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Abstract. Time-harmonic elastic waves are incident upon a bounded obstacle in three
dimensions. The resulting scattered waves are characterized by their far-field patterns.
We consider some simple guestions concerning the determination of the shape of the
obstacle from information on the far-field patterns. Specifically, we refine and extend
some results of ‘Wall, allowing mixed boundary conditions on piecewise-smooth surfaces.
We also prove two elastodynamic analogues of a theorem due to Karp, giving sufficient
conditions on the far-field patterns for the obstacle to be spherical. The proofs are
indirect and are based on symmetry arguments, as used for scalar problems by Ramm.
The possibility of a direct proof is also explored,

1. Imtroduction

When a time-harmonic elastic wave encounters an obstacle in an unbounded solid,
it is scattered to infinity in all directions. The scattered waves separate into a
compressional wave (FP-wave) and a shear wave (S-wave); each wave is characterized
by an amplitude, called a far-field pattern. The direct problem, described in section 2,
is concerned with the calculation of the two- far-field patterns, given the incident field,
the shape of the obstacle’s surface, S, and the boundary condition on S. There is an
extensive literature on direct problems; see, for example, [13, 20, 21].

In the corresponding inverse problems, the geal is to determine the shape of S
and, perhaps, the boundary condition on S, given some information on the far-field
patterns for at least one known incident field. There is a considerable literature on
these inverse problems in acoustics and in electromagnetism; see {7,26,28] and the
recent extensive review by Bates et a! [S]. However, the elastodynamic problem has
received much less attention.

Most work in elastodynamics has been concerned with inclusions or cracks,
where an inclusion is an obstacle composed of an elastic material differing from
the surrounding solid and a crack is defined to be an open smooth surface across
which the elastic displacement vector is discontinuous. The motivation behind these
studies comes mainly from ultrasonic non-destructive evaluation; for a general review
in this area see [33]. :

For inverse scattering by inclusions, one is interested in determining the inclusion’s
location and composition. Methods using long waves have been devised; see, e.g.
[15,32,35]. Born approximations have also been used; see, e.g. [4, 17, 24]. For cavities,
several approximate methods have been devised [12] in which only P-waves are used.
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For inverse scattering by cracks in a solid, we cite the papers of Gubernatis [14, 15],
Achenbach [1,2,31] and their coworkers. For example, Gubernatis and Domany [14]
note that, in the Jong-wavelength limit, an obstacle must be a crack if the far-field
patterns have equal magnitudes at all pairs of diametrically opposite directions.

All the elastodynamic work cited above involves some form of approximation. In
the rest of the current paper, we are concerned with exact results. One question
to ask is: how much scattering information is sufficient to uniquely determine, in
principle, the obstacle? This question has been addressed by Wall [34]; his work is
extended and refined in section 4.

In section 5, we consider elastodynamic analogues of Karp’s theorem. Karp [19]
proved the following result in two-dimensional acoustics for the scattering of plane
waves by a sound-soft (Dirichlet condition) cbstacle, S: suppose that the far-field
pattern F(¢;«) is a function of 8 — &

F(8;,) = f(8-a)

say, for all ¢ and for all o, where 0 is the angle of observation and « is the angle
of incidence; then § is a circle. This provides the explicit solution to an inverse-
scattering problem. New proofs were given later by Colton and Kirsch [6], in three
dimensions and for sound-hard (Neumann condition) obstacles. Colton and Kress
[6] have proved an analogous result for electromagnetic scattering by a perfectly
conducting obstacle. We give proofs of two elastodynamic analogues of Karp’s
theorem in three dimensions, giving sufficient conditions on the far-field patterns
for S to be a sphere. The proofs are based on some symmetry arguments, as used
recently by Ramm [27] for several scalar problems. Thus, the proofs are indirect,
~ whereas the proofs in [6,8,19] are direct. In section 6, we sketch how a direct
proof for elastodynamics might proceed, following the ideas in [8], and highlight the
remaining difficulties; the resolution of these difficulties may lead to new insights into
elastodynamic inverse scattering,

2. The direct problem

Let B; denote a bounded, three-dimensional domain, with boundary S, and simply-
connected unbounded exterior, B,. We suppose that the surface S is properly regular,
in the terminology of Gurtin [16, section 5]; this means, roughly, that S is closed,
connected and piecewise smooth (so that edges and corners are allowed).

