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FLUID-SOLID INTERACTION: ACOUSTIC SCATTERING BY A
SMOOTH ELASTIC OBSTACLE*

C. J. LUKE! AND P. A. MARTIN'

Abstract. A bounded three-dimensional elastic obstacle is surrounded by an unbounded inviscid
compressible fluid. Acoustic waves are scattered by the obstacle; the problem is to find the scattered
waves and the response of the obstacle. This problem is formulated mathematically; existence and
uniqueness theorems are proved. Various systems of boundary integral equations over the interface
between the fluid and the solid are derived and analysed. These systems include a system obtained
by a straightforward direct method and a smaller system for a single vector field.
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1. Introduction. Let us consider the interaction between an elastic body (the
target) and a compressible, inviscid fluid in three dimensions. The target is coupled to
the fluid, which occupies the unbounded exterior region, via the smooth interface S.
In fact, the two media are coupled in two distinct ways. The first coupling is through
the kinematic boundary condition: to ensure that a well-defined boundary between
the fluid and the solid persists, the normal velocity of the fluid on one side of the
boundary must match the normal velocity of the solid on the other side. (There is no
such restriction on the tangential component of velocity, because the fluid has zero
viscosity and thus can slip freely over the surface of the solid.) The second coupling
is through the dynamic boundary condition, resulting from the balance of forces on
all parts of S: each boundary element is massless, so a nonzero resultant force acting
on it is prohibited. We suppose that a time-harmonic acoustic wave is incident upon
the target and are required to determine its response and the scattered wave.

The fluid—solid interaction problem, described above, has received much attention
in the engineering literature; see, for example, [10], [17]. Many authors have developed
coupled schemes, using various boundary integral formulations for the unbounded fluid
domain together with a finite-element method to model the elastic target [1], [2], [11],
[14], [26], [34]. Bostrom has used T-matrix methods [3], [4], whereas Dallas [7] has used
the limiting-amplitude principle. However, in many cases, there is a small parameter
in the problem that can be used in an asymptotic analysis. For example, often the
ratio of the fluid density to the solid density is small; this has been exploited [29], [30].
Long-wave approximations have also been given [28].

In this paper, we start by formulating the problem (§2) and then address the
question of uniqueness (§3); for some frequencies (Jones frequencies) and some ge-
ometries, the ideal (inviscid) fluid—solid problem is not uniquely solvable for the elastic
field, although the acoustic field in the exterior fluid is always unique. Uniqueness
results for solid-solid transmission problems are given in [24].

Next, we develop several coupled boundary integral methods in which integral
representations are used for both the fluid and the solid. This leads to integral equa-
tions over the fluid-solid interface. We are mainly interested in questions of existence
and uniqueness. In particular, we identify frequencies (if any) at which the integral
equations are not uniquely solvable (irreqular frequencies).
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The simplest pair of direct boundary integral equations, discussed in §5.1, has
been used previously [12], [32], [33]. In [12], the boundary integral equations were
solved both directly and in an iterative fashion; excellent results were obtained: irreg-
ular frequencies were observed, but Jones frequencies did not appear to pollute the
numerical solution (perhaps because only acoustic fields were reported [12, Fig. 19],
and these are unaffected by the presence of a Jones mode). We identify the irregular
frequencies (analogous results for the fluid—fluid problem are given in [23]). We prove
that the system of integral equations is solvable, using the theory of systems of mul-
tidimensional singular integral equations (outlined in the Appendix). We then go on
to prove the existence of a solution to the fluid—-solid problem at all frequencies for
both elastic and viscoelastic targets. An analogous analysis for the simplest pair of
indirect boundary integral equations is sketched in §5.2.

The systems of integral equations discussed in §§5.1 and 5.2 consist of four equa-
tions in four unknowns (one scalar and one vector). In §5.3, we derive systems for a
single unknown vector field; this extends previous work on the acoustic transmission
(fluid-fluid) problem [19] and on electromagnetic scattering by a dielectric obsta-
cle [25]. In particular, we obtain such a system that is shown to be uniquely solvable
at all frequencies.

2. Formulation of the problem. Let €; denote a bounded, three-dimensional
domain with smooth boundary S and simply connected unbounded exterior .
(Later, we shall state more precisely the smoothness conditions required of S.) Choose
an origin of coordinates, O, in ;. The exterior domain €2, is filled with homogeneous
compressible inviscid fluid with density ps. The target €; is composed of a homo-
geneous isotropic elastic material with Lamé moduli A and p, Poisson’s ratio v, and
mass density ps. A time-harmonic sound wave of small amplitude and frequency w
is incident upon the target ;; the problem is to determine the scattered wave in
the fluid and the transmitted elastic wave in the solid target. Henceforth, the time
dependence e~i“? is suppressed throughout.

The motion of the fluid is irrotational, whence a velocity potential, ¢, exists.
Thus, the fluid velocity, v, can be expressed as v(z) = grad ¢(x) for x € Q.. The
corresponding dynamic component of the fluid pressure is given by

(2.1) p(x) = priwd(x).

