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Previous work on the scattering of regular surface water waves by a single, flat,
submerged plate is extended to consider the scattering by submerged, curved
plates and also by surface-piercing, flat plates. Problems are again formulated as
hypersingular integral equations for the discontinuity in potential across the
plate, which are then solved numerically using Chebyshev expansions and
collocation. New results are given for submerged plates in the shape of a
circular arc, and for surface-piercing plates at small angles of inclination to
the horizontal. The latter configuration supports a hitherto unsuspected
quasi-resonant behaviour, with a very spiky frequency response.

1 INTRODUCTION

In a previous paper,! a method for studying the
interaction between water waves and thin plates was
developed. Two-dimensional problems were considered,
in which a time-harmonic small-amplitude wave is
scattered by a thin plate of infinite length. This is a
basic problem in linear hydrodynamics, with applica-
tions to certain types of breakwaters; a review of the
relevant literature has been made,' and will not be
repeated here.

To solve such problems, a hypersingular boundary
integral equation was derived over the plate for the
unknown discontinuity in the velocity potential across
the plate. To solve the integral equation, an expansion-
collocation method was used, involving Chebyshev
polynomials of the second kind; this method is
convenient, accurate and has a firm theoretical founda-
tion. Results are presented for scattering by submerged
flat plates, these are in good agreement with the
known analytical solution for vertical plates’ and with
published numerical solutions for horizontal plates,>*
and new results are given for inclined plates.

In the present paper, the above work is extended
in two directions. First, submerged curved plates
are considered. In principle, this is straightforward,
although the details are not. Specifically, numerical
results for curves that are arcs of circles are given. This
enables the computations to be checked in two ways (the
authors are not aware of any published results for
curved plates): the plate can be deformed away from a
flat plate, for which reliable results have been obtained;
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and the circular arc can be allowed to approach a
complete circle, for which the reflection coefficient is
known to vanish identically.>®

Second, plates that pierce the free surface are
considered. For simplicity, it is assumed that the
plate is flat, although this assumption is not essential.
For such surface-piercing barriers, the main difficulty is
associated with the behaviour near the point where the
plate meets the free surface. Indeed, the governing
integral equation can be analysed so as to extract the
allowable singularities; solutions that are bounded at
the intersection point are sought, as this is consistent
with Ursell's’ exact solution for a vertical barrier.
The expansion-collocation method for surface-piercing
plates is adapted and good agreement with Ursell’ is
found. Also, what happens as the plate becomes
horizontal is explored, so that there is a narrow
wedge-shaped region above the plate: we find that
the graph of reflection coefficient against frequency is
composed of a series of spikes superimposed on an
underlying smooth curve. The latter is identified as the
reflection coefficient for a finite dock (plate lying in the
free surface), whereas the spikes are clearly due to a
resonance effect. It should be possible to give an
asymptotic analysis of this interesting phenomenon,
but this has not been pursued.

2 FORMULATION

A cartesian coordinate system is chosen, in which y is
directed vertically downwards into the fluid, the
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undisturbed free surface lying at y = 0. The z-axis is
chosen perpendicular to the direction of propagation of
the incident wavetrain. A thin plate I (in general, I' is a
finite, simple, smooth arc) lying parallel to the incident
wavecrests, is introduced below the free surface of the
fluid, the submergence of the plate being independent
of z. The problem is assumed two-dimensional, by
considering a plate infinitely long in the z-direction, and
the motion is taken to be simple harmonic in time.
The assumptions of an inviscid, incompressible fluid,
and an irrotational motion are used, to allow the
introduction of a velocity potential Re {[pinc(x,y) +
bee(x,3)] €7} to describe the small fluid motions.
Here, the linearity of the problem has been used to
decompose the total potential, ¢, into the sum of the
incident potential, ¢;,. (the potential in the absence of
the plate) and the scattered potential, ¢, (the potential
due to the presence of the plate). The known incident
potential is taken throughout to be

Bine = e~K_v+in (1)

where K = w?/g and g is the acceleration due to gravity;
the potential (1) corresponds to a wave travelling
towards x = +oc. The scattered potential is given
by the solution of the following boundary-value
problem:

( & 82 )¢SC = in the fluid
Ox?
Ko + 09sc _ 0 on y =0, and
oy
a¢sc . 8¢inc
am on O r

0/0n is normal differentiation on I'. In addition, ¢
must satisfy a radiation condition at infinity.’

