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The prediction of wave fields in domains with complicated geometries may be
aided by the use of conformal-mapping, which simplifies the shape of the domain.
In this conformal domain, parabolic models have been used previously to treat
wave problems. In Cartesian coordinates, the angular spectrum model, based on a
Fourier transform in the direction perpendicular to the principal propagation
direction, has been shown to handle, in principle, a wider range of wave directions
than the parabolic model.

Here, the extension of the angular spectrum model to conformally-mapped
domains with impermeable lateral boundaries is shown. Next, the Fourier—
Galerkin method is developed for conformal domains; this is identical to the
angular spectrum model in Cartesian coordinates, but differs in the conformal
domain. Finally, a Chebyshev-tau model for conformal domains is developed,
based on using Chebyshev polynomials rather than trigonometric functions as a
basis. For all models, forward-propagation equations are derived, by splitting the
governing elliptic equations into first-order equations. Examples of all methods
are shown for a simple conformal mapping that permits the study of waves in a
diverging channel and in a circular channel. The forward-propagation models are
shown to be optimal for methods that use eigenfunctions for the lateral transform

and less accurate for others.

1 INTRODUCTION

Wave modelling in regions where the boundaries are
uncomplicated can be easily carried out by a variety of
means. For over a decade, parabolic modelling, based
on finite-difference methods, has been used with success
to examine refraction, diffraction and shoaling of short
waves over large coastal areas.”> More recently,
angular spectrum modelling has been used.*7 As
originally conceived,® the angular spectrum model
involves the decomposition of an incident wave field
into plane waves, which are then allowed to propagate
into the domain. The resulting wave field is the
superposition of these plane waves. This technique is
carried out by Fourier transforming the governing
equation and initial condition in the lateral direction,
and then solving the resulting one-dimensional equa-
tions for the Fourier modes, which are then super-
imposed for the final wave field. This method of
expressing the wave field as a Fourier integral or a
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trigonometric series has the potential advantage of
permitting wider angles of wave approach when
compared to parabolic modelling, which is constrained
by a preferred propagation direction. Also, the angular
spectrum methodology (a review’ is available) can be
applied to weakly nonlinear water waves,'" shallow
water Boussinesq waves,!! and directional spectra.'>!3
For problems that are periodic in one direction, the
Fourier trigonometric basis is optimal for the series
expansion of the solution in that direction. For other
problems, Chebyshev polynomials are usually preferred.
For example, Boyd'* has treated a number of nonlinear
wave problems with these polynomials, while Panchang
and Kopriva'® have used them in both horizontal
directions in a collocation method for solving the
elliptic mild-slope equation. However, the Chebyshev
polynomials do not satisfy our lateral boundary
conditions, so an equivalent method to the Fourier—
Galerkin method will not be possible; a Chebyshev-tau
method overcomes this difficulty by using two additional
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equations to enforce the boundary conditions and is
very similar in application.'®

Wave prediction in realistic coastal situations is often
complicated by the layout of breakwaters and other
hard structures coupled with variable depths and
currents. These complicated situations can often be
simplified if a coordinate transformation is used that
conforms to the physical boundaries. Hence, we
consider a general class of conformal transformations
from the Cartesian coordinates (x,y) into boundary-
fitted coordinates (u,v), so that no-flow boundary
conditions can be applied on coordinate lines. We then
investigate models for forward wave propagation,
developed in the transformed domain.

Boundary-fitted coordinates have been used extensively
in other fields with good success.!™® In the field of wave
propagation, Liu and Boissevain'® transformed the
parabolic model into a non-orthogonal coordinate
system to examine the propagation of waves in a
diverging channel (harbour entrance). Kirby?® showed
that it is important to determine the parabolic model
within the mapped domain. Tsay et al.?! developed some
low-order parabolic approximations for several geome-
tries, while Kirby et al.*? developed parabolic models for
several geometric domains for both small- and large-angle
parabolic approximations. They also presented labora-
tory results for the case of the diverging breakwater.

Here we develop the forward-propagation equations
for Fourier—Galerkin, angular spectrum and Cheby-
shev-tau models in conformal domains, and then
compare the results to exact solutions for two simple
planforms — waves between diverging breakwaters and
waves in a circular channel; these are the same
geometries as used before.? Application to more
complicated conformal domains, using numerical codes
for the conformal mapping,'® is straightforward.

2 THEORY: CARTESIAN COORDINATES

The governing equation for the propagation of linear
waves in constant water depth is the two-dimensional
Helmholtz equation,

az¢ >
82

where (x,y) are the horizontal Cartesian coordinates
and the total wave potential is

coshk(h+2z) _,
Re{qﬁ(x,y) cosl(lkh 2 ¢ t}

The mean free surface is at z = 0 and the bottom is at
z = —h. The wavenumber £ is related to the water depth
h and the angular frequency of the wave w by the
dispersion relationship,

w? = gktanhkh

+ko=Vo+k¢=0 (1)

We are interested in situations in which waves are
primarily propagating in the +x direction within a
domain of given width. As an example, for a straight
channel of width 25, with impermeable walls at y = +5,
we can use separation of variables to solve for the
velocity potential. Assuming ¢(x,y) = X(x) Y (y), yields
two equations

X'+ (=X =0 (2)
Y+ Y =0 (3)

For no-flow lateral boundary conditions, we have
Y'(y) =0 at y= +b; therefore we have a Sturm—
Liouville problem in the y-direction. The eigenvalues
are A, :%mr/b and the eigenfunctions are
{cos[M,(y+ )]}, n=0,1,2,.... The -corresponding
solutions of eqn (2) are exponential functions of x.
Finaily, summing all the possible solutions together, we
obtain

P(x,y) = i a, exp{iix\/k2 - /\ﬁ} cos[\,(y + b)]

(4)

where the g, are dimensional constants. The forward-
propagating waves will be associated with the positive
sign in the exponent. Also, note that for values of
A, >k, the forward-propagating wave modes decay
exponentially with +x.