The governing partial differential equation is the wave equation; for time-harmonic
motions, this reduces to the Helmholtz equation,

(2.2) V2p+ k%*p =0,

where k? = w?/c? and c is the speed of sound in the fluid.
For the solid, the elastodynamic displacement field, u(x), satisfies

(2.3) V-o(u) + psw?u(z) = 0,
where o(u) is the stress tensor. For homogeneous isotropic elastic solids, we have
(2.4) Oij = A&ijekk + 2,ue¢j,

where

ent = = (Que O
=9 or;  Oxg
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is the strain tensor, §;; is the Kronecker delta, and the usual summation convention
is employed; the Lamé moduli are real constants and satisfy

(2.5) A+2p>0 and p>0.
Substitution of (2.4) into (2.3) gives
(2.6) kg2grad divu — k; 2curlcurlu + u = 0,

where the wavenumbers k;, and ks are defined by psw? = (A + 2u)k2 = pk?2.

We are also interested in viscoelastic targets. Such materials possess a “memory”
of their strain history. If they are homogeneous and isotropic, (2.4) still applies,
except that A and u are now functions of time. Furthermore, if the motion is time
harmonic, it can be shown that the Fourier transforms of A\ and p—A(w) and f(w),
respectively—must satisfy (see [15, Chap. 9])

(27  Re(A+2%@) >0, Refi>0, Im(A+23) <0, and Imfi<Oo.

Thus, these materials are effectively modelled like elastic materials, but with the real

Lamé moduli, A and p, replaced by the complex quantities A(w) and ji(w), respectively.

We note that complex moduli have also been used to model damping in the solid [21].
The kinematic interface condition is

o6 .
= —iwn-u on S,

where n(z) is the unit normal at x € S, pointing into Q. This and (2.1) imply that
0

(2.8) B—Z =pwin-u  onS.

The dynamic interface condition is
(2.9) —pn=n-o(u)=Tu  onS,

where the traction operator T is defined on S by

_ au]' 6‘um (9'U,j
(Tu)m(x) = Ang, 7z, + pn; (Ba:j + 6zm> .
We can now formulate the ideal problem of fluid-solid interaction.
Fluid-Solid Problem. Find a pair (p,u), with p,. € C?(Q) N C(Qe) and u €
C?(Q;) N C(), so that

(2.10) P = Psc + Pincs

Dsc satisfies (2.2) in Qe, and u satisfies (2.6) in ;. In addition, (p, u) must satisfy the
interface conditions (2.8) and (2.9), and ps. must satisfy the Sommerfeld radiation
condition at infinity,

(w/lw‘) - grad psc — ikpsc = 0 (la’l—l)

as |x| — oo, uniformly with respect to all directions x/|x|.

Here, pinc is the given incident wave and pg. is the unknown scattered wave. We
assume that pin. satisfies (2.2) everywhere in Qe, except possibly at some isolated
points. (This allows for the possibility that pinc is generated by, for example, a point
source situated somewhere in Q,.)
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3. Uniqueness. Suppose that there were two solutions to the fluid—solid prob-
lem; call them (p;,u;) and (pa,us), and then let p = p; — py and v = u; — us.
Clearly, p satisfies (2.2) in €2, and the radiation condition, u satisfies (2.6) in €;, and
(p, u) satisfies the interface conditions (2.8) and (2.9).

By an application of the divergence theorem

op 0p / - 2
1 —ds = = .
(3.1) /Sapands /Spands—}- Qa{Vp VP +pV?p} dV
=—pfw2/ﬁ-(Tu)ds+/ {Vp-Vp—E2|p|2} av,
S Qq

where the overbar denotes the complex conjugate; S, is the surface of the sphere of
radius a and centre O, which encloses ;; €, is the region between S, and S; and we
have used (2.2) and the interface conditions. We now consider several cases.

(i) w and k are real. Take the imaginary part of (3.1):

(3.2) Im </Sa pg% ds) = —p;w?Im (/Sﬁ (Tu) ds) .

As p satisfies the radiation condition, we have

(3.3) Im (/ p@ ds) — —k lim p|? ds.
S an a—oo fo

Furthermore, by the divergence theorem in €; and (2.3),
(3.4) / T (Tu)ds = / {o(u): Va - pswiua} dV.
s ol

For purely elastic bodies, o(u) : V& = A|ex|? +2pei;€:;, which is real. Therefore,
(3.2), (3.3), and (3.4) imply that

(3.5) lim [ |p|*ds=0.
a— 00 Su

Rellich’s lemma [6, p. 77] then implies that p = 0 in Q. Thus, 8p/dn = 0 on S.
Therefore, from (2.8) and (2.9),

(3.6) u-n=0 and Tu=0 on S.