3 THE INTEGRAL EQUATION

The above general boundary-value problem can be
formulated as a hypersingular integral equation for the
unknown discontinuity in potential across I, [#]. This
process has been discussed by Martin and Rizzo® and by
Parsons and Martin." The result is

! 8G(p.q) , _ O
E](F[fﬁ(q)] “om,om, ds; =~ o, pel (2

where p and ¢ are points on I', the cross on the integral
indicates that it is to be interpreted as a Hadamard
finite-part integral, and G is the usual fundamental
solution for such problems:

G(p;q) = G(x,3:€,m)

=In(R/Ry) — 2¢(X, Y)

where
X=x-¢
Y=y+n
R= (x'—ﬁay— 77)
R =R (3)

Ri=X*+Y? and
< dk
I 'S
do(X,Y) = E';Oe costk—_ z

We will also need the related function

To(X,Y) = % ska—k

-K

Expansions for ¢, and ¥,, found by Yu and Ursell,’ are
convenient for their computation; these are

6o(X,Y) = —e"*"{(InKR, — i +7)
x cos KX + O sin KX }

+Z( KR1

x 1+l+
172
Uo(X,Y) = —e ¥ {(InKR, — 7i + )
x sin KX — ©; cos KX'}

_Z KRI

X l+l+
12

=tan"'(X/Y) and v = 0-5772...

+ l) cos mO, 4)
m

1y .
ot ;) sin m©, (5)
where ©,; is Euler’s
constant,

For both problems looked at (submerged curved
plates in Section 4 and surface-piercing plates in Section
5), the governing integral equation is eqn (2), the
only difference being the behaviour of the unknown
function, [¢], at the ends of the plate. Thus, the kernel,
626/0np6nq, remains the same and is given by’

G N 20

=t
8np8nq " RETR

860 Xy
- AA(X,Y) (6)
where
y?-x? 2KY
A (X,Y)= 2K?
( 1 ) (X2+ Y2)2+X2 Y2+ ¢0( )

(7)

A" =n(p)-n(g) and © = (n(p)-R)(n(q) - R), with n(p)
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and n(q) denoting the unit normals at p and g,
respectively.

4 THE SUBMERGED, CURVED PLATE

The geometry is given in Fig. 1. The problem is
formulated in terms of b, d and ¥; the plate length is
2a =2bY. From Fig. 1, we can see that a suitable
parametrisation for ¢ = (£,n) on I' is
&t)=>bsintd n(t)=d+b—bcostd —-1<t<1
(8)
where || < m and d is the submergence of the mid-point
of the plate; the point p = (x,y) on I' has the same
parametrisation as eqn (8) but with ¢ replaced by 5. We
introduce the function f(¢) = [¢(¢g(¢))] and construct the
kernel defined by eqn (6). Using the above parametrisa-
tion, we have

X = b(sin s¥ — sin 19)
Y = 2d + 2b — b(cos s8 + cos 1) 9)
n(p) = (nf,nf) = (—sins¥,cos¥)
n(q) = (n{,n3) = (—sin 19, cos 19)
N =cos(s—1)d
nlng —nfnf = —sin(s — 1)9
R = b(sin s — sin 19, cos 19 — cos s19)
© = —b*[1 — cos (s — 1)9)?
R? = 2b*[1 —cos (s — 1)¥]

From eqn (6), we see that the singular terms must come
from the first two terms on the right-hand side. Thus,
writing h = (s — ¢)¥/2, we have
42O cosdh 1

R? " R* 21 —cos2h) 28

1
= 10
4b*sin’ h (10)

1 oK 2K

—s (1 tytEtie T (D

- ;

Fig. 1. Geometry of the submerged, curved plate.

as h — 0. Equation (10) shows that a double pole exists
as s = t, which is characteristic of simple hypersingular
kernels. Equation (11) gives a local expansion near the
singularity. For computational purposes, we extract the
hypersingularity and write
AT

R R p9(s—1)?