Another method of solving the two-dimensional eqn
(1) is to use a transform in the lateral direction (y), thus
reducing it to one-dimensional equations. A general
transform pair can be described by

U, (x) = F¢{¢(x,y)}

b
- j (e PV dy n=0.1,2,....(5)

=§:wn(x)¢,,(y) for —b<y<b (6)

where {¢,(»)}, n=0,1,2,..., is a set of functions that
are orthogonal (with weight w) over the range
—b<y<b, and ¥,(x) are the amplitudes of these
orthogonal functions. Two common choices for ,(y)
are trigonometric functions (Fourier transforms) and
Chebyshev polynomials.

To proceed, we transform eqn (1) into a set of
equations for the amplitudes:

2 &
d—d‘I')';—2(x—)+ m[ ‘z 2[‘1,]]+k2‘11,,(x) =0

n=0,1,2,.... (7)

Once these equations have been solved for ¥,, the
inverse transform eqn (6) is used to find the solution,

#(x,y).
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2.1 Angular spectrum (Fourier—Galerkin) modelling

Here, we will use the Fourier transform for a domain of
width 2b, so that 3, = cos[\,(y +b)], with ¥, =1,
w =1, and X, = {nr/b. This gives

Ja(x) = TF[¢(x, p)]

= o[ st cosir(re Blay

n=0,1,2,... (8)
$(x,9) = 5 '(f]

= 3 fy(x) cosA(y + B)]
n=0

for —b<y<b (9)

where ¢y =1 and ¢, =2 for n > 1. The f,(x) are the
Fourier modal amplitudes. Since

the governing equations for the Fourier modes simplify.
Thus, transforming the Helmholtz eqn (1) gives

d/;t(x) I (k2 _ Az)f;,(X)

0 n=0,1,2,... (10)
This equation shows that each Fourier mode evolves
independently of all the others. Solving eqn (10) gives

fulx) = a,,exp{:i:ix\/k2 - Aﬁ}, forn=0,1,2,...

we take the positive as we are interested in propagation
in the +x direction. Only those modes, for which A, < k,
represent progressive wave trains; the remainder decay
with x. Therefore, the solution procedure is simplified
(in the far field) by determining only the progressive
modes.

The inverse Fourier transform, eqn (9), provides the
final solution,

(x,y) = zoo: €ndy exp{i)q/k2 - Aﬁ} cos{\,(y + b)]
n=0

The constants a, are found from the Fourier transform
of the ‘initial condition’, ¢(0,y) : a, = TF[#(0,y)]. This
solution comprises the angular spectrum, which is the
superposition of many plane wave trains, each travelling
in a direction given by tan~!()\,/1/k% — A2). It can also
be viewed as the superposition of the fundamental
modes of the Laplace equation. This is the angular
spectrum model for a channel.

The angular spectrum model is indistinguishabie in
Cartesian coordinates from the separation of variables
solution, or an eigenfunction expansion method, since
the Fourier series are in fact the eigenfunctions in
the lateral direction. Dalrymple?® used these series

expansions for ¢ to examine waves past channel
transitions, and Dalrymple and Martin®* examined
waves through a line of offshore breakwaters.

2.2 Chebyshev-tau method

This method begins with
"r/)n(y)zTn(Y) where Y=y/b (11)

and T, is a Chebyshev polynomial. The Chebyshev
transform and its inverse are

€ 1
) = Telpt ) =2 [ BRI ay
n=0,1,2,... (12)
B(x.y) = T )] = 3 (W T(Y)
n=0

for —-1<Y<1 (13)

For the Chebyshev polynomials, the second derivative
does not behave as conveniently as in the Fourier
transform. However it can be rewritten in a form which
is computationally more convenient (and accurate) for
large values of n (see Canuto ef al.*, p. 69):

32¢ Z dTY) bzza (Y) (14

where

o0
@ = 26,3 1n 4+ 1)(n +21)cp 1 () (15)
=1

The transformed equation is now
d’c
—2+ ke, (x) +

which is a coupled (through the second derivative)
system of equations for the modal amplitudes.

Note that 1, (), defined by eqn (11), does not satisfy
the no-flow conditions on the walls; in fact,

"/’;(_b) = T,’,(—l) = nz(_l)n—H
and
Wh(b) = Ty(+1) =

In order to enforce the boundary conditions, the
Chebyshev-tau method is used,> which is discussed in
Section 4.3.

The Chebyshev-tau method does not offer any
advantages for the Helmholtz equation in Cartesian
coordinates since all modes are progressive, implying
that, numerically, many terms must be retained in eqn
(13). However, the situation may be different for other
coordinate systems or for other equations. Before
investigating these possibilities, we introduce the
forward-propagation models.