Equation (2.3), along with the boundary conditions (3.6), does not necessarily im-
ply that w vanishes in ;. It is known that, for certain geometries and for cer-
tain frequencies, there are nontrivial solutions to this problem. We call these Jones
modes and the associated frequencies Jones frequencies, as they were first discussed
by D. S. Jones [16] in a related context (a thin layer of ideal fluid between an elastic
body and a surrounding elastic exterior); Dallas calls them “complex amplitudes of
nonradiating modes” [7, p. 7]. Thus, it is known that Jones frequencies exist for
spheres: Lamb and Chree found that an elastic sphere could sustain “torsional oscil-
lations,” in which the radial component of the displacement is identically zero (see,
for example, [9, §8.14]). Jones frequencies also exist for any axisymmetric body; such
bodies can sustain torsional oscillations in which only the azimuthal component of
displacement is nonzero. However, intuitively, we do not expect Jones frequencies to
exist for an “arbitrary” body; this has been proved recently by Hargé [13].
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(ii) w and k have positive imaginary parts. In this case, it is readily shown
that p decays exponentially at infinity. Hence, we have (3.5); when this is combined
with (3.1), we deduce that

(3.7) 0 = —pg? / - (Tw)ds + / {Vp-VB~Fpl} av.
s Q.
Equations (3.4) and (3.7) imply that
(3.8) 0= —pfa)“2/ {o(u): VU — psw’u-u} dV +/ {Vp° VP — 752|p|2} av.
Q; Qe

Take the imaginary part of (3.8) to give
1
Im (w?) (pf/ o(u):VudV + 7/ |p|? dV) =0.
& ¢ Ja.

Thus, Im (w?) = 0, or p vanishes in Q. and o(u): V@ vanishes in Q;. In the latter
case, u is constant in ;; the interface condition (2.8), together with the fact that p
vanishes in Q, implies that u vanishes on S, whence u vanishes in Q;. If Im (w?) = 0,
w? must be negative (as w is not real); thus, each term in (3.8) is positive and so
p=0and u=0.

(iii) Viscoelastic materials. For real w?, we proceed as before, to (3.4). We have

(3.9) o(u):Va = (A + 2[1)|exx|® + 20i(ei; — Sexndi;) (€57 — 5ErRbis)-

The third and fourth conditions of (2.7) imply that

(3.10) Im ( /ﬂ | a(u):V"ddV) <o.

Equations (3.2) and (3.3) still apply; they and (3.10) imply that (3.5) holds, whence
p = 0 in £, as before. Equations (3.3) and (3.4) then imply that the inequality (3.10)
is actually an equality. Assuming that the material is genuinely wviscoelastic, (3.9)
implies that w is constant in ;. Since p vanishes, the interface conditions make it
clear that u vanishes in ;. So, for real frequencies, the solution to the problem of the
interaction of a viscoelastic material and an acoustic medium, if it exists, is unique.

4. Representation theorems and applications. In this section, we use both
acoustic and elastodynamic fundamental solutions to obtain integral representations
in the fluid and in the solid.

4.1. Acoustic potential theory. A suitable acoustic fundamental solution is
G(x,y) = —e*/(2rR), where R = |z — y|. Using it, we define single-layer and
double-layer potentials by

(5@ = [ 1@y dsE)  wmd (D@ = [ )T ),

respectively, where f is a function defined on S. (We shall say more below on the
required smoothness of f.) Then, two applications of Green’s theorem (one in Q. to
Psc and G and one in €; to pinc and G) yield the familiar representation

(4.1) 2psc(x) = (S(0p/0n)) (z) — (Dp)(x) for ¢ € Q..
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The single-layer and double-layer potentials have well-known properties. If f(y)
is continuous for y € S, (Sf)(x) is defined up to and including S and is continuous
as « crosses S. However, both (Df)(x) and (8/0n(x))(Sf)(x) have jumps, given by

(4.2) Df=(fI+K*)f and  (8/0n(x))(Sf) = (I + K)f,

where, in each case, the upper (lower) sign corresponds to @ — @y € S from Qe ().
Here, K and K* are integral operators, defined, for € S and f € C(95), by

(K f)(x) = / f %;ﬁ’lds@) and

(ki) = [ 1) 5t dsty).

‘We can also take the normal derivative of D f, but for existence up to the boundary
we require f to be smoother: it is sufficient to have f € C1%(S), with a > 0; see [6]
for information on classes of Holder-continuous functions. Call this operator N:

(43) (NH@) = s [ 10 Gt dstw).

on(y)
It is known that N f is continuous across S [6, p. 62].

It is not difficult to show that S, K, and K* have weakly singular kernels. As
operators, they are compact on C(S), and also on C%#(S), for any 3 with 0 < 8 < 1.
Furthermore, if f is in C(S), then Sf, K f, and K*f belong to C%#(S), for any
with 0 < 8 < 1. Similarly, all these operators map C%#(S) into C1#(S). S and N
are self-adjoint when the inner product is taken as

(f9) = /S Fgds;

K and K* are mutually adjoint with this inner product. N is a hypersingular operator;
it maps C1#(S) into C%#(S). See [6] and [18] for proofs of these results.

4.2. Elastic potential theory. In the elastic target, we use the fundamental
Green’s tensor (Kupradze matrix) defined by

where ® = —exp{ik,R}/(2rR) and ¥ = — exp{1ksR} / (2mrR). Next, we define elastic
single-layer and double-layer potentials by

SH@ = [ f0) Gz dsw) ad (O = [ Fu)-T,60:2)dsta),
respectively, where T}, means T applied at y € S. Then, in the elastic target, we can
apply the Betti reciprocal theorem to uw and G, giving the representation
(4.4) —2u(x) = (S(Tu))(x) — (Du)(x) for x € Q.

