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Mellin transforms are used here to find asymptotic approximations for functions
defined by series. The simplest cases are those of the form 37_, u(nx). Such
series are called separable here, because the given function u is sampled at points
whose variation with n and x is separated. Nonseparable series are analysed by
first approximating them by separable series. Both types of series arise in the
theory of electromagnetic waveguides and in the theory of linear water waves:
several examples are worked out in detail.

1. Introduction

Asymptotic approximations for functions defined by integrals in the form

Fx) = fo e (u)u(ux) dp, 1)

for small or large values of x, can be found using Mellin transforms [2, 18]. We
are interested in obtaining analogous results for functions defined by series,

£6)= 3 o), @)

Here, ¢, are known constants and pu,, is an increasing sequence, with n=1,2,...;
the function u(y) is defined for all y > (. We assume that the series is convergent
for all positive real x (it may diverge at x = 0), and seek the asymptotic behaviour
of f(x) as x— 0+. (The behaviour as x — % can be found in a similar manner. )
Some problems of this type were considered by Ramanujan [1: Chap. 15]: he took
mn =nP and u(x)=e™* or u(x)=(1+x)~', for integer values of p and I, and is
believed to have obtained his results using the Euler~Maclaurin formula.

In (2), the function u(y) is sampled at points y = u,x; we describe such points,
and the series (2), as separable. Separable series can often be analysed directly
using Mellin transforms (Section 3). For example, this method was used by
Macfarlane [10] on one example; he showed that

N(1-xnd 3n

n};l (—?—L“’m+ (3 +ix — 8=
as x— 0, where N is the largest integer such that xN i<1 and { is the Riemann
zeta function. Macfarlane’s work is described in the books by Sneddon [16: § 4-7]
and by Davies [3: §13.1]; Davies also gives some other examples. Mellin
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transforms were also used by Berndt [1] to confirm some of Ramanujan’s results.
Estrada & Kanwal [5] and Estrada [4] have obtained similar results, using the
theory of generalized functions.

A natural generalization of (1) is

fr) = J " el i, 3)

where U is a function of two variables. We are interested in a similar
generalization of (2). Thus, we consider series where u(y) is sampled at
nonseparable points, y = A, (x), where A,(x) is a known function of x for each n:

F&) = 2 cau(ha(x) (4)
is called a nonseparable series.

There are no general methods for the asymptotic approximation of integrals of
the form (3). Similarly, we do not expect to find a general method for the
asymptotic approximation of nonseparable series; indeed, we are not aware of
any previous results for such series. However, in certain applications (described
below), the quantities A,(x) occur as the solutions of a transcendental equation,
and then progress can be made. Our method proceeds in two stages. First, we
look for suitable separable approximations to A,(x), and then we use Mellin-
transform techniques (Sections 4 and 53).

Both separable and nonseparable series arise in waveguide problems. Such
problems are often solved using various modal expansions (separation of
variables, matched eigenfunction expansions, Wiener-Hopf techniques, etc.). In
these expansions, the lateral variation is represented by a series of eigenfunctions,
which depend on the width of the waveguide (related to x). Moreover, if the
waveguide walls are hard (Neumann boundary condition) or soft (Dirichlet
condition), the associated eigenvalues are separable (in the above sense), and so
(2) is typical. However, if the walls are impedance boundaries (Robin condition),
the lateral eigenvalues are usually determined as the roots of a transcendental
equation, leading to the nonseparable series (4).

In the context of waveguide problems, the limit 1/kh — 0 is of interest, where A
is the width of the waveguide. This limit has been discussed by Mittra & Lee [13:
§ 3-11.(2)]. They consider the infinite bifurcated waveguide shown in Fig. 1, with

p=0
b

Y=

Fi1c. 1. Closed region—finite depth.
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y=0
h

FiG. 2. Open region—infinite depth.

Y =

a semi-infinite plate (the septum) at a fixed distance d from the wall at y = 0; this
geometry is referred to as a closed region. The governing partial differential
equation is the Helmholtz equation,

(V2 + k5 =0,

where k is the positive real wavenumber. A waveguide mode is incident from
x =—2 in the region 0 <y <d; it is partially reflected at the end of the septum
and partially transmitted into the rest of the guide. The corresponding reflection
and transmission coefficients can be determined exactly (Mittra & Lee [13] solve
this problem in detail).