The exterior domain B, is filled with homogeneous isotropic elastic material, with
Lamé moduli M and u, Poisson’s ratio v, and mass density p. A stress wave is incident
upon the obstacle B;; this leads to the following scattering problem.

Direct problem. Find a displacement vector »( P} which satisfies
k~2prad dive — K 2curlcurly + v =0 @1

for P € B,, radiation conditions at infinity (these are specified below in section 3)
and boundary conditions on S. The latter are

u(p) =0 for pe §, (2.2)
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and

Tu(p} =0 for p £ 5 o 23)
where S is partitione(i according to

S=5US, S,nS =8
and the total displacement in B, is

w(P) = o(P) + uy (FP) PeB,. (2.4)

The given incident wave, u,.. is assumed to satisfy (2.1) everywhere. The
wavenumbers k& and K are defined by

put = (A +2u)k? = uK*

and the time-dependence e~** is suppressed throughout. The traction operator T is
defined on smocth parts of S by

Su; Su Ou,
(Tu)m(p) = A 5L o pom, (gf + axi) @5)
where n(p) is the unit normal at p € S, pointing into B,.

We shall use the following notation: capital letters P, Q denote points of B,U B;
lower-case letters p, ¢ denote points of S; = is the position vector of P with respect
to the origin O, which is chosen at some point in By = |r| and # = » /7.

If S, = S, the boundary condition (2.3) is absent; this is appropriate if the
obstacle B; is a rigid, immovable body. On the other hand, B; is a cavity if S, = S.

We shall also require some properties of the following related interior problem.

Vibration problem. Find a non-trivial displacement vector u( P) which satisfies (2.1)
in the bounded domain B;, together with the boundary conditions (2.2) and (2.3) on
the properly-regular surface S.

This eigenvalue problem only has non-trivial solutions for certain values of the
frequency w. It is known that these eigenfrequencies form an infinite, discrete set,
and that each eigenfrequency has a finite multiplicity. For proofs of these results, see
Gurtin [16, sections 75-~78], Roseau [29, ch 6, subsection 3.3] and Sanchez Hubert
and Sanchez Palencia [30, ch 2, section 7].

3. Radiation conditions and far-field patterns

The formulation of radiation conditions is given in [21, pp 124-130]. Ore formulation
is the following: decompose the scattered field as

v(P) =¥ +v°
where

vf = —k 2grad div v v =v -
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then, we require that

vt P ov® . 5
-;-(_a_r-—lk'v )-—H) 1"(—8-;-—11{11 )—-—‘0 as r—o0 (3.1)

uniformly with respect to all directions 7. These are the radiation conditions. It is
common to require also that both »¥ — 0 and »® — 0 as r — co. However, these
conditions are implied by (3.1).

The fields »¥ and »° are the longitudinal and transverse parts, respectively, of
the scattered field »; they satisfy

(V24 )wd =0 and (V2P+ KHoS =0

and correspond to radiated P-waves and S-waves, respectively.
We can specify the behaviour of »( P) for large r more precisely. We have

eiKr

v(rf) = FP(f-)ir- + F3(#) +0o(r %) (3.2)

™

as r — oo, uniformly with respect to all directions #. The vectors FF and F° are
called the far-field patterns (or scattering amplitudes). It turns out that

FE(#) = FP(#)F and F.F5(#) =0. (3.3)

Thus, the radiated P-wave propagates in the outward radial direction, whereas the
radiated S-wave is polarized in a plane perpendicular to the radial direction.