The elastic single-layer and double-layer potentials also have well-known prop-

erties [20]. (Sf)(x) is continuous as x crosses S, whereas both D and 7,S exhibit
jumps given by

(4.5) Df=(FI+K)f and T,Sf=(xl+K)f
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(cf. (4.2)), where I is the 3 x 3 identity matrix. Here, K and K* are singular integral
operators, defined, for « € S, by

@ﬁmw=éfw»nq%www> and
(Kﬂ@%=Lf@%EGWWde-

In all of the above formulae, it is sufficient that the density f be Holder continuous
on S [20, Chap. 5]. However, we shall also require the tractions corresponding to the
elastic double-layer potential, defined by

(4.6) Nf = T,Df.

The existence of Nf requires that f be smoother: a sufficient condition is that the
tangential derivative of f(y) be Hélder continuous for y € S (f € C*#(S)), and then
the right-hand side of (4.6) is continuous across S [8], [20, p. 320].

S has a weakly singular kernel, but K and K* have singular kernels. Thus, for
the existence of Sf, it is sufficient that f be continuous on S. For the existence of
Kf and K*f, f must belong to C%#(S), with 0 < 3 < 1; however, K and K* are not
compact on this space. S and N are self-adjoint when the inner product is taken as

<ﬁm=Lf@w

K and K* are mutually adjoint with this inner product. N is a hypersingular operator.
For further information on these operators, see [20].

5. Boundary integral equations. In this section, we derive three different
systems of boundary integral equations and use them to prove the existence of a
solution to the coupled fluid-solid problem. The first two systems consist of four
equations in four (scalar) unknowns; each of these systems exhibits spurious irregular
frequencies, at which the system of equations is not uniquely solvable.

It is sometimes important not to have these irregular frequencies. For example,
if the ratio p¢/ps is small (which is often the case in practice), then there are complex
scattering frequencies with a small negative imaginary part [29], [31, Chap. 9]. In
this case, the response curve will have peaks near the scattering frequencies and they
may be difficult to distinguish from the peaks due to the irregular frequencies. This
situation could be further complicated if Jones modes are also possible. In view of
this, the third system derived is designed so that irregular frequencies do not occur.
Moreover, it consists of only three equations in three unknowns; for three-dimensional
problems, this is likely to be optimal. However, the price to be paid here is in the
increased complexity of the surface potentials utilised.

5.1. The simplest direct boundary integral equations. Let us begin with
the representation (4.1) for the scattered pressure field. Taking the limit as we pass
to a point on the surface .S, using (2.10) and (4.2), we obtain

Similarly, if we use the representation (4.4) for the displacement in the solid and then
evaluate it on S, using (4.5), we obtain

u—K*u +S(Tu) = 0.
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Now use the interface conditions (2.8) and (2.9) to get
p+EK*p—pw?S(u-n) = 2pinc,
(5.2) L
u—K'u—-S(pn) = 0.

This is our first system of boundary integral equations; it has also been given in [12],
[32], and [33]). We look for a solution with p and w in C*#(S), for some 3 > 0.

5.1.1. Solvability of the system (5.2). To analyse the system (5.2), using the
theory outlined in the appendix, it is helpful to write it in the form

I+K* —pw?Sny  —pw?Sny —psw?Sns \[ p 2Pinc
(53) —-Sljnj I _ﬁl _K_]:2__ ’—'KTB (75} - 0

—Szj’nj —K;l 1 ——___;2 - ’2"_3 U2 0 ’

=Sam;  —K§ —-K3, I-K3 us 0
where

(& )() = /S f@)(T,G(y, @) ds(y)  and
(S5 1)(x) = /S F()(Gy, ))i; ds(y).

The system (5.3) is not of the form “identity plus compact”; nevertheless, it is Fred-
holm, under certain conditions. To show this, we must show that the corresponding
symbol matrix is invertible. To calculate the symbol matrix, we first identify the
singular terms in (5.3), as weakly singular operators do not contribute. Thus, we
consider the system matrix

oo 0 0
0 I__I{_i_kl —Ki, —K{;
0 K I-Kp Ky |
0 -K3 -K3ip I-Kj

where all the remaining elastic terms can be evaluated at w = 0. Next, we choose a
particular point & € S and then define £(x) to be the unitary matrix that rotates the
coordinate system so that the new es axis is normal to S at . Explicit calculation in
the new frame then shows that the operator on the left-hand side of (5.3) is in G'(¢),
the class of operators defined in the appendix, where S is assumed to be a C%“
surface; the elastic part of this calculation is given in, for example, [27, p. 387]. The
corresponding symbol matrix is

1 0 0 0
0 1 0 —ib cos 6
0@ 0)=X"@) | o 1 —ibsing | X(®)

0 ibcosf ibsinf 1
where 6 is the angle a line in the e;-e; plane makes with the e;-axis,