The same problem can be considered (and solved) when h = =. This corres-
ponds to an open-ended waveguide; the geometry is sketched in Fig. 2 and is
referred to as an open region. The connection between open-region and related
closed-region problems is of interest because the latter are often easier to solve:
for example, when the Wiener-Hopf technique is used, a certain function of a
complex variable has to be factorized; this function is meromorphic in closed-
region problems but has branch points in open-region problems. Mittra & Lee
[13] show that the open-waveguide problem can be solved by taking the limit
h— 2 of the bifurcated-waveguide problem, but only when the walls and septum
are hard. The methods described below can be used to analyse such problems,
even when the walls are impedance boundaries.

The geometry sketched in Fig. 1 has also been used by Linton & Evans [9] in
the context of small-amplitude water waves. The governing partial differential
equation is the modified Helmholtz equation

(V- 2)$ =0,

where [/ is the positive real wavenumber in a direction perpendicular to the
xy-plane. The semi-infinite plate and the bottom (y =h) are hard, whereas the
boundary condition on the mean free surface y =0 is an impedance condition,

K¢ +og/ay=0 ony=0,

where K is another positive real wavenumber. Two more wavenumbers, k and k,,
are defined to be the unique positive real roots of the dispersion relations

K =ktanhkd and K =kytanhkyh, (5a,b)

respectively, and then / is chosen to satisfy K <k, </<k. Consequently, when a
surface wave is incident from x = —«, it will be totally reflected by the end of the
plate. Linton & Evans [9] gave an explicit formula for the argument of the
(complex) reflection coefficient, which they used to estimate the frequencies of
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waves trapped above a long horizontal submerged plate. We shall examine their
formula below, and extract the limiting formula for deep water (1 — ) (Section
5). Indeed, it was a study of the limiting problem (for the geometry sketched in
Fig. 2) that originally motivated the present analysis.

2. Mellin transforms

In order to find asymptotic approximations for separable series (2), we use Mellin
transforms. Given a function f(x), its Mellin transform is defined by

7o) = fo "

where we shall always use the notation z = o + it for the transform variable z.
Typically, f(z) will be an analytic function of z within a strip, a <o <b, say:
within this strip, we have

[f(o+it)| =0 as|t]— . (6)

The inverse Mellin transform is given by

¢ +ix

flx) Fle)x*dz

2mi o—iee

for fixed x >0, where a <c¢ <b. We can obtain an asymptotic expansion of f(x)
for small x by moving the inversion contour to the left; each term arises as a
residue contribution from an appropriate pole in the analytic continuation of 7(z)
into o < a. Specifically, we have the following result.

THEOREM 1 [14: p. 7] Suppose that f(z) is analytic in a left-hand plane, o<a,
apart from poles at z = —a,, (m =0, 1,2,...); let the principal part of the Laurent
expansion of f(z) about z = —a,, be given by

i (=1)'n!

s mn (Z +am)n+] "

Assume that (6) holds for o' < o <a. Then, if a’ can be chosen so that
—Re (ay+1) <a’' < —Re (ay)

for some M, we have

M N(m)

F@x)= 2 2 Apx™(logx)” + Ry(x),

m=0 n=0

where

a’+ie

Rut)=5= [ Flewraz=

a’—iee

x2n f_mf(a’ +iglx ' de
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Furthermore, suppose that
Jw If(a" +it)| dT <=, (7)
or, less restrictively,
Jm fla' +ite™dr<e= (8)

with X = —logx. Then, the remainder Ry (x) is o(x®¢“»)), whence f(x) has the
asymptotic expansion

M N(m)
FO)~ 2> 2 Apx(logx)" as x—0+.
m=0 n=0

Note that (8) will be satisfied if f(a’ +ir) is integrable for finite 7, and is
O(}7|™®) as || — o for some & > 0.

More information on Mellin transforms can be found in [2: Chap. 4; 3: §§12,
13; 16: Chap. 4; 18: Chap. 3]. In addition, we have used Mellin transforms
previously to find asymptotic approximations for solutions to certain integral
equations, near the end-points of the range of integration [11, 12].