The far-field patterns can be calculated in terms of the displacements and tractions
on the surface of the obstacle. The starting point is the familiar representation

w(P) = %L{(T«;).G(q; P)—v-T96(g; P)} ds, (34

for P € B,, where T9 means T applied at ¢ € § and G(P; Q) is the fundamental
the Green tensor (Kupradze matrix), defined by

G(PQy = 2 ws, + L2 (w_w)
( ? i 12 i KZ 63533‘1‘
where

¢ = —e*f /(21 R) ¥ = —eX8 /(27 R)
and R is the distance between P and @. Asymptotic approximation of (3.4) for
large  yields (3.2) and (3.3), where, for example (sce [10])

Poay— _  + T
FP(#) = gy (@ ep(—ike - )s (35)

Here, we have used the notation

{o@hw(@)s = (o Tw-w-To)ds,.
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We can also obtain a formula for FF in terms of the total field u; this is more
convenient when using the boundary conditions on S. Thus, let ¢(Q) = exp(—ik# g).
Since the displacement field

U= (i/k) gradgy ¢ = ¢7

is regular everywhere, an application of the Betti reciprocal theorem in B; to U and
WUine gives

{uinc(Q)v é(Q)'ﬁ}s =0,
Adding this result to (3.5}, using (2.4), gives

. 1 .
FE(#) = m {u(q). qb(CI)"}s‘

Now, for any constant vector b, we have
u(q) T{eb} = —ik{A(uwn)(b-F)+p(n-#)(u-b)+ u(n-b)(u-7)}p(q).

Hence

A
bt

dr(N+2p) ,
X [s[ik{k(u 1)+ 2u(n - F)(u- #)} + £ Flexp(~ikf - g)ds, (3.6)

FP(#) =

where ¢ = Tu, w and n are all evaluated at g, the integration point on S with
position. vector g. Similar calculations for F° give

F3(#) = 4%_I;L‘u'i"-/S[iK;,c{('z.r, xF)m-F)+(nxF)(u-7)}+t x 7
x exp(—iK7# - q}ds,. - G7

Wall [34] has given similar formulae for the far-field patterns, but his involve the
scattered field » rather than the total field .

4. The inverse problem

We are interested in the following inverse problem:  given some information on the
far-field patterns, determine the shape of S and/or the boundary condition on S. To
begin with, suppose that we know F¥ and F* for all # € (3, the unit sphere (since
FF and F are analytic functions of #, it i enough to know them on an open patch
of 2). We can then reconstruct the scattered field everywhere outside the smallest
ball containing S, B [9]. This field can then be continued analytically into a portion
of B (this portion certainly includes Bg \ B,).

In the rest of this section, we consider the general question of uniqueness: is it
possible that two different obstacles can give rise to the same far-field patterns?

Firstly, let us consider the determination of the boundary condition on a known
surface S. )
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Theorem 4.1. Suppose that the obstacle B; with boundary S has known non-zero
far-field patterns, ¥ (#) and F¥(#), for all # € . Then the boundary condition on
S, that is, the partition § = S, U S, with S, NS, = 0, is uniquely determined.

Proof. Let 8 = SjUS! (5 = 1,2) denote two distinct partitions of S, with boundary
conditions given by (2.2} and (2.3). Since the far-field patterns are the same for each
partition, the corresponding total fields are also identical throughout B,. Choose a
non-empty piece S, C S!n 52, whence

u(p)=0 and Tu(p) =10 for p € S

These imply that © = 0 in B,, which contradicts the known far-field behaviour,
Hence, Sy, = 0 and the result follows. a

Next, we consider two obstacles with different shapes. Let Bi" denote the

interior of the obstacle with boundary S, and exterior BI (7 = 1,2). Denote
the corresponding scattered fields by v;. Wall [34] gives the following result.

Theorem. Suppose that B} and B? have the same non-zeto far-field patterns, ¥ (#)
and FS(#), for all # € Q. Then B! and B} are not disjoint, that is B! N B? £ {.

Proof. Following Jones [18], suppose that B} and B} are disjoint. We have v, = v,
everywhere outside B} U Bf. From (3.4), we have, for P € Bl

w(P) =3 [ {(To)- G(a:P) ~ v, T16(g; P)} s,

= % ]sl {(Twy) - G(q; P) — v, - T7G(q; P)} ds,

=9
since v, is a regular elastodynamic field in B}. This is a contradiction. O

Wall [34] proves a more general result, allowing B} and B} to be inhomogeneous
inclusions. ‘

Theorems 4.1 and 4.2 do not require the incident field or the frequency of
oscillation to be specified. Moreover, theorem 4.2 does not require a specification of
the boundary conditions on S; and S, (which can be different). However, they both
require a knowledge of both ¥ and FS.