<2>—o n=0,1,2,... (16)
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2.3 Forward-propagation models

The governing eqn (7) is a second-order differential
equation that requires two boundary conditions. The
initial conditions for the amplitudes are readily found by
transforming the initial condition, while the other
boundary condition, for large x, say, is often unknown
a priori. Dalrymple and Kirby,® using Fourier trans-
forms, surmounted this problem by splitting the Fourier
amplitude f,(x) into forward-propagating and back-
ward-propagating terms: f, =f," +f,; these are
associated with the positive and the negative signs in
the exponent of eqn (4). This leads to first-order
differential equations in the split variables, which are
also faster to solve numerically than the original second-
order equation.

Assume that

+
W R
% =ivVk: — X2 f, — F,(x)

where the function F, is unknown a priori. Substituting
into eqn (10) gives F,(x) = 0, so that the second-order
equation is split exactly and the forward-propagating
mode is correctly given by

+
U iRy
X

The solution to this first-order equation depends on the
initial condition only (meaning the unknown down-
wave boundary condition can be neglected). Moreover,
it is exactly the same as that given by separation of
variables applied to the Helmholtz equation, showing
again that the splitting procedure is exact for this
equation.

For the Chebyshev-tau method, the splitting in the
transform domain follows the same procedure as before,
except that the assumed splitting is different because of
the nature of the second derivative in y:

+
(iic" = ke, + F,(x)
X
‘:f; = —ike; — Fy(x)

Substituting into eqn (16), the forward-propagating
equation is found to be
def(x) . i
n — lk + I (2) —
& ke ()t gma =0
where only the ¢, are used to calculate cﬁ,z). If we used
the first form of the second derivative in eqn (14), this
equation would be

de; (x)

2l azfc_l[cl]zo

. i
= ikcyt (x) +-2—E37'C[ o2

The inverse transform of this equation is

oo . i 8¢
5; = lk¢ =+ 5]; ‘6))—2 = O
which is the small-angle parabolic representation of the
Helmholtz equation. Small-angle parabolic models are
known to be inaccurate for waves that propagate at
large angles to the x-axis. This appears to be a serious
consequence of splitting the Chebyshev equation,
potentially limiting its effectiveness in forward-
propagating models. This same result applies to the

variable-depth (mild-slope) equation.

3 THEORY: CONFORMAL MAPPING

In the physical domain, the velocity potential, ¢(x, y), is
found by solving the Helmholtz equation in the given
complicated geometry. Alternatively, we can map the
problem into a conformal domain, which is identified
with the independent variables, u(x,y) and v(x,y). The
dependent variable becomes ¢(u,v). The mapping
procedure is described in the Appendix.?** For all
cases, the channel sidewalls will be mapped into
v = .

The resulting governing equation in the conformal
domain is much the same as that in Cartesian
coordinates,

8o o
o o

with the exception of the presence of J, which is the
Jacobian of the transformation, defined by

+k* =0 (17)

Juv) = = — — = (18)

This form of the Helmholtz equation serves as our
starting point for developing the various numerical
models in the conformal domain.

Note that we can only obtain separated solutions of
eqn (17) if £2J is of the form

KA (u,0) = #1(4) + #(v)

Then, with ¢(u,v) = U(u)V(v), we obtain the following
equations for U and V:

U'+ (£, - X)) U=0 (19)
V'+(F2+ X))V =0 (20)

In particular, if ¢, = 0, the lateral eigenmodes for the
channel are

Va(v) = cos[A,(v+v,)] with A, =3nm/u,  (21)

just as for the Cartesian case. Alternatively, if #; =0,
then we obtain U(u) = ¢ as a propagating mode; here,
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Fig. 1. Schematic diagram of the two examples (top row, (a), (b)) and the conformed channel (c).

we have replaced A* by —A?, giving
V' 4+ (f,— NV =0
as the equation for the lateral modes.

3.1 Examples

A logarithmic conformal map will be used here to
illustrate the various spectral approaches to wave
modelling. This mapping converts radial lines and
circles about the origin in the physical domain into
orthogonal straight lines in the mapped domain. Here
we provide analytical solutions to two problems to be
used as a basis of comparison to the numerical models
to be developed in the next section.

3.1.1 The diverging channel

The first example is a constant depth, radially diverging
channel with straight vertical impermeable sidewalls.
The mapping is w=In(z/ry), where w=u+Iiv,
z=x+1y and ry is the distance from the origin to
the mouth of the channel. The mapping can be rewritten
as u =In(r/ry) and v = 6, which, with the exception of
the presence of the logarithm, looks like a polar-
coordinate transformation. The channel sidewalls lie
on v=tv, = £6,. In terms of x and y, the inverse
mapping gives z=rge", or, x=rpe'cosv and

y =rpe’sinv. In the z-plane, the waves are supposed
to propagate in the positive x-direction, while in the
mapped domain, the waves will travel primarily in the
positive u-direction. See Fig. 1(a).

The Jacobian of the transformation is J = r20 e2“,
which is a function of u only. Thus, #, = 0, whence
V(v) = cos[A(v+ v,)] and

U" + [(krge*)* = AU =0
which has general solution

U(u) = AJ)\(kro Cu) + BY)‘(kro Cu)
where J, and Y, are Bessel functions. For rigid walls at
v =0 = 0, (so that v, = 6,), and for waves propagat-

ing in the direction of u increasing, the solution is readily
obtained

9(r,0) = _ a,Hy) (kr) cos 5,(6+ ;) (22)
n=0
where HA(I) =J,+1Y, and X = §,, with 3, = 1nn/6,.
Given the potential at r=ry as G(8), the modal
amplitudes are

€ (4
a, =———-————| G(8)cosB,(0+86,)d0
20,H (kro) J:, @ (6+60)

form=0,1,2,... (23)
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For the case of a planar wave train entering into a
diverging channel centred about 6 =0, we taken
G(0) = exp(ikrycos ), corresponding to normal inci-
dence.