1 1 B 4

4b% \ sin?[(s — 1)9/2] (s —t)*®?

O S
b2 (s — 1)?

1 (1 (s—1)** (s—10)*s*
—ZF(T o T iz ) 12
neglecting terms of O((s — ¢)®9°). Equation (2) can now
be written in the parametrised form

£l (sffti)2 dt+£1f(’)K(s”)d‘ =u(s) -l<s<l
(13)
where

$? 1 4
Ksn=7 (sinz[(s —09/2] (s- z)W)

¢ XY
2,92 v _ 4L
+2b%9 {K % Y2)2}

x sin [(s— £)9] + 6** H (X, Y ) cos [(s—£)¥]
v(s) = 27b9K e~Kd+isz9 exp [*Kb(l _ eisﬂ)}

X and Y are given by eqn (9), and the property
ds, = b dt has been used. The hypersingular term has
thus been separated from the regular terms. It will now
be shown how this is advantageous when solving eqn

(13).
4.1 Numerical solution

To solve eqn (13), we start by approximating f(¢) as
follows:

F0= VT2 aUy(0) (14)
n=0

where U,(¢) is a Chebyshev polynomial of the second
kind and the unknown coefficients, a,, are to be found;
the square-root factor ensures that f(¢) has the correct
behaviour at each end of the plate, where the potential
vanishes.'® Without going into too much detail, the
unknown coefficients can be found by either a classical
Galerkin method, or a more straightforward collocation
scheme; the latter approach is adopted here. Thus, first
of all replace f(¢) in eqn (13) by the expansion (14)
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giving
N
Za,,A,,(s)=v(s) -I<s<1
n=0
where
11— 2
A,(s) = )( V1= 2U0) 4,
-1 (s—1)

+ r_] V1 —t2U,(t)K(s,t)dt

and then collocate at s;,j =0, 1,..., N. A suitable set of
collocation points is given by

_ 2j+ Dx .
sj-cos( N T2 j=0,1,....,N (15)

these being the zeros of Ty, (s) (a Chebyshev
polynomial of the first kind). Golberg'"'? has shown
that the above scheme is uniformly convergent; he and
Ervin and Stephan'® have also analysed other choices
for the collocation points. An important aspect of this
approach is that it allows the hypersingular integration
to be done analytically. Thus, it can be shown that'

](1 V1 = 12U, (1)
o (s—1)?

The remaining terms on the left-hand side of eqn (13)
can be integrated numerically, where, for small |s — ¢|J,
eqn (12) is used. The only slight problem concerns the
term O¢y/0X. This is treated as follows. From eqn (3),
we have

dt = —7m(n+ 1) U,(s)

Obo [, _ky .. dk
a—X— *Oke Slnka_K
B o k¥ iy K
= %(k K+K)e skak_K
X
“xipyr KR&ET)

where ¥, can be evaluated using eqn (5).
4.2 Results

As an example of the efficacy of the above method, the
reflection and transmission coefficients were computed.
Consider the reflection coefficient, #. It can be shown
that # has the integral representation'

: 8 ko
R = —‘L[‘f’(")]a—n‘, e Kntikigs, (16)

So, differentiating normally at ¢, and using the
parametrisation (8), we obtain
1 .
R = iKbg e~ K(d+h) J f(t)exp [Kbe'"? +ir9)dr
-1
(17)

Replacing f(¢) in eqn (17) by its Chebyshev expansion
(14), we find that

N
R = iKbde KN " g, F,

n=0

where
1 .
F,= J V1= 12U,(t)exp [Kbe'"® +itd)dt
-1

A similar procedure can be applied to the transmission
coefficient, 7, giving

N
T =1+ikp9e XD N " F,
n=0

where the overbar denotes complex conjugation. The
integral F, can easily be evaluated numerically after
making the substitution ¢ = cos .