One way of making further progress is to suppose that we have information for
a finite range of frequencies. This leads to an elastodynamic analogue of Schiffer’s
theorem. Before stating this theorem, we specify the allowable incident fields. Thus,
we suppose that the incident field is a plane wave of unit amplitude, propagating in
the direction of the unit vector &. In particular, for an incident P-wave, we have

wp(P) = &exp(ikr - &) 4.1)
whereas for an incident S-wave, we have

up( P) = Bexp(iKr - &)
where /3 is any unit vector satisfying

&-B=0.
For any of these incident fields, there will be, in general, a scattered P-wave and a
scattered S-wave.
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Theorem 4.3. Suppose that B! and B? have the same non-zero far-field patterns,
FP(#) and F5(¥), for all # € Q and for all frequencies in the interval wy € w < wy,
with w; < w,. Then B} = B?.

Proof. Theorem 4.2 implies that B! 0 B? # 0 and that v = v in the exterior of
Bl U B?. Let B, be any connected component of B} \ BZ, with boundary S,. It is
clear that S, is properly regular, composed of a piece of S1 and a piece of 5,. Since
B, C B2, it follows that u,(P) = v, 4 uy, solves the vibration problem in By, for
all w with w; € w € w,. There are now three possibilities: u, £ 0 or u, = 0 or
By = 0. The first possibility is excluded since the eigenfrequencies of the vibration
problem are discrete, whereas the second is excluded since

[2( P)| = [tting + v > | = Io] = 14+ O(r7")
as 7 — oc. Thus, By = 0 and B} = BZ. d

. The above proof is basically Schiffer’s proof [22, p 173]; see also [26, subsection
2.1.2}. Note that it is essential that B, is independent of w. Thus, we cannot
rephrase the result to assert that the given far-field information determines the shape
of S uniquely. For, it may be possible that two different obstacles generate the same
far-field patterns, but that these obstacles vary with w; see also [18, p 187]. Note also
that S, always has corners and edges, even if S; and S2 are smooth; see also [34,
p 236].

The remarks in the previous paragraph are also applicable to the next theorem, in
which the frequency w is fixed but different incident waves are used. Here, ‘different’
means different angles of incidence (vary &), different types (F-waves, S-waves or
both) or dlfferent polarizations (vary @ for incident S-waves). We have the following
result.

Theorem 4.4. Suppose that B! and B? have the same non-zero far-field patterns,
FP(#) and F5(#), for all # € Q and for an infinite number of different incident

waves. Then B} = BZ.

1
Proof. Let uli(P) denote the mith incident wave, and let »7* denote the
corresponding total field exterior to B{ for § = 1,2. Proceeding as in the proof
of theorem 4.3, we see that ul* solves the vibration problem in By. It is proved
in the appendix that the eigenfunctions »7* are linearly independent, whence w is
an eigenfrequency of infinite multiplicity, However, the vibration problem only has
eigenfrequencies of finite multiplicity; this contradiction implies that B} = BZ. D

So far, we have placed only mild restrictions on S and on the boundary conditions
on S. If we tighten these restrictions, we can give a result that only requires
information from a single incident wave at a single fixed frequency. Its proof relies
on analyticity with respect to frequency.

Theorem 4.5. Suppose that the obstacle 5; with smooth boundary S has known non-
zero far-field patterns, FF(#) and F5(#), for all # € . Suppose that B; is either
a rigid body (S, = ) or a cavity (S, = #). Then, the shape of S and the boundary
condition on S are uniquely determined.
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Proof. We proceed as in the proof of theorem 4.3. Since S; and S, are assumed to
be smooth, with a single boundary condition on each (which may be different), we
can solve the direct problem using boundary integral equations [21]. It follows that
the solutions =;( P) are analytic functions of « in Bi. In particular, «,(P) is an

analytic function of w in B, C B? and so

du,
Ow

exists. The result on the shape of S5 now follows exactly as in Wall [34, theorem 4.1]
(which is modelled on Jones [18 theorem 3]}, by an application of the elastodynamic
version of Green'’s second theorem in B, to w and the complex conjugate of 4,. The
uniqueness of the boundary condition then follows from theorem 4.1.

w(P) =

We remark that the above proof will work for non-smooth § and mixed boundary
conditions once the direct solution « is known to be an analytic function of w (in a
neighbourhood of the positive real axis in the complex w-plane).