3. Separable series: A problem of Ramanujan

Consider the series (2), namely

£6)= 3 cosun) ©

We shall find the asymptotic behaviour of f(x) as x — 0+ by calculating its Mellin
transform. We have

oo

F@=23 o] # ) é=6) 3w (10)

To make progress, we must be able to locate the singularities of #(z) and of the
sum on the right-hand side of (10). So, to fix ideas, consider the following
example.

ExamprLE 1. Find the behaviour of
fx)=2 n"e™ asx— 0+,
n=1

where v is a real parameter.
We can take ¢, =n""!, p, =n, and u(x) =e* Hence

F@) =tz - v+ 1)), (11)

where I'(z) is the gamma function and {(z) is the Riemann zeta function. It is
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known that I'(z) is an analytic function of z, apart from simple poles at
z=-N (N=0,1,2,..); near z = —N,

L@)=(-1"[(@ +N)"' + (N +1)}/N!,

where ¢(z) =T"(z)/T(z). It is also known that {(z) is analytic for all z, apart from
a simple pole at z =1; near z =1,

Gy~ 1) 44, (12)

where v=0:5772 --- is Euler’s constant.

Let us suppose that 0<v < 1. Then, f,(z) is analytic for & > v. We choose the
inversion contour along o = ¢, with ¢ > v. Moving the contour to the left, we pick
up a residue contribution from the simple pole at z =v: this gives the leading
contribution as

£x)~xT(v) asx—0+ for0<v<Ll (13)

Mittra & Lee [13: §1-4, eqn (4.1)] have obtained this result, using the
Euler—Maclaurin sum formula.

If we move the inversion contour further to the left, we formally obtain
Ramanujan’s expansion [1: p. 306],

(=)™

- {(l—v-m) asx—0. (14)

A@~ T+ 3

The fact that this is an asymptotic expansion follows from Theorem 1 and the
known properties of {(z) and I'(z) as [1]— . Thus, from [17: p. 276], we have

o +it)=O(|7]*log |7]) as |t]|— ==, (15)
where
i—a (oc=0),
1 1
@11, gege as)
0 (o=1),
and the factor of log |7| can be omitted except when o is close to 0 or 1; and
T(o +it) = O(j7]" % )  as |1|~ . (17)

Hence, although {(o +it) grows algebraically as || — =, for o <1, the exponen-
tial decay of I'(o + it) ensures that (7) is satisfied for all values of a’.

The asymptotic formula (14) is valid for all values of v, apart from v=—N. In
these cases, there is a double pole at z = —N, giving a term proportional to
x™ log x. For example, when v =0, we obtain

folx) ~ —logx + E_l(m, ((1—m)
= 2n
=—logx+ix— > By, asx — 0, (18)

am12n(2n)!
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since {(0)= -3, {(~2m)=0, and {(1—2m)=—B,,/(2m) (m=1,2,..), where
B, is a Bernoulli number. In fact, fy(x) can be found explicitly by integrating the
geometric series to give

folx) = —log (1 -e™),

which agrees completely with (18).
A related example is the following.

ExampLE 2. Find the behaviour of
g.(x)=2 (n—1)ylem ™ Hr a5 x 404,
n=1

where v is a real parameter.
We find that

gu(z)= (2" = )fu(2),
where f,(z) is given by (11) and we have used

E (n =17 =(2* - 1)i(2). (19)

So, if 0<v <1, the leading contribution is again given by (13), although the
subsequent terms are different,

4. Nonseparable series: A model problem

In this section, and the next, we consider some nonseparable series involving the
roots of the transcendental equation (5b). Apart from the real roots =k, (5b)
also has an infinite number of pure imaginary roots +ik, (n=1,2,..). Thus, &,
are the positive real roots of

K+k,tank,h=0 (n=1,2,.); (20)

they are ordered so that (n—3)n<k,h <nm In the context of water-wave
problems, A is the constant water depth, and K is the positive real wavenumber.
We are interested in the deep-water limit, # — . In dimensionless variables, we
define

x=(Khr)™" and A,(x)=k,h,
so that
cos A, (x) +xA,(x) sin A, (x) =0, (21)
with
(n=Hr<r,x)<nn (n=1,2,.). (22)