For our first results, we choose to plot |#| against Ka
for various 9. Figure 2 shows graphs of |#| (where
d/a=0-1) for ¥ =n/10, 2x/10 and also for the flat
plate corresponding to letting ¥ — O whilst keeping a
non-zero. We can see that the transition from the
horizontal plate to the curved plate is similar to that
seen for an angled plate,’ inasmuch as there are abrupt
changes in the value of |#| for small changes in 9.
However, whereas the zeros of # vanish immediately for
the angled plate, it can be seen that (numerically, at
least) the zeros for the curved plate in this configuration
remain, albeit shifted towards the right with increasing
0.

In Figures 3 and 4, we continue to increase ¥ (for the
same value of d/a), thereby approaching the geometry
of a closed circular cylinder. We see that |#| almost
vanishes in this limit, for a/l frequencies. This behaviour
is expected, as Dean’ first showed that # =0 for a
submerged circular cylinder at any frequency. This result
was subsequently proved by Ursell,’ using a rigorous
argument.

Similar results have been obtained for d/a = 0-2;'* as
expected, a general reduction in |#| was found
throughout the frequency range, due to the deeper
submergence.

The previous results can be thought of as fixing the
length of the plate, whilst varying ¥, thereby bending the
plate until it creates a circular cylinder. However, due to
the many parameters in this problem, the radius b can
also be fixed, and then +} can be varied. Thus, the plate
length increases and also closes up to a circular cylinder
as ¥ is increased. Figure 5 contains graphs of |#| against
Kb for d/b = 0-1 and various values of 9. Again, we see
that the zeros of # remain, this time shifted to the left
with increasing 9. The peak values of |#]| all reduce with
increasing ¢ and also become shifted to the left. As with
the previous results, onset of zero reflection is noticed as
the plate approaches a complete circle. Figure 6 contains
similar results with d/b = 0-2. This time, the graph for
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Fig. 2. Graphs of |#| against Ka, where d/a = 0-1, for 9 = n/10 (—~), 2/10 (- - -) and also the flat plate limit; that is, where % — 0
keeping a non-zero (—).

¥ =7/8 has a lower peak of |#| than the graph for
9 = 2m/8, thereafter they follow the same pattern as
Fig. 5.

5 THE SURFACE-PIERCING, FLAT PLATE
In this section, the more difficult problem of scattering

by a surface-piercing, flat plate is studied. The authors
are aware of only a few papers on this problem when the

1

plate is not vertical. Thus, John'’® gave a complex-
function analysis for plates making an angle of 7/2n to
the horizontal, where n is an integer, although he did
not give explicit results (even when n =2). Liu and
Abbaspour!® have used a simple boundary integral
equation method for water of finite depth; their method
does not account for the plate-edge singularities in a
natural way (special elements are used). Finally,
Hamilton!” has given some experimental results for
plates at small inclinations to the horizontal.

09
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Fig. 3. Graphs of |#| against Ka, where d/a = 01,

Ka

for ¥ = 3n/10 (—), 4x/10 (——) and 57/10 (-- ).
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Fig. 4. Graphs of |#| against Ka, where d/a = 0-1, for ¥ = 6x/10 (—), 7n/10 (—-), 87/10 (---) and 97/10 (- -).

As in Section 4, the problem is governed by the
hypersingular integral equation for the discontinuity in
potential across the plate, eqn (2). This time, the
expected square-root zero in discontinuity at the
submerged end of the plate is retained. However, where
the plate meets the free surface, there is more ambiguity.
For example, it may be possible to permit a logarithmic
singularity in discontinuity at the free surface. This may
be used as a model for wave breaking.'® This course will
not be pursued here, but it will be assumed that the

1

discontinuity approaches a constant as the free surface is
approached; this is in accord with the exact solution of
Ursell’ for a vertical plate.

