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SUMMARY

Discretization of boundary integral equations leads to large full systems of algebraic equations, in practice.
Partitioning is a method for solving such systems by breaking them down into smaller systems. It may be
viewed merely as a technique from linear algebra. However, it is profitable to view it as arising directly from
partitions of the boundary; these partitions could be natural (such as two separate boundaries) but they need
not be. We investigate partitioning in the context of multiple scattering of acoustic waves by two sound-hard
obstacles (the ideas extend to other physical situations). Specifically, we make a connection between
partitioning and the use of the exact Green’s function for a single obstacle in isolation. This suggests
computing the action of this Green’s function once-and-for-all, storing it (perhaps on a compact disc), and
then using it to solve other problems in which the second obstacle is altered. One example of this approach is
computing the stress distribution around a cavity of a standard-but-complicated shape inside a structure
whose shape is varied. The theoretical foundation for these ideas is given, as well as a connection with the use
of generalized Born series for multiple-scattering problems. Important distinctions between the partition-
ing/Green’s function idea in this paper and seemingly similar ideas such as substructuring, multi-zoning, and
domain decomposition are made.
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INTRODUCTION

Integral representations for the solutions of second-order elliptic boundary value problems
usually involve two distinct boundary quantities. For example, the Helmholtz formula in
acoustics gives the pressure outside a body in terms of the boundary values of the pressure and the
normal velocity; and the Somigliana formula in elastostatics gives the displacement at a point in
a body in terms of the surface displacements and the surface tractions. Typically, one boundary
quantity is known (so that the normal velocity or the traction, say, is specified through
a boundary condition) and the other is not (it may even be the desired quantity).

It is now standard practice to compute the unknown boundary values by solving an appropri-
ate boundary integral equation, perhaps using a boundary element method. The basic ingredient
here is a fundamental solution of the governing partial differential equation; usually, the simplest
fundamental solution is used. However, if one looks in older books, such as those of Kellogg
(Reference 1, Chapter 9), Webster (Reference 2, Section 66) or Garabedian (Reference 3, Chapter 7),
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one finds detailed discussions of (exact) Green’s functions. These are particular fundamental solutions
that satisfy a suitable homogeneous boundary condition on the boundary of a particular domain;
their use eliminates the unknown boundary quantity, giving an integral representation involving the
prescribed data only.

Exact Green’s functions are clearly useful for addressing analytical questions, but what is their
relevance to the modern (computational) use of boundary integral equations? It turns out, perhaps
not unexpectedly, that if you can derive and solve a conventional Boundary Integral Equation (BIE),
using any fundamental solution, then you have in fact constructed a numerical approximation to the
exact Green’s function, and vice versa. This observation has important pedagogical value and
potential strategic value for solving large, difficult problems in modern computational environments.
However, the observation seems to have escaped notice by the BIE community.

Exact Green’s functions can also be used in problems involving two or more bodies, such as
acoustic scattering by two rigid targets. The idea here is to use the exact Green’s function for one body
in isolation as a fundamental solution for the two-body problem; the result is an integral equation
over the boundary of the other body.

When formulating the two-body problem via direct boundary integral equations, we can use
a process which we call partitioning. We begin with a conventional boundary integral equation,
containing source points and field points on both body surfaces. In particular, we can identify
the contribution arising from both points being on the first body, say, as being the same as when
that body is in isolation. If we take the view that we already know how to solve for that contribution
(through an inverse operator or a matrix approximation thereof), we can derive a new integral
equation over the boundary of the other body. It turns out that this equation, and the one obtained
using the exact Green’s function, are identical. Our purpose here is to show this connection explicitly
and to suggest some new points of view and possible new solution strategies based upon it.

These ideas generalize. Many physical problems can be broken down into subproblems. Good
examples are cracks in a solid body or engine nacelles on a wing. It may be attractive to store a
matrix corresponding to the inverse operator for a crack in an unbounded solid (the operator
would act on any given tractions on the crack to give the desired crack-opening displacements);
this could then be used in an exact treatment of a particular cracked body—one would only
need to solve an integral equation over the surface of the body. Similarly, one might want to
experiment with different engines on the same wing, or vice versa. In fact, the idea of partitioning
is applicable to single bodies too: partition the surface into two parts. It gives a way of solving large
problems in smaller steps.

In any case, we have the option of breaking down a problem into subproblems, including
a particular component such as a penny-shaped crack or a cavity of a standard-but-complicated
shape embedded in an otherwise unbounded medium; call this the ‘standard subproblem’. We assume
that we can compute and store a (possibly large) matrix (a matrix inverse or LU decomposition)
corresponding to having pre-solved the standard subproblem to high accuracy. With today’s
technology, it is possible to think of storing such matrices on compact disks or mass-storage devices
and making them widely available for reuse perhaps on international networks. This would constitute
an electronic library of such matrices which could be called ‘discretized Green’s functions’." °

The computational efficacy of the partitioning process, and how it might fare in terms of
operation counts,® CPU time, and accuracy of a given run in particular, versus doing a given
large computation all at once is not what this paper is mainly about; although our own limited
experience, and what might be gleaned from the literature on solving large linear systems of
equations in pieces, suggest that partitioning can fare well indeed by these measures. More
generally, the idea of having and using a library of Green’s functions for a given class of problems,
is a larger issue than just consideration of the measures just mentioned. Indeed, matters of shared
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or distributed modelling effort, cutting down on duplication of effort, necessary expertise to do
a computation, required hardware and software for various strategies, matters of speed, expense
and more are all involved in the wisdom and feasibility of such a library. These issues and others
are taken up elsewhere.’