Later, we shall study some series involving A,(x). Clearly, the convergence of
these series will depend on the behaviour of A,(x) as n—s x, although we are
interested in the behaviour as x— 0. It is straightforward to show that, in these
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limits, A,(x) ~nn as n— o for fixed x, but A,(x)~ (n — 3)n as x— 0 for fixed n.
These estimates can be refined:
Ay(x)~nn—(amx) ' = (x — D(rnx)™® asn— o= for fixed x, (23)
Ap(x)~(n = Dr(l +x + x?) asx—0 for fixed n. (24)

It is this nonuniform behaviour that causes difficulties.
To find some uniform approximations, we return to the definition (21). Write |

g b A0 25) |

where

and 0 < v, < in. Then, (21) gives
sin v, (x) — x[p, + v, (x)] cos v, (x) = 0. (26)

Discarding the second term inside the square brackets (this is certainly reasonable
for large n), we obtain

Va(x) =tan"" (unx) = vi(x), (27)

say, which is a separable approximation to v,(x). One can show that the
approximation A,(x)=pu, + v{’(x) agrees with the first two terms in (23) and
with the first two terms in (24).

We can obtain an improved approximation by iteration: replace v,(x) by
v{D(x) inside the braces in (26) to give

V,(x) = tan ™ [u,x + x tan™! (u,x)] = vO(x), (28)

say. Then, the approximation A,(x)=pu,+ v{)(x) agrees with the three-term
asymptotics in (23) and in (24).
For a simple, but nontrivial, problem, we consider the following example.

ExampLE 3. Let

f6=13 (15 )

A (x) nm

The series converges for all x =0; in fact, using the bounds (22), we have

0<f(x)<n2( 1) 2( )m+1~2log2

2)11: nr

for x > 0. Since A,(0) = (n — Dn = w,, for all n, we write

flx)=2log2 + S(x), (29)
where
1

Au() s

S(x)=mn i 5,(x) and s,(x)=
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We have §(x)— 0 as x— 0 and S(x) is bounded as x — =, whence S(z) is analytic
in a strip —8 < o <0, where 8§ > 0. In fact, we note that 5,(x) = O(x) as x— 0 and
is bounded as x — o, whence §,(z) is analytic for -1 < ¢ < 0; thus, we expect that
& =1. However, we also note that formal differentiation of § (x) results in a
divergent series, suggesting that S(x) does not behave like x as x — 0,

We shall treat S(x) using our separable approximations for v,(x). Since the
latter may not be appropriate for small values of n, we split the sum and write

£

S(Jf)=?’5§__{,Sn(x)'HE 2 Salx)=Spu(x) + Silx), (30)

n=M+1

say, where M is fixed. For S, we can use (24) to give
M M
Su(@)~m 2 pa [(L+x+2)7 = 1] = -1 3 pp'+0(Y (31)
n=]1 n=1

as x — (). For §3;, we start with
1 Y 1 .
{142 )2
Mop Mon Mn Men
since |v,/u,| is small. Next, we approximate v, by v® and v2 by (v{")%, where
vy’ and v{? are defined by (27) and (28), respectively. Finally, since [v("/u,| is
small, we can approximate v using the Taylor approximation
tan ™! (X +H)=tan' X + H1 + X*)™! (32)
for small H: the result is
$a(%) = = V@) + 2V + (ax)] 7 = w7 O] = s0(x),
say. This is our final separable approximation for s,(x). We find that the error
I, —si] is O(n™*) as n— o for fixed x, and is O(x*) as x — 0 for fixed n.
The Mellin transform of s{’(x) is given by
Fo @)= —pn® W)+ o WD), (33)
where
i1(z) =j x* 'tan ' x dx,
. (34)
T,(z) =f x* tan"'x — x(1+x?)"tan"" x dx.
0

Here i7,(z) is analytic for —1 < o < 0; within this range, we can integrate by parts,
giving

I dy T
= = Hz-1) = 35
& (z) J; Y 1+y 2zsin[in(z-1)}’ G

using a standard integral. Also, since the integrand in (34) is O(x***) as x — 0, we
see that i7,(z) is analytic for —4 < ¢ <0.
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Summing over n, using (30) and (33), gives