5. Karp's theorem

The far-field patterns depend on the shape of the obstacle .S, as well as on the
incident wave. We make this dependence explicit with the notation

FP(#4,58) and  F(/&,55).

Let R be a rotation matrix. Thus, R is a real, orthogonal matrix, which satisfies
R~1= RT. Since the elastic material in B, is isotropic, we have

RF2(#;4,8; 8) = FO(RF; R&, RB; RS) (5.1)

where Q = P, S. This identity holds for all unit vectors #, & and 3, and for ail
rotations R.
If the surface S is spherical, we have

RS=68 for all rotations R
and (5.1) reduces to
RF?(#,&,8;8) = FR(R#; R4, R, S) for all rotations R (5.2

where @ = P, S. Under certain conditions, the converse is true, as we shall now
show.

Theorem 5.1. Suppose that FF(#) and F°(#) are both known for all # € © and
both satisfy the symmetry relation (5.2). Suppose further that they are both known
for:
(i) one incident wave and all frequencies in the interval wy € w £ wy, with w) < w,
or
(i) one frequency and an infinite number of different incident waves.

Then S is a sphere,
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Proof. Replace S by RTS-in (5.1) and subtract the result from (5.2), giving
FO(#;&,8;5) = FO(#,&,6, RTS)
for @ = P, S. By theorem 4.3 or 4.4, the given information implies that
S=R'S for all rotations R
and the result follows. 0

The basic idea of the above proof is due to Ramm [27]. We remark that case (i)
is the closest analogue of Karp’s theorem in acoustic scattering.

Note that it was assumed in theorem 5.1 that S was in the class of propetly-
regular surfaces and that the boundary conditions on S could be mixed. If we make
stronger assumptions, we can get the same result with weaker assumptions on the
far-field patterns.

Theorem 5.2. Suppose that B; is either a rigid body (S, = @) or a cavity (S, = §),
with smooth boundary S. Suppose that F¥(#) and F5(#) are both known for all
# € §, for one frequency and for one incident wave. Suppose further that ¥¥ or F%
satisfies the symmetry relation (5.2). Then S is a sphere. ) O

Proof. By theorem 4.5, the givén information on both F¥ and F¥ is sufficient to
determine the shape of S, uniquely. However, we already know that both symmetry
relations are satisfied if S is a sphere. Hence, the additional information on F¥ or
FS implies that S5 must be a sphere.

6. Discussion: a direct proof?

Direct proofs of Karp’s theorem have been given by Colton and Kirsch [6] for
acoustics, and by Colton and Kress [8] for electromagnetism. We have attempted
to extend these proofs to elastodynamics, but have failed. It is of interest to see
where difficulties remain. Thus, let us consider the case where B, is a cavity, whence
(3.6) gives

e
F(#a,38) = m"‘
y /S [ACu-n) + 2u(n - #)(u - #)] exp(—ik# - g} ds, ©.1)

where u(qg) is the (unknown) displacement vector at ¢ € S. There is a similar
formula for FS, but we shall only examine the scattered P-waves here.

For any fixed incident wave, the vectors &, 4 and 4, where & -8 = 0 and
4 = & % B3, form an orthonormal basis, whence

FP (%6, 0 5) = fi(H&,8)a + H(H&, B8+ (46,8 62)
If we assume that the symmetry condition (5.2) holds, we deduce that

f;(#&,8) = f;(RF; R&, RB)
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and then a change of variables gives
/ (536 8) ds() = | 5355 BT &, 7By as(s)
for j = 1,2,3. Integrating (5.6) over the unit sphere then gives
/QFP(f;&,ﬁ; 5)ds(#) = ¢G + 8 + ¥ (6.3)

where the coefficients ¢; do not depend on & and 3.