1 0 0 0
| 0 &1 &2 &is
X(@) = 0 &a1 &2 &23
0 &31 &32 £33
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and X7T(z) is the transpose of X (z). The material parameter § is defined by
(5.4) 6= 1(1—20)/(1 = v) = /(A + 20,

where v is Poisson’s ratio. Since det ©(z,6) = 1 — §2, the condition

(5.5) IIelg | det ©(x, 6)| > 0,

0<6<2n

required by Theorem A.3, is fulfilled if v # %; the conditions on the Lamé constants
in (2.5) and (2.7) make a Poisson’s ratio of this value impossible. We conclude that the
system of integral equations (5.2) is Fredholm when the solid is elastic or viscoelastic.
The symbol matrix is Hermitian and so the index of the system is zero. Consequently,
a unique solution to (5.2) exists if the corresponding homogeneous system,

p+ K*p — psw?S(u-n) = 0,
(5.6) o
u—K'u—-S(pn) = 0,

has just one solution. So, suppose that the system (5.6) has a nontrivial solution,
(p',u') in L%(S). The fact that the operator is in G’(c) implies that p’ and u’ are
actually in C1®(S). Define pe, pi, u. and u; by

(5.7) (Dp') () = prw?(S(u' - n))(@) = { ﬁf((i)) ii: é gi

and

S TR

The continuity of the single-layer and double-layer potentials up to the boundary
implies the continuity of pe, p;, ue, and u; up to the boundary. p. and p; are smooth
solutions of the Helmholtz equation (2.2) in their respective domains. u and wu; are
smooth solutions of Navier’s equation (2.6) in their respective domains. Moreover, due
to the far-field behaviour of G and G, p. satisfies the Sommerfeld radiation condition
and wu, satisfies the following elastic radiation condition:

ou? ou?
OUe o 0\ _, e i1 ) -
(5.8) || (8 p 1kpue) 0 and || (8|:L’| 1ksue) 0

as |x| — oo, uniformly with respect to all directions x/|x|, where
ub = —k; 2grad div u, and ud = ue — ub.

From the first part of (5.6) and (5.7), using (4.2), we have p; = 0 on S. It
is well known that for each compact domain ;, there is only a countably infinite
number of wavenumbers at which a nontrivial, square-integrable function satisfying
the Helmholtz equation in €; and a homogeneous Dirichlet boundary condition on S
exists [31, Chap. 2]. We shall call the squares of such wavenumbers eigenvalues of the
interior Dirichlet problem.



FLUID-SOLID INTERACTION 913

Suppose that k2 is not an eigenvalue of the interior Dirichlet problem. Then p; = 0
in Q;. In particular, dp;/0n = 0 on S. From the continuity of the normal derivative
of the double-layer potential across S and the jump relations (4.2), we obtain

(5.9) %I:: ~ %% = %1:: =—2pw’u’-n  onS.
Now, evaluate pe on S:
(5.10) pe(z) = —p' + K*p' — psw?S(u' em) = —2p'  on S,

from the first part of (5.6). From the second part of (5.6) and the jump relations
(4.5), we have ue = 0 on S. In addition, since u,. satisfies (2.6) and the radiation
condition (5.8), it follows that . = 0 in Q.. (For an elastic material, this is proved
in [20, pp. 132-136]; for a viscoelastic material, it is proved in [22, Appendix D].) In
particular, Tu, = 0 on S. Evaluating the jump in the surface tractions across S, we
have

(5.11) Tu, — Tu; = —Tu; = 2p'n on S.
After using the second part of (5.6) to evaluate u; on S, we have
(5.12) ui(z) =2u'(z) onS.

Equations (5.9), (5.10), (5.11), and (5.12) imply that (—pe,u;) solves the homogeneous
fluid-solid problem. Therefore (from 8§ 3), if the solid is either elastic or viscoelastic,

(=pe,ui) = (0,0), unless a Jones mode is possible. If a Jones mode is ruled out,
then (5.10) and (5.12) imply that

(p/, u,) = (0,0).

Thus, we have shown that the homogeneous system (5.6) has only a trivial solution,
provided that k? is not an eigenvalue of the interior Dirichlet problem and that w
is not a Jones frequency. Subject to these conditions, Theorem A.6 shows that a
solution (p,u) of the system (5.2) exists and that this solution is in C*(S) (because
the right-hand side of (5.2) is in this space).

5.1.2. Solvability of the fluid—solid problem. We now show that we can use
the solution of the system (5.2) to construct the solution of the fluid—solid problem,
provided that k2 is not an eigenvalue of the interior Dirichlet problem and that w is
not a Jones frequency. Define

(5.13) P(z) = Pinc — 5(Dp) + 2pew?(S(u-n)) for © € Q. and
(5.14) U(x) = 1(Du) + 3(S(pn)) for ¢ € ;.

It is clear that P satisfies the Helmholtz equation in ., that P — p;,. satisfies the
Sommerfeld radiation condition, and that U satisfies Navier’s equation (2.6) in Q;. It
remains to check that the interface conditions (2.8) and (2.9) are satisfied.

We can also define P in Q; and U in Qe, using (5.13) and (5.14), respectively.
Because of regularity, the normal derivative of P and the surface traction of U on S
exist. Denote by P_ (P;) the limiting value of P as S is approached from €; (),
with similar definitions for other quantities. From the first part of (5.2), P- = 0.
Since we have assumed that k2 is not an eigenvalue of the interior Dirichlet problem,
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P =0 in Q. In particular, 9P_/dn =0 on S. So, as before, the jump in the normal
derivative of P across S implies that

(5.15) 8_(;’5_ = prwiu-n on S.
Similarly,
(5.16) P,=p, TU_=-pn, and U_=u onsS.