Sw(z) =~z +2)i11(2) + s (z + 3)itx(2), (36)

where, by definition,

s M

bn(@)=m 2 pat=nTH2 D)~ 1 Y unt (37)
n=M-+1 n=1

and we have used (19). Here y,,(z) is analytic for all z, apart from a simple pole

at z =1,

M
Un(2)=(—-1)"+y+log(4/n)—n > u,;' nearz=1L (38)
n=1

Note that S5 (o +it) decays exponentially as |7]— ©, whence Theorem 1 will
yield an asymptotic expansion for S3,(x). In order to invert §3,(z), we start with
the inversion contour to the left of z =0, and then move it further to the left;
thus, we are interested in singularities in o <0. Consider the first term on the
right-hand side of (36). From (35), we see that &;(z) has simple poles at
z=-1, —3,... (and other poles in ¢ =0); near z = —1, we have

() =E+1)7"+1. (39)
Hence, ¥y(z +2)it4(z) has a double pole at z = —1; (38) and (39) give
M
Uz D)=~ + 1) = @+ )1+ y+logim — 1 X p7)
n=1

near z = —1, giving terms proportional to xlogx and x in S3(x). The next
singularity at z = —3 gives a term in x°, but we have already made errors of this
order when we replaced s,(x) by s{’(x). The second term on the right-hand side
of (36) is analytic for —4 < o <0, apart from a simple pole at z = —2, and so this
gives a term proportional to x%. Combining these results, using Theorem 1, gives

M
Su(x)=xlogx —x(l +vy+log(4/n)—=n >, ,u,,;l) + O(x?)
n=1

as x — (. Finally, using (30) and (31), we obtain
S(x)=xlogx — x[1 +~v +log (4/7)] + O(x?) (40)

as x— 0, and then f(x) is given by (29). Note that, as expected, this result does
not depend on M (see (30)).

5. Nonseparable series: A problem of Linton & Evans [9]

In this section, we consider a water-wave problem described in Section 1 and
solved by Linton & Evans [9]. The geometry is shown in Fig. 1. They calculate a
certain complex reflection coefficient; its argument is proportional to the
right-hand side of their equation (3.34), which we write as follows:

E(h)=tan"[@ (2 - k3)}] —tan~' (//a) — in— (a/m)Ly + T, (41)
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where Lo =clog (h/c) + d log (h/d) and

T= nil [tan” (m) ~tan™! (([2_+ak§)—g) +tan™’ (m)]

The parameters d, [, and K are fixed. The quantity k, is defined by (5b) and
a = (k* — %)}, where k is defined by (5a). We have c=h —d >0 and K <k,<
| < k. The quantities k, solve (20), whereas «, are the positive real roots of

K+ktank,d=0 (n=1,2,.)

satisfying (n — 1)1 < k,d <nn. Note that we use kg, k,, and «, where Linton &
Evans [9] use k, k,.1, and k,, respectively; also, there is an additional term of
—in in (41) which was omitted by Linton & Evans [9] (Linton, private
communication).

ExawmrLE 4, Find
lim E(h) = E., (42)

h—x
say, where E(h) is defined by (41). This corresponds, physically, to solving the
same water-wave problem as Linton & Evans [9] but for the geometry shown in
Fig. 2, in which the water is infinitely deep.
Note that, as & varies, so too do kg, &,, and c; all other parameters remain
unchanged. To begin with, (5b) shows that

koh ~Kh(1 +2e ") as Kh— =,

so we can replace kq by K in the first term of E(h) as h — . It is elementary to
show that Ly=d(logh+1—logd)+o(l) as h— . For T, we note that the
arguments of the three inverse tangents behave like

ag gh od

Ed

nn’ nn’ nm’

respectively, as # — o, and so we can write T =T, — T, + T3, where

- P #)_a_c} 2

4 ,Z‘j fan ((l2+n2n2/c2)% nnl “3)
S e (& _a_h}

& ,zg  an ((12+kg)%) nn)’ SE
-5 o )2

T= 2 [tan ((F+Kﬁ)% nr ) (43)

and we have used ¢ —h +d=0. We note that T} is a separable series, 75 is a
nonseparable series, and T; is independent of h. So, at this stage, we have