Let us now restrict attentxon to incident P-waves, propagating in the direction of
the unit vector &. Since F'¥ does not depend on 8, we must have ¢, = ¢; = 0, and
thus (6.3) reduces to

anP(ﬁ;a) ds(#) = ¢& (6.4)

where the dependence on S is now implicit.
Next, we reduce both sides of (6.4) to mtegrals over S. Substituting from (6.1)
gives

S +2p f IF(q)ds, = ;& (6.5)

where

IP(g) = W]r[A(u n)+ 2u(n - 7} (u - 7)) exp(—ik# - g) ds(#).
We can evaluate I¥ by appropriate differentiations of the formula

= [ =ik - g)as(#) = dilkry)

4ﬂ_np 7 - q)ds(#) = g9(kr,
where r, = [g| and j, (=) is a spherical Bessel function. The result is

IF (@) = (My + 2ud)(w-n)d + 2u(d; — 5¢)(u - §)(n- 4)d
+2u{(n- dlu+ (v - §)n} {6.6)

where § = g/r,, j; = ji(kr,) and
le = (qu)—zjl(qu) - (qu)_lji(qu)'

We can write & (and hence the right-hand side of (6.4)) as an integral over S as
follows. For P € B;, the formula (3.4) becomes

0= [ {(Tv)-6(gP) v T'G(g; P)} ds,.
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Similarly, -since ;. satisfies (2.1), we have
~ 2ue(P) = [ ()G P) - e TIG(a5 PY) oy
Adding these two formulae, using (2.4) and the boundary condition on S, gives
2 (P) = | . T96(g; P)ds,

whence (4.1) gives

a=1fu-T‘-?G(q;O)ds . ' 6.7
2 Js g

If we substitute (6.6) and (6.7) into (6.5), and then take the scalar product with
an arbitrary constant vector b, we obtain

fs w(g; &) - hi (¢)ds, =0 (6.8)
where the displacement « depends on &, and

R (g) = 3(A 4 2u)(e) /k)(TIG(g; 0)) - b+ (Mjy + 2uv)(b- d)n
+ 2u(G; = 59)n- @)(b- )4 + 2ud[(n- )b+ (n- b)d] 6.9

is independent of &.

If one considers the scattered S-waves, one obtains (6.8), but with Af replaced
by a different vector, hf say. Moreover, if one considers incident S-waves, one also
obtains similar equations, except that hf and h{ are replaced by different vectors
that depend on ¢, and ¢; (with ¢; = 0).

Equation (6.8} holds for all & € £ and for any constant vector b. What does it
say about the vector h{ (q)? Certainly, the set of vectors {u(g;&) for all & € 2},
comprising all displacement vectors on the cavity S generated by incident P-waves .
in all directions &, is not complete, so we cannot deduce that k{ = 0. (It should be
possible to prove that {u{g)} is complete if we use more incident fields, including P-
waves in all directions and S-waves in all directions and with two distinct polarizations;
Dassios and Rigou [11] have proved the corresponding result for tractions {#(g)} on
a rigid body.) However, we may expect that

a(q)-hi(g) =0 (6.10)

for every ¢ € S and for some vector a(q). If we now fix g and choose b so that
b- g =0, we can calculate the left-hand side of (6.10), using (6.9), giving

[(a-b)(n-q)+ (n-b)a-lx(r;} =0 (6.11)

where x(r,) is a certain analytic scalar function of r,. If it follows from (6.11) that
x = O, analyticity implies that r, = |g| is a constant, and so 5 is a sphere.
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It remains to determine a(g). In order to give some idea of the difficulties, let
us consider the simpler problem in which the unknown w is replaced by u;,, defined
by (4.1). Thus, suppose that

/ wpo(3:8) - h(g)ds, =0  forall &€ Q. (6.12)
’ :

We can expand w,;,. using regular spherical vector wave-functions; following Morse
and Feshbach [23, p 1865], these are defined by

LY P) = (1/k)grad ¢, M}(P) = curl (¢;r)
NN P) = (1/k)curl M}

where ¢; = @ mn(r) = j, (k7)Y Y} = Y, ,..(F) is a spherical harmonic, and
{ = omn is a multi-index. Since

wino( P; &) = (—i/ K)grad {exp(ikr - &)} = —4miy " V(&) LI(P)
4

the orthogonality of {¥;(&)} over  implies that (6.12}) is equivalent to
/ Li(q)-h(q)ds, =0  forall L (6-13)
)

The following result shows that, in general, (6.13} does not imply that k = 0.