Having formulated the problem, an identical expan-
sion is used for the discontinuity in potential across the
plate as that used previously for submerged plates:

F0=VIZEY a0 (18)
n=0

where f(t) is the discontinuity in potential across the

0.f
0.8F
0.7F
0.6F
IR|
05t
0.4k
0.3

0.2r-

0.1F

Kb

Fig. 5. Graphs of |#| against Kb, where d/b = 0-1, for ¥ = Mm/8and M = 1, 2, 3,4, 5, 6, 7 and 8. The graph for 7/8 is given by —;
thereafter the peaks of |#| decrease with increasing 9.
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Fig. 6. Graphs of |#| against Kb, where d/b = 0-2, for 9 = Mn/8 and M = 1,2, 3,4, 5,6, 7 and 8. The graph for /8 is given by —;
thereafter the peaks of |#| decrease with increasing .

plate, and 7 = 1 corresponds to the submerged end of
the plate, with f(1) =0. This time, however, the
problem is parametrised in such a way that the edge of
the plate piercing the free surface corresponds to the
point ¢t = 0, thereby giving f the constant value

(¥v/2]

F0) 2 an(-1)"

n=0
where [x] represents the integer part of x. Moreover, it is
known that, for a plate of unit length, f(¢) has the
asymptotic expansion

fF(t) ~ fo(1 — Kesec8) + f1° + 1 foK*1* sec’ 6
ast— 0 (19)

where fy and f; are constants, § = 2r/(w + 260) and @ is
the angle between the plate and the vertical. The
approximation (19) was derived for |6 < w/2, 8 #0;
for § = 0 (the vertical plate) we have'®

() ~ fol = Kt) + (2/7)(Kvg +v))t* Int + fo 1
ast—0
where f, vy, v; and f, are all constants. In the same
paper,'® it is shown that for a problem involving a
regular incident wave (such as eqn (1)), the term
Kvy +v; is identically zero. We will soon see the
significance of these properties.

5.1 The kernel

The geometry of the problem is shown in Fig. 7, whence
a suitable parametrisation is given by
£(t) =a(2t—1)sinf, n(t) =2atcosd, 0<t<1

(20)

where 2a is the length of the plate, ¢ = (§,7), |0] < 7/2
and ¢ = 0 corresponds to the free surface. The restriction
on § prevents the plate from lying in the free surface.
The problem of scattering by a plate lying in the free
surface is known as the dock problem. The point
p = (x,y) on the plate has the same parametrisation as
g, but with ¢ replaced by s. With this parametrisation, we
find that eqn (2) can be written as

)(‘ f()
0o (s—1)?
0<s<1 (21)

where ¢ is defined by eqn (7), X = 2a(s — ¢)siné,
Y =2a(s+t)cosé and

dt + 4a? j; F(OH (X, Y)dt = v(s)

v(s) = 8nKaexp [-2Kascos
+i(Ka(2s — 1)sinf — § — 7/2)] (22)

Again, we have separated the hypersingular term
from the regular terms. Before proceeding with the

X

Fig. 7. Geometry of the surface-piercing, flat plate.
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numerical solution, we obtain a useful simplification of
A (X, Y). Thus, considering the first term of #'(X,Y),
we have

d(Y*=x% 1 [ (s +1*)cos20+2st
(X2+Y2)? 4| (2412 4 2stcos 20)*

) 216 &2t
== - + . 23
8{(se‘2“"’+t)2 (se?i? 4 ¢)? (23)

(s +1e*%)x

where we have used s* + 1% + 2stcos 20 =

(s+ 1¢*°) and a partial fraction expansion. Similarly,
the second term in (X, Y) is proportional to
4aY  2(s+t)cosd
X24+Y2  s2+ 1%+ 2stcos26
it et
= p - 24
se T sy (24)

Using eqns (23) and (24), eqn (21) can be written as

b 0 f@)
)(o (s—1)? i+ Jo (z+1)?

e f(1) o 1)
+—2—J (Z t)2 dt + 2Kae J()Z-I-tdt
+2Kae
+amﬂymmxnm=W) (25)

where u(s) is defined by eqn (22), z= se?'? and
7=se *% In view of the restriction on 6(|8] < 7/2),
we see that —m < argz < m. From eqn (25), as we
collocate towards the free surface, the four integrals
involving z and Z become singular. This causes two
problems in the analysis. First, keeping all our
computations as accurate as possible requires an
efficient method of calculating the integrals which
become singular in eqn (25). Fortunately, this is
possible by using recurrence relations for the integrals
which will be discussed shortly. Secondly, it is noticed
that the right-hand side of the integral equation, v(s), is
perfectly well behaved for all s, even s = 0. However, the
left-hand side of the integral equation appears to be
singular at s = 0. The explanation for this is that f(r)
has a particular behaviour as ¢ — 0 to ensure that the
left-hand side of eqn (25) remains bounded for all s
Indeed, taking a model problem where f(¢) is given by
(cf. eqn (19))