E(h)=—tan"' [a(?— K?)"i]—tan™! (I/a)
—(ad/m)(logh +1—logd)+ T, — T+ T +0(1) (46)

as h— =, since tan~' X + tan™' (1/X) = in. We examine 7; and 7T, in turn.
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5.1 Deep-water behaviour of T,

From (43), we have T; = f(n/c), where f(x) is defined by (9) with ¢, =1, Ly =n
and

)

u(x)=tan"! _a_l -z (47)
(@)

P+x:/ x

Proceeding as in Section 3, we obtain f(z) = {(z)iZ(z), where #(z) is analytic for
1<o<3. We must find the singularities of #(z) in 0< o <1; singularities in
o <0 will lead to terms that are o(1) as & — .

For 1 <o <3, we integrate by parts to remove the inverse tangent, giving

7 (@) = (a/2)l(2)i (z), (48)

where

Hile)= f ((x 21 Py} (x2+k2) xl)dx )

and we have used the relation k*= a? + /% The function @,(z) is also analytic for
1< o <3. To find the singularities of #,(z) in o < 1, write

d1(z) =xz) + T3(z) + iT4(z), (50)

where

z+1

_ B ~ 5
“2(2)=f(x2+12)%(x2+k2)dx’ ”3(”:_[0)‘ i

#4(z) = j l)fix,

x +12) 2+ kD) x

and B is an arbitrary positive number. Here @,(z) is analytic for o > —2. The
function i73(z) is analytic for 0>1, and can be continued analytically into the
whole plane, apart from a simple pole at z = 1; near z =1, we have

ii3(z)=—(z —1)"" ~logB.

The function #4(z) is analytic for o <3. Hence, #,(z) is analytic for —2 < ¢ <3,
apart from a simple pole at z = 1; near z = 1, we have

I(z)=-@-1)""+0Q,
where
0 = —log B + (1) + @a(1). (51)
We can evaluate Q explicitly (see Appendix A):
Q =log (2/1) + (k/a) log [(k — a)/1]. (52)
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Returning to (48), we see that f(z) has a double pole at z =1, a simple pole at
z =0, and is otherwise analyticin —2< g <3;nearz =1,

f@)=al+w) ' (w i+ Y (=w '+ Q)= a[-w2+w (Q—y+ 1)],
where w = z — 1, whereas near z =0,
F@)=(a/2)(0)a,(0) = ~3z " tan™" (a/I),

after evaluating &,(0) (see Appendix B). Moreover, it is clear that the analytic
continuation of #,(z) is bounded as |t|— = for ~2 < o <3. Hence, (48) and (15)
imply that we can move the inversion contour to the left of z =0, so that
Theorem 1 yields the asymptotic approximation

fx)=(a/x)logx +(a/x)(Q—y+1)—3tan™! (a/]) +0(1)
as x — 0. Replacing x by n/c, with ¢ =h — d, and expanding for large h gives
=(a/n)}{—hlogh +h(logn+ Q —y+1)+d[log(h/m) — Q — v]}
—itan"! (a/l) +o(1) (53)

as h— o, where ( is given by (52).

5.2  Deep-water behaviour of T,

The series T, defined by (44), is nonseparable. As in Example 3, we expect the
leading behaviour to be given by (44) with k,h replaced by u, = (n — 1)n. So, we
consider

T.(1/h) = 2 [tan_l (———“——) —“—h] (54)

P+ u2/h®i/)  nm
We have
oF == 1
=3 o st ]2 5 )
=3 o (G =] 2
the second sum is (2/r) log 2. Hence,
T.(x)=[2a/(nx)] log 2 + f(x),

where f(x) is the separable series (9), with ¢, =1, u, = (n = 3)n, and u(x) again
given by (47). We obtain

F@)=n772* = )Y(2)a(z) = (a/z)n* (2% — 1)(2)d;(2),

where @,(z) is defined by (49) and we have used (19). Note that, unlike the
function defined by (48), here, f(z) does not have a pole at z = 0 (because 2° — 1
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has a simple zero at z =0). However, it does have a double pole at z =1; near
z=1,