We note that eqn (22) is the exact linear solution; it
can also be obtained by separation of variables of eqn
(1) in plane polar coordinates.?

3.1.2 The circular channel

The second example is a constant depth channel with
vertical sidewalls laid out in a circular planform. Let r,
and r, be the inner and outer radius of the channel,
respectively. The waves are supposed to propagate
primarily counter-clockwise in the axial (8) direction,
from the mouth of the channel located at § = —7/2. In
the mapped domain, the channel is straight, with the
waves again propagating in the positive u-direction, as
shown in Fig. 1(b). Here the conformal map is
somewhat different (to keep the same u principal
propagation direction): w = /2 —iln(z/r,,), where
rm = /fir;. This corresponds to u=m/2+6 and
v =In(r,/r). The outer sidewall of the channel is
mapped to v = —v, = In(r,/r;) = —}In(ry/r;), while
the inner wall is mapped to v = v,. In terms of z, we
have z = r,, ¢™="/2) which leads to x = r,, e sin » and
y=—ry,e 'cosu.

The Jacobian of this transformation is J = r3e %,
which is a function of v only. Thus, #; = 0, whence
U(u) = ™ (24)

for propagation in the direction of u increasing. V(v)
satisfies

V" + [(krme ™) = NV =0 (25)

which has general solution
V(v) = AJy(kr,e™") + BY, (krpe ™)

At the outer wall r = ry, we have v = lIn(r,/r;) = —v,
and V'(—wv,) = 0; therefore

V(©) = Yi(kro) s (ke ™) = Jy(kry) Yy (krye )

At the inner wall r=r) <r,, we have v=1v, and
V'(vy) = 0, giving

Yy (kry)J\(kry) = J\(kry) Yy (kry) = 0 (26)

This is an equation for A. It is known that eqn (26) has
discrete roots; call them A =q,, with n=0,1,2,....
There are only a finite number of real roots
(0 < o, < kry); these give the propagating modes.
Equation (26) also has an infinite number of purely
imaginary solutions; those with positive imaginary parts
give the evanescent modes. These solutions have been
discussed by Buchholz’’ in the context of curved
electromagnetic wave guides, and by Rostafinski?® in
the context of acoustics.

Ordering the real eigenvalues from the largest to the
smallest, we find that the first eigenvalue corresponds to
the zeroth mode, which has no zero crossing in the
transverse (radial) direction. Therefore the mode looks
like a propagating wave train, but confined to the outer
wall; it is the annular equivalent of the ‘whispering
gallery mode’ as it is large on the outer radius and
decays rapidly and monotonically in the (negative) r-
direction. The next eigenvalue corresponds to the first
mode, with one zero crossing, and so on.

The problem of solving eqn (25), together with
V'(4v) = 0, is a Sturm~Liouville problem. Let V,(v)

¥ 0
200

Fig. 2. Exact solution for waves in a wide circular channel.
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be a solution corresponding to A = o,
Va(v) = Au{ Yr’x,, (er)Ja,, (krme™)
— Jo, (kry) Yo, (krme™)} (27)

(recall that r=r,
orthogonal,

e ”). These -eigenfunctions are

J ' V(0}V (v)dv=0 for oy, # v,

—vp

and the constant A, can be chosen so that
* 2
r Vy(v)dv=1
—up

They are also complete, so that we have

$(u,) =Y 8, €V, (v) (28)
n=0

At the beginning of the channel, u =0 (6 = —7/2), we
have ¢(0,v) = G(v), say, whence

Up
4y = J G(w)V(v) dv (29)
Again, this solution is exact; it can also be obtained
by separation of variables of eqn (1) in plane polar
coordinates.

In Fig. 2, the exact linear solution for the wave field is
shown for waves incident into a 180° turn. As the waves
enter the channel, they begin to reflect from the outer
wall and diffract in the vicinity of the inner wall.

4 NUMERICAL MODELLING IN THE
CONFORMAL DOMAIN

4.1 Fourier—Galerkin approach

Following Dalrymple er al.,’ where a Helmholtz
equation with variable coefficients (arising due to
bottom variations) was treated, we define a lateral
average of the variable coefficient in the conformal
Helmholtz eqn (17) by

K2J(u) = 2—:}; :} K2J (u,v) dv (30)

Substituting this into the governing eqn (17) gives

2

gf §f+ﬂﬂ1 v)¢p=0 (31)
where

v(u,v) =1 — KT /KT (32)

incorporates the lateral variability of the original
coefficient, k2J.

We suppose, as before, that the boundaries at v = tv,
are impermeable (so that J¢/8v=0). Then, the

appropriate Fourier-transform pair is the following (cf.
eqns (8) and (9)):

Ja(u) = Trld(u,v)]

EIT,, J—,, (1, v) cos|Ay(v + v3)] dv
n=0,1,2,... (33)

=75 '[f(u)]

- 2o

&(u,v)
(1) cos[A, (v + vp))
for —v, <v<v, (34)

Transforming eqn (31) yields
dzf,,

S+ fa RITevas ' [f]] =0

n=0,1,2,... (35
where
(u)=k*T— X2 and A, = Lnm/vy

The set of eqns (35) is exactly equivalent to eqn (31),
provided the series (34) converges. The last term in
eqn (35), which adds complexity to the solution, results
from the Fourier transform of a product of two
functions of v.