Equations (5.15) and (5.16) imply that the interface conditions are satisfied.

5.1.3. Discussion on excluded frequencies. Let us examine here what hap-
pens when k? is an eigenvalue of the interior Dirichlet problem and/or w is a Jones
frequency. Let Pp(x) be a nontrivial solution of the interior Dirichlet problem. By
applying Green’s theorem in ©; to Pp and G, we obtain

Pp(x) = —1(S(8Pp/0n))(x) for x € Q.
It follows that
(I+ K)(0Pp/on) =0 and S(0Pp/on) =0 on S.
Let {Ugi);i =1,...,n} be a base of the space of Jones modes. It is clear that
1-kHUY =o.

We know that (I — K¥) is Fredholm, whence (I — K)b = 0 has at least n independent
solutions. Let {bD;i =1,...,m} be a base of the null-space of (I—K). It is easy to see
that the space spanned by {Sb(’);i =1,...,m} is the space of interior displacement

fields with zero surface tractions. Thus, each Jones mode can be expressed as Sb, for
some b. Clearly,

(I-K)}b=0 and n-(Sb) =0.
Hence, the adjoint, homogeneous version of the system (5.2),

{ (I+K)a—n-(Sb) = 0,

(1-K)b—pw?nSa = 0,

(5.17)

has the solution (a,b), where a = OPp/0n and b is as above.
Conversely, it can easily be shown that the only solutions of (5.17) have

n-(Sb)=0, (I-Kb=0, Sa=0, and (I+ K)a=0.
Apply Green’s theorem in €; to pinc and G. Evaluating the result on S gives
2pinc = (I + K*)Pinc — S(Opinc/On)  on S.
Therefore, the inner product of (2piyc, 0) with (a, b), with a and b as above, equals

(I + K*)Pinc — S(8pinc/On),a) = (Pine, (I + K)a) — {(Opinc/On), Sa) = 0.
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Thus, all solutions of the adjoint homogeneous system (5.17) are orthogonal to the
right-hand side of (5.2), whence the system (5.2) is solvable at all frequencies. Thus,
the fluid-solid problem is solvable at all frequencies. The system is not uniquely
solvable when k? coincides with an eigenvalue of the interior Dirichlet problem or
when w is a Jones frequency. The nonuniqueness at each eigenvalue of the interior
Dirichlet problem is spurious, because we know that the fluid—solid problem is uniquely
solvable at these frequencies, unless, of course, it happens to coincide with a Jones
frequency.

We have identified the irregular frequencies as certain values of k?; they are
unaltered by changes in the composition of the target. They can be removed by using
a different representation for p in Q. or by combining (5.1) with another equation.
For example, if we evaluate the normal derivative of (4.1) on S, we obtain

(5.18) (I - K)(9p/9n) + Np = 2(0pinc/0n),

where N is defined by (4.3). One can then replace (5.1) with (5.1) +in(5.18) and then
proceed as before; here, 1 is a constant. For acoustic scattering by a rigid body, this
method is from Burton and Miller [5]; for the fluid-solid problem, see [1], [26].

5.2. The simplest indirect boundary integral equations. The system de-
rived in this section is indirect. We start by looking for a solution in the form

(5.19) p(x) = (Spu)(x) + pinc(x)  for x € Q, and
(5.20) u(x) = (Sg)(x) for x € Q.

These representations satisfy the appropriate field equations and the radiation condi-
tion, for any choice of g and u, which we assume belong to C%#(S) for some 3 > 0.
Applying the interface conditions (2.8) and (2.9), we obtain

p+ Kp—prwn-(Sg) = —0pinc/On,
(5.21)

g—Kg—n(Sp) = Pincn.
In §5.1.1, we saw that the system

I+K* —pw?Sn
(5-22) < -Sn 1-K* )

is Fredholm. This implies that the system

I+K* —-Sn
(5:23) ( —pw?Sn 1 —K¥ )

is Fredholm too, because its singular part is identical to that of (5.22). Since the index
is zero, the relationship between this system and its adjoint is symmetric. Therefore,
the system (5.21) is Fredholm. In addition, (5.21) is solvable if and only if k2 is not
an eigenvalue of the interior Dirichlet problem and w is not a Jones frequency. To
see this, note that, due to the vanishing index, the null-space of the system matrix
in (5.21) has the same dimension as the null-space of (5.23). Since

I 0 I+K* —pw?Sn\ _( I+K* —Sn I 0
0 psw?l —Sn - K* "\ —pw?Sn 1 -K* 0 pw?l )’
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the null-space of (5.22) has the same dimension as does the null-space of (5.23), and
the claim follows. In this case, the system (5.21) has the unique solution (,g). The
pressure and displacement fields are then given by (5.19) and (5.20); by construction,
these fields solve the fluid-solid problem.

Again, the irregular frequencies can be removed by modifying the representation
in Q. Thus, replace (5.19) by

p(x) = (Su)(x) + i(Dp)(x) + Pinc(x) for x € Qe,

and then proceed as before. The resulting system of integral equations can be analysed
in a manner similar to that described in §5.3; see [22] for details.