F@)=a(l+w) 'n7' (1 —wlogn)(1 + 2w log 2)(w ' +y)(-w ™1 + Q)
=(a/m)[-w?+w (Q —y+1+logn—2log2)],
where w =z — 1. Hence
To(x) = (a/m)[x 'logx +x71(Q — v+ 1+ log m)] + o(1)
as x— 0, and so, as i1 — =, we obtain
T(1/h) = —(a/m)h logh + (a/m)h(Q — v+ 1 +log nt) + o(1). (55)

We now examine the difference between T; and T.(1/k). Using (44) and (54),
we define

L=T-Tim=3 1, (56)

n=1

where

1, =tan! (‘—2&—“) —tan™! (Z—D;Tl)
(F + k) (" + pn/h)z
Clearly, t, =o0(1) as h—> o, for fixed n, so we have

o

T,= E t,+0o(l) as h— oo,

n=M+1
where M is fixed (cf. (30)). Writing k,h = u,, + v, as in (25), we have.
P+ k2=A+2v,u,/h®

as |v,/u,| is small, where A2 =[>+ u2/h Hence

el B (1 _M)
P+t 4,\ A2m?)

Then, using the Taylor approximation (32), we find that

5 — oV, iy
" HRA(A + e®)

Finally, we use the approximation (27), v, = v{’ =tan™! (w,/Kh), giving
ta=—(a/h)(1/h),
where

Kay tan”" (u,y/K)
P e+ iy
d

)= (57)
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and we have used k*=a’+ /% So, we have approximated T, by a separable
series:

Ti=—(a/h)TH(1/h) +o(1) (58)

as h — =, where

£

Tux)= 2 £(x)

n=M+1

and 7{"(x) is defined by (57). We now take the Mellin transform of 77(x). Since
t0(x) ~ In(u,x)"? as x — =, we see that T3 (z) is analytic in a strip 8 <o <2,
for some B, so we can take the inversion contour just to the left of o =2. We
have

Tiz) =n""Yu(2)a (2).
where Y, (z) is defined by (37) and

* yitan~! (y/K)
0 (y2+12)75-(y2+k2) 4

wfg)=
is analytic for =2 < o <2. Hence, T,(z) is analytic for —2 < ¢ <2, apart from a
simple pole at z = 1; using (38), we have
Talg)=Ln "z ~1)™
near z =1, where

*_ytan' (y/K)

L) e e Y

(59)
(The evaluation of L is discussed below.) Hence, as the conditions of Theorem 1
are easily seen to be satisfied, we obtain

Tyu(x)=L/nx +o(1)

as x—0, whence (58) gives T, = —(a/n)L + o(1) as h— =. Finally, we combine
this result with (55) and (56) to give

L=(a/n)[-hlogh+h(Q —y+1+logm)—L]+o(l) ash—=  (60)

5.3 Evaluation of L

The quantity L, defined by the integral (59), cannot be evaluated in terms of
elementary functions. However, it can be expressed in terms of dilogarithms [8].
We find that (see Appendix C)

al=3n"—3Alog (k + K)+ 3Alog (k — K)— 6 tan™ (y/a) — &, (61)
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where ¢ = (I — K?)! and
$=Li, (e, 8) - Lise™, 1+ 3), (62)
A=sinh™! (a/l)=-log[(k —a)/l], &=tan!(y/K). (63a,b)

Here, the dilogarithm is defined by

. . dw
Li; (z) = kf log (1 —w)— (64)
[+] W
for complex z, and

. r dx
Li, (r, 8) =Re [Li, (re'®)] = —%f log (1 —2x cos 8 + x*) —.
o x

5.4 Synthesis
From (53) and (60), we have
- T=(a/n)[L+d(logh —logn—Q ++v)]— ftan" (@/l) + o(1)  (65)

as h— =, so that the terms involving & and hlogh in (53) and (60) cancel.
Moreover, when (65) is substituted into (46), we see that the terms in logh
cancel, leaving only bounded terms as A — . Specifically, from (42), we obtain

E.=(ad/m)[log (d/m)+vy—1- Q]
+al/n+ T—in—tan™? (a/y) + 5 tan™' (a/)).

Now, substituting for O and L from (52) and (61), respectively, we obtain our
final expression for E.., namely

ad( Id ) kd k—ao L« B
= —_— -1 —— g 1= 1 : S}
E rc log2n+y TElog ] tan v ztan a
1 1 k—-a k+K 1 _ ¢ _ ¢
+G-—%+—1 ——tan"!—tan"' =
S e P g s e, (66)

where ¢ = (- K%} Ty is the series (45), and ¥ is the combination of
dilogarithms given by (62).