f(t) = fo(1 — 2Kat sec9) (26)

the hypersingular integral and the four integrals which
become singular as s — 0 can be integrated analytically,
from which it can be shown that the ratio of the
constant term to the coefficient of the -term in eqn (26)
is exactly what is needed to remove any singularities in
the resulting expression. This gives some explanation as

to why the asymptotic expansion of f(¢) contains a
degree of dependence between the coefficients.

Much thought has been given to the best way of
dealing with this problem. For instance, is it possible to
use the known behaviour of f(t), eqn (19), in the
solution of the problem? This would give a set of
constraints to be imposed on the unknown coefficients in
any Chebyshev expansion used. This, however, changes
the behaviour of the solution away from the point ¢t = 0,
and as such is unsatisfactory. In practice, it was decided
not to try and impose any restriction on f(¢), other than
the square-root behaviour at ¢ = 1 and the boundedness
at t = 0. It turns out that this approach is simple and
effective, probably because the singularity is rather weak
(its effects are captured adequately by the expansion-
collocation procedure). It can also be justified, in part,
by its ability to recover the solution for the vertical plate
given by Ursell.” Also, as 8 is increased towards 7/2, we
expect to find some similarity between our solution and
that for scattering by a finite dock.

5.2 Method of solution

As already stated, an expansion-collocation method is
employed. Thus, we substitute the expansion (18), for
0 <t < 1, into eqn (21) to give

Z a,, = ’U S
where v(s) is given by eqn (22),

An(s) = Z(s) + 3" L (~2) +§e T L (-2)

—2Kae'’#,(-z)

0<s<1l

—2Kae g, (-7)

+ 8(Ka)? Jl V1—=12U,()go(X, Y)dr  (27)

f(z)_J[” Z_?(t)d (28)
Y]
xmzﬁibf%@m (29)

and z = se?'? with |9] < 7/2; note that the integrals (28)
and (29) are non-singular except when z lies in the range
of integration.

We evaluate the integrals (28) and (29) using
recurrence relations which are readily derived from a
known recurrence relation for U,(¢). Thus,

1 1 , (AT
Il = —Fu1 + 228, — ( + oy 2) s1n(7)
forn>1

where £ = 224, — ix and

Jo—l+ V=22 ln(

)
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Similarly, %, can be determined from .#,, using
1=y +22%,-27, forn>1
with & = 2z.%, — 2.5, and
T z z 1
F=—--+ ln( ) ——
T2 Vi—2 \1+V1-22) z
The remaining integral in eqn (27) is well behaved
as s — 0, and is evaluated using the expansion for
do(X, Y ), eqn (4). All, bar one, of the integrals arising
from this substitution must be evaluated numerically.
The exception is

1
J V1 = 12U, (1) e 2Ke (400088 oo5 (2 Ka(s — t) sin 6] dt
0

=Re {exp [~2Kase™'?]

x J; V1 —12U,(t) exp [-2Kat eio]dt} (30)

A similar integral occurs in Section 5.3 below. We find
that the first integral in eqn (30) is equal to

% Re {exp [-2Kas e_ia](Mn (Ka) ~ M,2(Ka))}

where M,(K) is given by eqn (31).