To obtain a forward-propagation model, we separate
f,, into forward- and backward-propagating wave modes
as before and keep only the forward-propagating modes

to yield
df;1+(u) I 1 d')’n +
du  \MT 2v, du I

_ikJ T f*) n=0,1,2,... (36)

This final set of equations governs the propagating
Fourier modes in a conformal domain. The equations
are approximate due to the neglect of the backward-
propagating modes that occur in the last term; this term
couples all the modes and can result in the growth of
modes that may have been originally zero at u = 0.

The initial conditions on f,(u) are provided by a
Fourier transform of the given initial condition,
#(0,v) = G(v), say, giving

Ao =5

G(v) cos[A,(v+vp)]dv n=0,1,2,.
2vp ),

Suppose that v = 0, that is, k*J is independent of v,
the lateral coordinate. Then, as we have seen in Section
3 (the case % =0), eqn (31) is separable: the lateral
eigenfunctions of the problem, V,(v), satisfying the
sidewall conditions, V'(v) = 0 at v = v, are given by
eqn (21). In other words, for this particular case, the
actual lateral eigenfunctions are the same cosines as
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used in the Fourier-transform pair, eqns (33) and (34).
It follows that the convergence of the method is
guaranteed. However, for other problems, in which
v % 0, the solution may not be separable and, if it is,
the actual lateral eigenfunctions will differ from eqn
(21); consequently, we expect some errors in the
method.

4.2 Angular spectrum approach

In Cartesian coordinates, the angular spectrum
method and the Fourier—Galerkin approach are the
same. However, in other coordinate systems, this may
not be true. The angular spectrum method is then
interpreted as an eigenfunction expansion method,
with the eigenfunctions determined by the lateral
Sturm-Liouville problem, eqn (20). The advantage
of the angular spectrum method is that the lateral
eigenfunctions are the exact solutions for the prob-
lem. The disadvantage in transformed coordinates is
that it is unlikely that there are fast algorithms
(equivalent to the FFT) for obtaining eigenfunction
expansions.

4.3 Chebyshev-tau approach

It is known that the Chebyshev polynomials, T,(¢),
n=20,1,2,..., are a complete orthogonal basis over the
range —1 < < 1. Their use requires a preliminary
scaling of the problem,

¢=v/v

so that the lateral boundaries are located at { = £1. The
appropriate Chebyshev-transform pair is (cf. eqns (12)
and (13)):

ca(u) = Tcld(u,v)]

el pnOTQ . _
_WL A =012, (37)

$(u,v) = T¢ ' [c(u)]
= icn(u)Tn(C) for —1<¢<1 (38)
n=0

As the Chebyshev polynomials do not satisfy the
lateral boundary conditions, a straightforward Galerkin
technique is precluded. The tau method forces the
Chebyshev sum to satisfy these conditions, and will be
discussed below.

Introducing k%J and v, defined by eqns (30) and (32),
respectively, we find that the Chebyshev transform of
eqn (31) is

) _ —
: c;;gu) + kX cp(u) + {;2‘;0512) KT wI () =0

The splitting in the transform domain follows as

before:
de, /. 1 dv\ 4
2= (o 2 et
(1 o &7 =
+ 5:)[‘(‘]‘ (;zé‘ﬁl) - kz.]jc[l/g-c [C+”)= 0 (39)

This equation is less accurate than that obtained from
the Fourier—Galerkin splitting. Note that the first term
on the right-hand side of eqn (39) is proportional to -y,
instead of v,, as the second derivative of T, does not
yield a term proportional to ¢, directly as occurs with
the trigonometric functions in the Fourier—Galerkin
approach.

At || =1, 0¢/0¢ =0 so as to satisfy the no-flow
channel boundary conditions. Since the Chebyshev
polynomials do not satisfy these lateral boundary
conditions individually (as the Fourier modes do), we
use the Chebyshev-tau method to enforce them.? First,
truncate the series in eqn (38) to give

N
$(u,v) = Y eal(u)Tu(¢)
n=0

With this approximation, the no-flow conditions at
¢ = =1 yield

N N
anc,,(u) =0 and Z(—l)"nzc,,(u) =0
n=1 n=1

These two equations are used to specify cy_;(u) and
cy(u) in terms of the remaining coefficients, which are
themselves determined by integrating eqn (39) for
0<n<N-2; we used a fourth-order Runge-Kutta
scheme. The step size du depended on the number of
modes computed, with a smaller step size required for a
solution with more modes.

The Chebyshev transforms are carried out numeri-
cally using Gauss quadrature:

' 8O 4enS e
[ T =Y el

The Gauss points (; are the zeros of T,(¢), namely

G =cos((212_—Ml)7r) i=12,....M

and w; = /M for all i (Abramowitz & Stegun,? Chap.
25). For all calculations in this paper, M = 41, so that
the quadrature error is negligible.

5 DIVERGING CHANNEL

For the case of the diverging channel, the angular
spectrum, Fourier—Galerkin and Chebyshev-tau
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methods will be compared to the exact solution, which is
given by eqns (22) and (23).

5.1 Fourier—Galerkin and angular spectrum models

With the mapping that we have used, w = In(z/r), the
product K is independent of v and so v = 0; therefore,
the last term in the equation for the Fourier modes, eqn
(36), vanishes. The remaining terms (with the superscript
+ dropped for convenience) can be written as

B _ (i, ke 1t

n=0,1,2,... (40)

where

=R -

since \, = 8, = 1nm/6,.