Theorem 6.1 (Aydin and Hizal [3]). Suppose that the (square-integrable) vector
field h(q) satisfies (6.13) and

/ Ml(q)-h{q)ds, =0  foralll
s
and

/ Nlg)-h(q)ds, =0 for ail 1.
S

Suppose further that k2 is not an eigenvalue of the interior Dirichlet problem. Then
h(g)=0.

In order to make some progress, let us restrict the vector h. We can decompose h
into its normal and tangential components, using

h=(h-nin—nx(nxh).
Similarly

kL) = grad ¢, = %n + Grad ¢,

where Grad is the surface gradient {7, p 33]. Thus, (6.13) reduces to
f {(h-n)%%+(nxh)-(nx Gradqb,)} ds=0 for all { (6.14)
5

leading to the following result.
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Theorem 06.2. Suppose that h satisfies (6.12), and that h is 2 normal vector field.
Suppose further that k? is not an eigenvalue of the interior Neumann problem. Then
h=0.

Proof. Since (6.12) is equivalent to (6.14), and n x kh = 0, the result follows by
appealing to some known results from acoustics on the completeness of the set

{9¢,/n) [25]. O

Note that we cannot deduce from (6.12) (or (6.13)) that h - n == 0. This is the
crux of the difficulty: the functions {u.(q; &)} or {L} q)} do not pick out normal
fields automaticaily. This is in contradistinction to the electromagnetic problem [8],
where (6.12) is repiaced by

fs(n x H)-h{q)ds, =0 (6.15)

for a certain set of vector fields {H}; thus, (6.15) immediately gives information on
the tangential component of k{g).

Note that it does not seem to help to introduce more information by considering
the scattered S-waves or incident S-waves or both. For, although we can prove a
result analogous to theorem 6.1 for elastic waves (see the remarks above (6.10)), this
would only be helpful here if we knew that a single vector h was orthogonal to every
member of a complete set; as described below (6.9}, we have several different vectors
(such as h{ and hf), each of which is orthogonal to a subset of a complete set.
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Appendix

In this appendix, we use a modified form of an argument given in [26, pp 87-88]
to prove that the eigenfunctions {uf*(P)} are linearly independent for P € By, as
required in the proof of theorem 4.4. Thus, we must show that

M .
Z Crttg (P =10 (Al)

m=1

for P € B, implies that ¢, = 0 for m = 1,2,..., M.

Let Bff = Bp N B%, where By is a large ball, of radius R and centre O,
containing B! U B?. Since B, C BE, we deduce that (Al) holds for all P € BE, by
analytic continuation. Hence, using (2.4) and (3.2), we obtain

MM
> en {up(PY+o(r )} =0 (A2)

m=1
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for large r, with P € BE.
Now, we can write the mth incident field as

u(P) = b, explic,,r - &,,)

where the positive constant «,,, and the upit vector 8., are defined by

~

=k 8.

S
m_am

for an incident P-wave, and by
K, =K ., = 8.,

for an incident S-wave.
Returning to (A2), we can isolate a particular coefficient, ¢, say, by forming the
scalar product of (A2) with the complex conjugate of ui, to give

M
Gt S embn b expli(h b, — £,4,) T} O(r™!) = 0. (A3)

m=1
mEn

Since the incident waves are different (as defined above theorem 4.4), |« &, —
K, G,| > 0 and we can set

o N
Ry @y, — Ky = EppnCmn

where x,,, > 0 and &,,, is a unit vector. Let us now integrate (A3) over the
spherical shell V, defined by 1R < r < R, to give

M
%ﬂ'R%_n + Z b Sp Ll +O(RY) =0 (A4)
m=1
mgn

for large R, where

47 R

mn

Imn =f exp(i’émn&mn 'T) dv = rzjl(h"mn'r)]
v

R/2

For large R, we have fmn = O(R). Thus, (A4) can only be satisfied if ¢, = 0.
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