It remains to specify the collocation points. Earlier in
the paper, the collocation points s; defined by eqn (15)
were used; these points lie in the range —1 < s; < 1. Now,
we require collocation points in the range 0 <s; < 1.
Therefore, we apply the simple transformation
s; — (s;+ 1)/2 to eqn (15), giving us the points

sj=—;-{cos<(—22—jl\f+—l;ﬂ)+l} j=0,1,...,N

With this choice, we obtain the linear system of
equations

N
Za,,A,,(sj)=v(sj) ji=0,1,...,N
=0
which is to be solved for the unknown coefficients, a,,.
5.3 Results
For the surface-piercing plate, the same formulation for
the evaluation of the reflection and transmission
coefficients can be used as in Section 4. Thus, & is
given by eqn (16), which, after using the parametrisation
eqgn (20), becomes
. . l .
R = —Kqge(Kasin6+6) J f(t)exp[-2Kate %] dt
0

Hence, using the Chebyshev expansion for f{(z),

N
R~ —Kgei(Kasiné+6) Z a, h,(Ka)
n=0

where
1 .
hy(K) =J V1 — 12U,(t) exp [-2Kt€'®] dt
0
Similarly, the transmission coefficient, 7, is given by

N
T =1+ Kae "N " g p,(Ka)

n=0

We can evaluate h, analytically. Substituting ¢ = cos ¥
gives

hn(K) = %(Mn - Mn+2)

where

/2 .
M,(K)= J: exp [-2K €' cos Y| cos mpdyp

Expanding the exponential,'® we obtain
o0
My(K) =Y en(—1)"I,(2K €°)C,py (31)
m=0

where ¢ =1, ¢,, =2 for m>1 and I, is a modified
Bessel function; the coefficients, C,,,, are given by

/2
Con = J cos mypcos mpdy
0

and are easily evaluated: Coy =n/2, C,, =n/4 for
n >0, and

1 (sin[(n —m)n/2] sin[(n+ m)n/2)
Cmn =3 ( n—m + n+m )

when n# m

Figure 8 shows graphs of |#| plotted against Ka, for
the surface-piercing plate at § = Mw/12, M =0, 1, 2, 3,
4 and 5, to the vertical. The case M = 0 (the vertical
plate) has been solved analytically by Ursell;” compari-
son of our results (with N = 15) with his shows excellent
agreement. Also, in this configuration, the behaviour of
|| increasing to |#| = 1 monotonically as Ka increases
is observed. However, for M #0 we find that |#)|
increases to |#| = 1 for a finite value of Ka, and then
reduces before increasing again. It is noteworthy that, as
M increases, total reflection is reached more quickly and
the subsequent reduction occurs more rapidly.

Figure 9 continues to follow this behaviour (with
N = 20) as 8 is increased further towards /2. We see a
pattern emerging, whereby the points of total reflection
become more concentrated towards Ka = 0, and take on
a notably spiked behaviour. This behaviour becomes
more pronounced as § — /2.

Figure 10 contains two curves. One is the graph of |%|
against Ka for 6 ~ 98-7% of n/2 (with N = 30). We see
a striking behaviour, with spikes giving rise to complete
reflection, but also an underlying smooth curve
throughout the range of Ka. We postulate that the
smooth underlying curve is the solution to the dock
problem (where the plate lies in the free surface) and that
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Fig. 8. Graphs of |#| against Ka, for 8 = Mn/12and M =0, 1, 2, 3, 4 and 5, where § is the angle made by the plate to the vertical.

the spikes are due to quasi-resonance of the narrow fluid
wedge trapped above the plate. This is illustrated by the
second curve in Fig. 10, which is a graph of |#| for the
finite dock, obtained by solving a well-known Fredholm
integral equation of the second kind (with a logarithmic
kernel) for the boundary values of ¢, on the dock.'**
It should be possible to analyse this behaviour,
asymptotically; such an analysis has been given by
Kriegsmann et al.?' for some acoustic problems which
give rise to similar behaviour. Finally, we note a
fundamental difference, which can be seen from this

and the earlier results, between scattering by submerged
plates and by surface-piercing plates. As Ka — oo,
waves become confined to an ever smaller region near
the free surface, therefore the reflection coefficient for a
submerged plate will always approach zero in this limit
because the plate will become invisible to the waves.
However, a surface-piercing plate will never become
invisible to a surface wave and, moreover, as Ka — oo
the wave will be unable to reach down far enough to
pass under the plate thereby giving rise to complete
reflection in this same limit.

1
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Fig. 9. Graphs of |#| against Ka, for § = 22r/48 (—) and 237/48 (——), where 6 is the angle made by the plate to the vertical.
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