For this case, modes not present in the initial
conditions cannot arise subsequently. Further, the
Fourier cosine series in the lateral direction used in the
Fourier transforms eqns (33) and (34) are exact
solutions of the associated Sturm-Liouville problem in
the v-direction, guaranteeing convergence and also
showing the equivalence of the Fourier—Galerkin and
the angular spectrum (eigenfunction expansion)
approaches for this case.

Equation (40) is a first-order equation for each of the
Fourier modes. It can be solved analytically to give

Solu) = guyy ' exp{i(y, — By tan™" (4,/5,))}
n=0,1,2,... (41)

and then the potential is found from the inverse
transform, eqn (34). Note that, for large u and fixed n,
we have v, ~ kroe" = kr and

o) ~ galkr) ™2 expfilkr — B,7/2)}

which is the far-field approximation to H /g"l)(kr), apart
from a constant factor. Therefore, we expect an exact
correspondence among the angular spectrum method,
the Fourier—Galerkin method, and the exact linear
solution for this example.

5.2 Chebyshev-tau method

From eqn (39), the governing equation for each of the
Chebyshev modes is

dc,,(u) . 1 i @ _

—dr_ 1% —2 c"(u)+2v%7oc" =0

n=0,1,2,... (42

For the case of normal wave incidence, the solution is
symmetric about ¢ = 0, and so the coefficients of all the
odd Chebyshev polynomials are zero.

5.3 Results

One possible wave motion in the diverging channel is the
axisymmetric case of circular waves emanating from
r =0, with constant amplitude and phase along any
circular arc. The initial condition is taken as G(6) = 1.
The linear wave motion is given analytically in eqn (22)
and most conveniently by the leading term, the Hankel
function, Ho(l)(kr), where r=+/x2+y2. All of the
numerical methods model this solution correctly in the
far field, giving

@(u,v) = exp(ike” — Ju)

which is the far-field expansion of the Hankel function.
In the mapped domain, the wave form is constant along
lines of constant u, and no diffraction occurs.

On the other hand, if a plane wave enters the
diverging channel, then diffraction occurs as the
physical domain becomes wider in the propagation
direction. This situation was modelled by Kaku and
Kirby®® in a wave tank (see also the description by
Kirby et al??). In a water depth of 0.15m, vertical
plywood breakwaters enclosed a 90° sector, with a
mouth of width 1.74m. A planar wave generator sent
waves directly down the centreline. Measurements were
made using wavegauges at fixed r locations for several
wave cases. Here, we use the most linear set of tests
for which the wave period was 0.49s, and the initial
wave amplitude was 0.0085m. The measurement
stations correspond to r/ro = (1.38,1.87,2.2), where
ro = 1.23m, taken as the distance from the origin of
the polar coordinate system to the breakwaters, and at
10° increments from the centreline.

For the models, the plane wave initial condition of
¢ = exp(ikro cos 8) was used. In Fig. 3, the exact water
surface elevation is shown for the data of Kaku and
Kirby® in the transformed domain, where there is an
apparent focussing of the wave form down the
centreline, which is due to the widening of the channel
with r in the physical domain. In Fig. 4, the angular
spectrum (Fourier—Galerkin) model predictions for
water surface elevations are compared to the exact
theory and the data of Kaku and Kirby.*® The Fourier—
Galerkin model gives, as expected, the same result as the
exact solution. In comparing with the parabolic models
of Kirby et al.,;"2 the Fourier—Galerkin model is better,
as the parabolic models do not replicate the exact
theory.

The Fourier—Galerkin model was run with a step size
corresponding to kdr =0.2136, where, for this water
depth and wave period, the dispersion relationship gives
k =16.94m™". Only the seven progressive modes were
used.

For the Chebyshev-tau model, 15 even modes were
used (N = 28). For this high number of modes, a very
small step size in u was required, du = 0.00178677; this
required about 500 steps to span the measurement
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Fig. 3. Instantaneous water surface of diverging channel in mapped domain.
locations — more than required by the Fourier— eqn (36) reduces to

Galerkin method by almost a factor of three. In Fig.
5, the Chebyshev solution is compared to experimental
data® and to the exact solution. Clearly, there is a
discrepancy between the Chebyshev solution and the
exact solution, due to the presence of a lateral oscillation
in the solution.

6 CIRCULAR CHANNEL

The exact linear solution for this case is given by eqn
(28), with eqns (27) and (29). Again, the Fourier—
Galerkin and the Chebyshev-tau methods will be
compared against this exact solution. In the following
examples, the initial condition is a wave train with
constant amplitude across the channel, or G=1 in
eqn (29).

6.1 Fourier—Galerkin model

As J is not a function of u for this case, the governing

u 27,

) _ . ik
d

n=0,12,... (43)

where
2T = (3 —r)
2In(ry/ry)
and
-2
V(’U) -1 2111("2/7'1)1'1"26

7]
"%—’1

since v, =4In(ry/r;). Now, the Fourier modes,
{cos[A\,(v+wp)]}, n=0,1,2,..., no longer satisfy the
exact Sturm-Liouville problem in the lateral direction,
which is eqn (25) together with V’(+w;) =0; the
Fourier—Galerkin method no longer is the same as the
angular spectrum method and the method will have
problems with convergence, depending on the size of v;
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Fig. 4. Comparisons of the angular spectrum model (dashed

line), the exact solution (solid line) and the data of Kaku

and Kirby® at r=1.38, 1.87, 2.2m from top figure to
bottom.

we have

_281n(ro/ry)

2t In(ry/n)
CECE

forry,<r<n

1 <v(iv)<1-

6.2 Angular spectrum model

The actual lateral eigenfunctions for this problem are
given by eqn (27). The propagating modes are given by
eqn (24). For the present case of a constant depth
channel, the angular spectrum and the exact solution are
identical.