5.3. Single integral equations. In this section, we shall derive a system of
three equations in three unknowns that is free from irregular frequencies.
We look for a solution in the target in the form

(5.24) u(x) = (Sg), for x € O,

where g € C%P(S), whence

(5.25) u = Sg and t=(-1+K)g on S,

where t = T'u is the traction vector. The dynamic interface condition (2.9) gives
t=—-pn = (t-n)n,

whence (5.24) and the second part of (5.25) give

(5.26) (1-K)g — [n- (g~ Kg)ln = 0.

This equation does not give any information in the normal direction: we need an
additional scalar equation before we can determine g.
From (5.1) and the interface conditions, we have

(I+E*)(t-n)+ pw?S(u-n) = —2pine.
Substituting from (5.25) gives
(5.27) L-g = 2pinc,
where
L-g=(I+K*){n-(g - Kg)} - pw?S{n-(Sg)}.
Alternatively, from (5.18) and the interface conditions, we have
ptw?(I — K)(u-n) — N(t-n) = 2(0pinc/0n),

whence substituting from (5.25) gives
(5.28) M - g = 2(8pinc/On),
where we assume now that g € C1#(S) and

M-g=N{n-(g—Kg)}+pw?(I - K){n-(Sg)}.
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The sets (5.26) and (5.27), and (5.26) and (5.28), both give three scalar equations
from which g is to be determined. (We can obtain further sets if we replace (5.24) by
u = (Dg).) However, both sets suffer from irregular frequencies. Thus, in the spirit
of Burton and Miller [5], we combine (5.27) and (5.28) and consider the system

L. g+ 177M ‘g = 2pinc + 217](8pmc/8n)a
(5.29)

(I1-K)jg—[n-(g—-Kg)n = 0,

where 7 is a constant to be chosen later. Having solved (5.29) for g, we construct the
solution of the fluid-solid problem, using

(5.30)  p(z) = 3pw® (S{n-(S9)}) () — 3(D{n- (g — Kg)})(@) + Pinc(@)
for ¢ € Qe and (5.24) for « € O;.

5.3.1. Uniqueness. Before we prove that the system (5.29) is Fredholm, let us
first show that the corresponding homogeneous system has a nontrivial solution only
if w is a Jones frequency. So, suppose that g’ is such a solution, belonging to C14(S).
Construct fields w and p, using (5.24) and (5.30), respectively, but with pinc = 0 and
g replaced by g’. Using subscripts & as in §5.1.2, we find that

p_+inaap;n_=0 on S

p also solves the Helmholtz equation in €;. A standard argument then shows that p
vanishes identically in €;, if we make a suitable choice for n: we choose

—2
n==% /|k

In particular, 8p_ /On = 0. If we now compute p,, dp4/On, u_ and t_, we find that
the interface conditions are satisfied. Clearly, the field equations are also satisfied, as
is the radiation condition on p. Hence (§3), p = 0 in Q,, and w = 0 in Q; unless a
Jones mode is possible; if not, then w_ = 0. The continuity of the elastic single-layer
potential then implies that u, = 0, whence u = 0 in Qe [20]. Then, since t; = 0 and

t_ = 0, we deduce that g’ = 0, as required: we have uniqueness unless w is a Jones
frequency.

5.3.2. Existence. To prove the existence of solutions to the system (5.29), we
adapt an argument given in [6, p. 93]. Choose a wavenumber kg so that k2 is neither an
eigenvalue of the interior Dirichlet problem nor an eigenvalue of the interior Neumann

problem; denote operators evaluated with k¢ in place of k by a subscript zero. Let us
write

N = No + (N — No);
Ny is invertible [6, p. 90] with
Ng' = So(I + Ko) ™' (~1 + Ko) ™!,
which shows that Ny ' is compact on C%A(S) and that Ny ' maps C%#(S) into

CYB(8). (N — Ny) is compact on C%P(S), since its kernel is weakly singular; its
kernel also satisfies the conditions (A.2), (A.3), and (A.4).
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We now operate on the left on the first part of (5.29) with —in™' Ny ! to regularize
the hypersingular operator, IV, in M it becomes

n - (g — Kg) + compact terms = —(2i/n) Ny " {Pinc + i(8pinc/On)}-

When this is combined with the second part of (5.29), we find that the symbol matrix
for the complete, regularized 3 x 3 system is

1 —i6cosf —ibfsinb
O(z,0) = ¢T(x) | i65cosb 1 0 &(x),
i6sin 0 1

where £(x) is the rotation matrix defined in §5.1.1 and 6 is defined by (5.4). Clearly,
the condition (5.5) is satisfied for all allowable values of Poisson’s ratio, whence the
system (5.29) is Fredholm. Since the only solution of the homogeneous system is the
trivial one, we deduce the existence of a solution in C1*(S) of the inhomogeneous
system.

Appendix. Regularization, regularity and the symbol matrix. Consider
an operator A : X — X, where X is a Banach space. The bounded operator B : X —
X is called a left equivalent regularizer if

BA=1+T,
where I denotes the identity and T is compact in X, and if the equations
Au=f and BAu = Bf
are equivalent. Similarly, C : X — X is called a right equivalent regqularizer if
AC=1+T,

where T" is compact in X, and if any solution of Au = f can be written as u = Cw,
for some v in X, and vice versa.
The indez of an operator A, Ind A, is defined by

Ind A = dim{N(4)} — dim{N(A4*)},

where N/(A) is the null-space of A and A* is the adjoint of A. We have the following
important results.