The above expression for E. bears little resemblance to E(h); indeed, it is
perhaps surprising to see terms involving products of logarithms and products of
inverse tangents. Nevertheless, the result can be checked by solving the
deep-water problem (using the geometry in Fig. 2) directly. This has been done
by Parsons [15], using the Wiener—Hopf technique, as used for a similar problem
by Greene & Heins [7]; the two approaches yield the same result. In fact, the
present work began with the intention of confirming (66), but it seems that the
methods devised may have wider applicability.
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Appendix A
Evaluation of Q
From the definition (51), we have
B 2 o 2
Y y 1
0= tosp+ [ Yy —F
T iR YT L ety )Y
£ dy = 1 1
=l B+f +f( ]——)d - k?
BT L O Gy Y R

=log 2/1) - K*Q,,

where

P S Y T
! o (2 +PB)i(y*+k? PJy coshB+a’

using the substitution y =/ sinh 38, with
a=2k*I"-1, (A.1)
a >1 since k*> /%, Hence, using [6: eqn 3.513(2)],
Q1= —(ak) ' log[(k — a)/1],

whence the result (52) follows,

Appendix B

Evaluation of i,(0)

From (50), and the analytic continuation of #;(z),

7,(0)=8"1+i,(0)+4a =r s
ul(O) B uZ’(O) u4(0) h (y:e +12)5(y2+k2) dy
e [ =ltan'I £
! x2 + 02’2 84 l 2

where we have made the substitution y = (x* — [?),

Appendix C

Evaluation of L

The quantity L is defined by (59). Noting that the Integrand is even, and putting
y =1sinh 6, we obtain

!
L= %f g(@)tan? (-E sinh 8) de,
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where g(8) = Isinh 6 (/* sinh® 6 + k*)~'. Now, consider the identity

P e . g (Bl+1in
tan™' (pt) +tan" " (p/r) =tan (_1—p2 )

Put ¢t =ie® and p = —ig, where g = (K/I) +i(1 — K*/I?)1 = €%, say (so that |g| =1
and 8 is given by (63b)). Hence

=

= %f g(8) tan™"' (ge® d@ + %f g(8)tan™! (—ge~?) db.
The substitution 8 = —¢ shows that these two integrals are equal, whence
= J g(6) tan™! (ge?) déb.

(One can check that L is real, even though g is not.) Put z = e®, whence

_2 (*(z2-1tan”" (g2)
Lf[fo

3

Y+ 207 +1

where a is defined by (A.1). If we define A by a =/sinh A (so that k =/ cosh A),
we find that the denominator vanishes at z* = —e***. Then, splitting into partial
fractions gives L = (L. — L_)/«a, where

“e**tan"! (gz)
L. _j 72+ =24 dz.
We have L_ = I(ge™"), where

tan~! (Xy)

in
1 dy =j tan™! (X tan 8) d6.
0

1(X)=Lx

For L., note that tan™' (qz)=3n~tan™'(g/z), since 1/¢g =g, the complex
conjugate of g; then, the substitution z = 1/w shows that

L, =ln~I(Ge™),
whence
al =in* — I(ge ) — I(ge ") = x> — 2 Re [I(ge™*)]. (C.1)
To evaluate I(x), we follow Lewin [8: p. 224]. Differentiation gives
I'(x)=(x*-1)"logx.

Then, splitting into partial fractions and integrating, we obtain

1 1
——+——]logyd
(15t ey o

1w =-3]
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since 1(0) = 0. An integration by parts then gives

I(x) = —3{logx log [(1 +x)/(1 - x)] — Li, (x) + Liz (—x)},

where the dilogarithm is defined by (64). We obtain the final result (61) after
using this result in (C.1); note that

10.
11,
12,
13.

14.
. Parsons, N. F., 1994. The interaction of water waves with thin plates. Ph.D. Thesis,

16.
17.

18.

1+ge™y ;. k+E
lﬁg(—.A)ﬂlog

G Kz)%)
1-ge k—-K '

+itan'](
(47
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