14

1.2}

1.0

0.8

0.6

0.4

0.2

20 30 40

o
—
(=]

0.8

0.6

0.4

0.2

14

1.2

1.0

0.8 .

0.6

0.4

0.2

0 10 20 30 40

Fig. 5. Comparisons of the Chebyshev model (dashed line),
the exact solution (solid line) and the data of Kaku and
Kirby® at r = 1.38, 1.87, 2.2m from top figure to bottom.

6.3 Chebyshev model

The governing equation is obtained from eqn (39):

de,(u) .
d_l(l). = iypca(u)

/1 L
+ 2%0 (?b ¢ — k2mc[ufg1[c]]) =0 (44)

with
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Fig. 6. Exact solution in (,v) plane for waves in a wider circular channel.
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Fig. 7. Comparison of water surface elevation along outer wall between the exact solution and the Fourier—Galerkin model (dashed
line) for wider channel.
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Fig. 8. Three analytical eigenfunctions for the wider channel.

6.4 Results

6.4.1 Narrow and wide channels

A narrow channel is defined as a channel with a width
smaller than the wavelength of the incident wave, or
k(ry — r1) < 2m, where the left-hand side is 27 times the
number of wavelengths that can fit across the channel.
This can be rewritten as kr;6 < 2w, where § is the
dimensionless channel width: §=(r,—r()/r;. In a
narrow channel, the waves propagate around the
channel with very little change in wave form. For
example, given r; = 75m, r, = 80m, a water depth of
4m and a wave period of 4s, kri6 = 1.5 and the wave
propagates within the channel with little change in form

(the wave amplitude along the outside wall is only 3%
greater than elsewhere). The Fourier—Galerkin model
and the analytic (exact) model (with only one progres-
sive mode) are indistinguishable for this case.

For a wider channel, obtained by increasing r, to
100m, kr;6 = 7.53, which corresponds to a channel
wider than a wavelength. For this case, the wave field is
significantly different, largely due to the much greater
distance encompassed by the outer radius than the
inner. The ratio of the distances (circumferences) is
ry/ry =6+ 1, which is 1.33 in this case; therefore, §
measures the percentage increase in length of the outer
circumference over the inner one, or it is a measure of
the longer path followed by waves on the outer side of

//\\

_1r

Fig. 9. Eigenfunctions for waves in a wider circular channel in angular spectrum model.
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Fig. 10. Variation of the first five Fourier modes in the wider channel as a function of angle.

the channel than the inside. Figure 6 shows an
instantaneous snapshot of the free surface (analytical
model), which is comprised of three progressive modes. Of
particular note is the so-called amphidromic point*! in the
wave phase that occurs where the ‘extra’ wave appears
along the outer radius (to the right on the figure).

Figure 7 shows the water surface elevation along the
outer circumference as predicted by the Fourier—
Galerkin model and the analytical model for
0° < 0 <90°. The agreement is quite good, with the
Fourier—Galerkin model slightly underpredicting the
maxima and propagating slightly faster than the exact
solution. For this case, k2J = 689.8.

In Figure 8, the three lateral eigenfunctions comprising
the analytical solution, eqn (28), are shown. In com-
parison, the Fourier cosines for the Fourier—Galerkin
model are shown in Fig. 9. The difference between the
general shapes of the eigenfunctions is not large; however,
the behaviour of the coefficients multiplying these
eigenfunctions is very different. For the analytical
model, the a, values are constant, and the variation of
the wave form with 8 is due to the superposition of the
different modes comprising the solution. For the Fourier—
Galerkin model, with its imperfect Fourier series, the
Fourier coefficients exchange energy along the channel
according to eqn (43), see Fig. 10.
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Fig. 11. Comparison of water surface elevation along outer wall between the exact solution and the Chebyshev—tau model (dashed
line) for wider channel.
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The Chebyshev-tau comparison for the water surface
elevation along the outer wall is shown in Fig. 11. Ten
Chebyshev polynomials were used for this solution;
the use of only eight polynomials gives the same
solution.

6.4.2 Very wide channels
Waves in a very wide channel begin to experience
diffraction and strong reflection. For this example,
r, =200m, so kr;6 = 37.6, and § = 1.67. The analytic
solution has 12 progressive modes for this case. The
waves in the wide (six wave lengths) circular channel
initially propagate in a straight line, but as the channel
bends, the waves start to diffract around the bend and
simultaneously run into the curving channel sidewall to
reflect around the bend. Different parts of the wave crest
reflect at different times, leading to a complicated sea-
state far along the channel. The instantaneous water
surface from the exact solution in the physical domain is
shown in Fig. 2. The water surface is shown in the
conformal domain in Fig. 12.