THEOREM A.1. If A admits both left and right regularization, then Ind A is finite.

THEOREM A.2. If a closed operator A admits a left regularization, then, for the
solvability of Au = f, it is necessary and sufficient that f be orthogonal to every
element of N(A*). We say A is normally solvable when it has this property.

An immediate corollary of Theorem A.2 is the fact that if A admits a right
regularization, then A* is normally solvable.

The question that concerns us here is, Given a system of operators of the form

(Au)(@) = u(z) + /S k@, ) - u(y) ds(y),

where k(zx,y) is singular and A is considered to be acting on L?(S), under what
conditions does a regularizer having the form

(Bu)(x) = u(x) + /S K'(e,) - u(y) ds(y)
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exist? To answer this question, some general results will be used without proof;
detailed accounts of the theory of regularization of two-dimensional singular integral
operators are given in [20, Chap. 4], [27, Chap. 14], and [35, Chap. 2].

Since S is sufficiently smooth, a normal can be defined at every point of S. The
normal at zg € S, n(xg), is in CH*(S). Define the cylinder C(zo) by

C(xo) ={y : [(y — @) x n(xo)| < d, —1 < (y — z) - n(x0) < 1},

where [ and d are chosen to be small enough so that the orthogonal projection of
the intersection of S and C(x¢), which we shall refer to as S(x,d), onto the base of
C(xo) is conformal. Let 7(xo,d) be the intersection of C(xy) and the tangent-plane
to S at xg. If ¢ is the image of the orthogonal projection of a point & € S(xg,d) onto
7(20,d) and f is any function with domain S(xo,d), then we shall denote by f’ the
function in 7(xg, d) with f'(¢) = f(x); we suppose that the point &, is mapped to
the origin under the orthogonal projection.
Suppose that

(A.1) ki (¢om) =15 (¢, ¢ —m) + mez(¢m)

and 1;;(¢, (¢ — n)) = t721;;(¢,{ —n), for all t > 0 and ¢ # 7. Suppose, further,
that 1;;(¢, x) and all its derivatives with respect to x when considered as a function
of ¢ belong to C1%(7(xg,d)), for all k with || = 1. Finally, suppose that m;;(¢,n)
satisfies the following two conditions:

(A.2) Ima;(¢',m) — miz (<", )| < MIC" = ¢"P(u(¢, ¢ m)) 2
and
(A‘3) !mij(Cv 77/) - mij(cv 77")| < MW - 77"|ﬂ(v(77', 77”’ C)).—2v

where M is a positive constant and, for example, v(¢’,¢”,n) = min{|¢' —n|, |¢" —n|}.
If all three of these conditions hold, then A is said to belong to the class G(G).

Suppose that A € G(3) and that t(x) is a unit vector in 7(xo, d) that makes an
angle 0 with some fixed line in 7(xo,d). All the derivatives of l;;({, ) with respect
to k are supposed to exist. 1;;(¢,t(xo)) may thus be expanded as a Fourier series,

Lij(ao, t(x0)) = ) ag)exp(ine);

n#0

the term for n = 0 is missing because we have to assume that

/ lij(C,Kl)dKZ:O
|k]=1

for the existence of Au as a principal-value integral. Define the symbol matriz ©(zo, 0)
to be the matrix with entries

[ee)

. i .
O4j(wo, t(x0)) = bi5 + 2mi E —|7—2—|an) exp(inf)
n=-—00
n#0

The main result of the general theory is the following.
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THEOREM A.3. Suppose that

inf | det ©(xo,6)| > 0.
z0€S
0<6<2n

Then a double-sided reqularizer of A of the correct form exists in L?(S). Moreover,
this regularizer is in the class G(3).

We shall need the following theorems.

THEOREM A.4. If B is the regularizer of A in Theorem A.3, then

IndB +Ind A =0.

THEOREM A.5. If the symbol matriz is Hermitian, then Ind B = 0.

Thus, if A satisfies the conditions of Theorem A.3 and its symbol matrix is Her-
mitian, then its index is zero. Therefore, this and Theorem A.2 imply that A satisfies
the Fredholm properties, and thus A is said to be a (quasi)Fredholm operator.

Suppose that A is in the class G(3). Suppose that

kz‘j (112, y) € Cl’a (S(ilio, 6))7

as a function of its first argument uniformly in y € S(xo,d) \ S(xo, ), where § is any
positive number less than d/2, and that the function m;;(¢,n) in (A.1) satisfies the
following property:

(A4) / (Gt ds(a) € O (a0, ),

whenever u € C%#(r(x,d)), for 0 < 8 < a. Then A is said to belong to the class
G'(B). For such operators, we have the following important regularity resuit.

THEOREM A.6. Let 3 be any positive number with 8 < a. If Au = f, where A
is a singular integral operator in the class G'(8), f € CYA(S), and u € L%(S), then
u € CHA(9).

The effect of this theorem and the preceding results is that any operator in G'(5)
that satisfies the conditions in Theorems A.3 and A.5 is Fredholm on C*#(S), for any
positive number § with 8 < a.
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