =
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0); Martin®® has given such a system, involving a re-
gularization of the operator 7D.

6.1 Flexibly-Bonded Interfaces

Consider interfaces modeled by (15). If we use (15)
to eliminate u; and t; from (32), and combine with (31),
we obtain the system

I + K—f _'Se u 2uinc
- . = (33)
I-K% § —2( - KHF/\t 0
More precisely, this is a system of four coupled singular
integral equations for the four components of the two

vectors u(p) and t(p), p € S. This system was derived
by Martin.® To analyze it, let

M=o +K%) and N=o( - K}

where o(L) is the symbol matrix of the singular integral
operator L (see Muskhelishvili®?) or Martin®®). Then,
we have to examine the determinant

det (]\; —;)NF) = 4 det(M) det(N) det(F).

It is well known that det M and det N are non-zero,
whence (33) is a Fredholm system provided that det F
does not vanish. Thus, we require that F be a non-sin-
gular matrix (for all p € § if F varies with p).

6.2. Inertial Interfaces

Consider interfaces modeled by (17). It is easily
seen that the use of (17) and (32), as before, does not
lead to a Fredholm system for any G (including G =
0). For an exceptional special case, see Section 7.

6.3. The Baik-Thompson Model

Consider the Baik—Thompson model (18). When
combined with (17) and (18), we obtain the system

I + K% 0 -5, 0 u
0 I-K* 0 & u
-G -G I ~I t
-I I F F t

2wy,
0
0
0

i

i

il

the corresponding symbol matrix has determinant



Scattering of Elastic Waves

4 det (M) det (N) det (F)

which does not depend on G. Thus, the 8 X 8 system
is Fredholm if, and only if, F is non-singular; with this
assumption, the interface conditions give

t=Au— By, and t = Bu — Ay,
on §, where the matrices 4 and & are given by

1
)

Substituting into (31) and (32) gives

(I + K% — S,4 S8 ) (u) _ (2uin°>
Sl-g I - K?f - Slﬂ u,- 0

(34)

This is a Fredholm system for u(p) and w,(p). In partic-
ular, if G = 0, we have 4 = & = 1/2F-1, whence
(34) reduces to (33), since t = 1/2F-u].

A=ZF'+G) and &= %(F"l - G)

6.4. The Rokhlin-Wang Model

Consider the Rokhlin~-Wang model (19). When
combined with (17) and (18), we obtain the system

I+K% 0 -S§ 0

e

0 I-KB 0 S u,
0 -G I —-I-B t
-] I+4 0 F t,
2uy,,
0
1 o
0

This system is Fredholm if, and only if, F is non-sin-
gular; with this assumption, we can eliminate the trac-
tions to give the Fredholm system

(1 + K% — S,{+BF-1 S(I+B)F-Y(I+4) - G)) ( u)
SF-1 I - K~ SFy+4) | \y,

= 2uinc
0
(33)
7. DISCUSSION
We have described several ways of reducing the

inclusion problem to systems of singular integral equa-
tions over §. Many other reductions are possible. For
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example, we have not used the hypersingular operator,
TD. Rather than consider more complicated situations,
let us conclude by mentioning a simpler situation. This
arises when the matrix and the inclusion are composed
of the same material. Then, for inertial interfaces, de-
fined by (17), we simply add (31) and (32) to give

(I - SeG)u = Uinc (36)

which is a Fredholm integral equation of the second kind
for u(p); here, we have assumed that the common ma-
terial has Lamé moduli A, and ., and density p,. Having
found u(p), t{p) is given by (31) as the solution of a
Fredholm integral equation of the first kind. Alterna-
tively, we can look for a solution in the form

“(P) = uinc(P) + (Sev)(P)’ Pe Be
ui(P) = uinc(P) + (Sev)(P)’ Pe Bz

where v(p) is an unknown function. These representa-
tions satisfy [u] = 0 automatically. Equation (17), then
gives

(I — GS)v = Guy,, (37)

which is adjoint to (36). One can make similar reduc-
tions for flexibly-bonded interfaces, defined by (15), but
the result involves hypersingular equations. For an analysis
of the analogous problems in acoustics and further ref-
erences, see Angell ez al. 42
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