The Fourier—Galerkin model does not yield a very
good solution for this case, due to the large variation in
k*J over the channel width. The Fourier—Galerkin

263

method assumes that the lateral variation of the solution
is expressible in terms of the Fourier series in the v
coordinate (which look similar to those in Fig. 9). The
actual shapes of the eigenfunctions (obtained from the
exact solution) are shown in Fig. 13 and are those used
in the angular spectrum model. The very different nature
of these eigenfunctions implies that trigonometric bases
are not efficient for this case.

The water surface elevations along the outer wall
computed by the Fourier—Galerkin model are compared
to the exact solution in Fig. 14. Clearly, there is a
discrepancy, with the Fourier—Galerkin waves having a
faster phase variation than the exact solution. The
largest discrepancy occurs at about 38°. (The numerical
model was run with grid sizes: du=0.452°
dv =0.0377°.)

Figure 15 shows the results of the Chebyshev-tau
model for the wide channel. Here, N =20, M =41 and
du = df = 0.00394 radians. Clearly, the model has a
phase error, which leads to wide discrepancies at 45°. It
is likely that this error is largely due to the errors
developed in the splitting process and the correspon-
dence to the small-angle parabolic model, which is
exacerbated in this case due to the variable nature of

T T

4.4 4.6

4.

8 5 5.2

Fig. 12. Exact solution for waves in a wide circular channel in the transform domain.
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Fig. 13. Eigenfunctions for waves in a wide circular channel.

k?J. Kirby et al?? show that a small-angle parabolic
model actually does better than shown here for the
Chebyshev-tau model, and that the large-angle para-
bolic model does better than all of these forward-
propagating spectral solutions.

7 DISCUSSION

Forward-propagating wave models for use with con-
formal mapping have been developed for the angular
spectrum, Fourier—Galerkin, and Chebyshev-tau
methods. They have been illustrated by application to
two problems provided by a simple conformal mapping.

4r

-4 L

These problems are wave propagation in a diverging
channel and in an annular channel.

In Cartesian coordinates, the angular spectrum
model, the eigenfunction expansion method (separa-
tion of variables), and the Fourier—Galerkin model are
identical. In conformal domains, this is not necessarily
true. The angular spectrum model is interpreted as an
expansion of the velocity potential in terms of the
eigenfunctions in the lateral (v) direction. These
eigenfunctions are found by separation of variables,
eqn (20). For the Fourier—Galerkin method, the lateral
eigenfunctions for a channel are a Fourier cosine series,
while for the Chebyshev-tau method, the lateral
functions are Chebyshev polynomials.

Fig. 14. Comparison of the water surface variation along outer wall between the exact solution (solid line) and the Fourier—
Galerkin model (dashed line).
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Fig. 15. Comparison of the water surface variation along outer wall between the exact solution (solid line) and the Chebyshev-tau
model (dotted line).

For the case of the diverging channel, the lateral
eigenfunctions turn out to be cosines; therefore, for this
case also, the Fourier—Galerkin method and the angular
spectrum method are the same. The Chebyshev-tau
method, however, does not approach the exact solution
analytically and, numerically, it is not as accurate as the
Fourier—Galerkin method.

For the case of an annular channel, the angular
spectrum model (using the eigenfunctions given by eqn
(27)), coincides with the exact solution, while the
Fourier—Galerkin method is shown to become more
inaccurate as the channel width increases. The Fourier
cosine series differs drastically from the actual lateral
eigenfunctions for the wide channel case. This is also
true for the Chebyshev-tau forward-propagation model.
The source of the errors is the increasing size of v, which
causes the last term in eqn (43) and in eqn (44) to
become large. Clearly, the use of the mean value of k*J
does not properly model the behaviour of the waves for
these large v cases.

Extension of these models to variable depths is
relatively simple, as the variable depth case is treated
by a variable coefficient Helmholtz equation.??
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APPENDIX: CONFORMAL TRANSFORMATION

To determine the governing equation in the transformed

domain, the chain rule operators
6_8u6+§_116 8_8u_¢9_+@(’9
Ox Ox0Ou OxOv dy 8y Ou Oy v

are used. Applying these to ¢ for first derivatives,

applying them again to obtain the second derivatives,
and, finally, substituting into the governing eqn (1) yields

(AD)

o & 0¢
2__ . 2____ bl 2
(Vu) o +2Vu-Vo+ (Vo) % + w Vu
+ ggvzv + k=0 (A2)

While the derivatives of ¢ in this equation are taken with
respect to the mapped coordinates, the coefficients still
involve derivatives of u and v with respect to x and y.
Applying both operators eqn (Al) to dx, we obtain

_Gudx wox o owdy ooy
T Ox Ou Ax O T Ox du Ox B
This pair of equations can be easily solved to give
ou 10y .
ox = 7 B (A3)
ov 10y
%= T ou (a9)

where J is the Jacobian, defined by eqn (18). The same
procedure is repeated for dy, resulting in

ou 1 Ox

- Jow (A3)
v 10x

= 7 ou (AS)

For a conformal mapping, the Cauchy-Riemann
conditions are required to ensure that the transforma-
tion is holomorphic (that is, derivatives exist every-
where). These are

Ou _Ov d ou v

5x— = 5); an 6—}1 = — a
By taking derivatives of these expressions, it is straight-
forward to show that V24 =0 and V?v = 0. Further-
more, by substituting from eqns (A4) and (A6), the
Cauchy—Riemann conditions show that

ox 0Oy Ox Oy

du v Ou
Utilizing the last two sets of conditions, the general
curvilinear coordinate system governing equation (A2)
is greatly simplified to one valid for conformal
coordinate systems: the result is eqn (17).

and