Again, the main intent of this paper is to make some observations about exact Green’s
functions and BIEs which seem to have escaped notice. In passing, we speculate about some
possible practical consequences of these observations in modern environments.

The partitioning process described above is exact, in principle. Analytical approximations can
be attempted. One example is the generalized Born series for scattering by two obstacles.”® This
approximation can be derived formally from our exact formulation: for a rigorous justification of
such approximations, one needs to prove that a certain operator B, say, has norm less than one,
so that the inverse (I — B)~! can be replaced by the geometric series.

Finally, we note that, for a single body, partitioning has a resemblance to multi-zoning and
domain decomposition, as practiced, for example, with the Finite Element Method (FEM).
However, there is an essential difference. We partition the boundary of the body, not the body
itself. Thus, partitioning is readily applicable to exterior problems. Most importantly though, the
partitioning-of-the-boundary-only process, as described here, gives rise to ‘pieces of the problem’,
which are interpretable in terms of exact Green’s functions, whether viewed in discrete or
integral-operator form. There is no counterpart to this with finite elements. While precomputing
may be done for pieces of a problem (cf. the DMAP formalism in NASTRAN), these pieces are
not Green’s functions.

ONE OBSTACLE, TWO APPROACHES

Consider the scattering of time-harmonic acoustic waves by a three-dimensional bounded
obstacle with a smooth surface S. Thus, the problem is to solve the Helmholtz equation,

(V2 + kHu=0 1)

in D, the unbounded region exterior to S, subject to a radiation condition at infinity and
a boundary condition on S; we take the latter to be

%=f on S (2)

where fis a given function and d/0n denotes normal differentiation from § into D.
We remark that we could consider other boundary conditions on S, or other field equations:
our intention is to describe rather general ideas in the context of a specific concrete example.

Standard boundary integral equation
We start with a fundamental solution for (1). The simplest is the free-space Green’s function,
G(P,Q) = G(Q, P)= — e**/(2nR)

where R is the distance between the two points P and Q. G satisfies (1) everywhere, with respect to
P or Q, except when P = Q; it also satisfies the radiation condition (for a time-dependence of
e~ "), Then, an application of Green’s theorem to u(Q) and G(Q, P) , for fixed P, gives

_ [ {ou@ J
2u(P) = L (T G(q, P) —u(q) 6_n;G(q’ P) )dsq &)
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This is an integral representation for u(P) , with P € D, in terms of the boundary values of  and
Ou/on. For our problem, the latter are known from the boundary condition (2), whence

2uP) = [ (@60 P) - ua) 2-Ga.P) ) @

It remains to determine u(g) for g€ S. Letting P go to p on S gives the familiar integral
equation, .

0
o)+ | uto) - Gig,pdsy = L f@)G(g. p)ds,

This is a Fredholm integral equation of the second kind with a weakly singular kernel; we write it
concisely as

Au=(I +Ku=Sof &)

where K and S, are integral operators. It is known that (5) is uniquely solvable, except at certain
irregular values of k2.° We disregard these here (several methods for their elimination, leading to
different integral equations are available®). Thus, formally, we obtain

u=A'1S0f (6)

for the solution of (5).

In practice, we cannot find A™" analytically. However, we can solve (5) numerically using
a boundary element method. This gives a discrete approximation to A~ *, which we can think of
as an N x N matrix; increasing N gives a better approximation to 4~ ".

1

The exact Green's function

Let us introduce a different fundamental solution GE, defined as follows. Fix the point P. Then,
write

G®(Q; P) = G(Q, P) + w(Q; P)

and choose w so that it (i) satisfies (1) for all Q € D, (ii) satisfies the radiation condition, and (iii) is
such that GE satisfies

9 Giq; P)=0 forqgeS )
on,

We call G® the exact Green’s function; Bergman and Schiffer!® call it the Neumann function. Like
G, GE is symmetric (see Appendix I):

GE(P; Q)= GE(Q; P) forallPand Qin DUS,P #Q ®)

Since GE is a fundamental solution, we can use it to derive the integral representation (4), with
G replaced by GE. However, the representation simplifies because of (7), giving

2u(P) = Lf(q) GE(g; P)ds, ©)

This is an explicit formula for the solution of the one-obstacle problem. In particular, for p € §, it
gives

1
up) =3 [ @@ s, =351
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say. Comparison of this formula with (6) gives

A7'Sof =385f (10)
As this holds for every f, we deduce that

A8, =4S§ (11)
Moreover, (10) gives ASE f = 25, f, which implies that GE solves the integral equation

0
G=(aip) + | G%(p) - Gl a)ds, = 261, p) 12
s m

In this equation, the point p occurs as a parameter; indeed, the same equation holds when p is
replaced by P € D. See Appendix I for a direct derivation of (12), and other similar equations. The
idea of constructing G® by solving a boundary integral equation can be found in a paper by
Boley.!! ‘

In summary, if we want to find GE for a particular geometry, we typically have to solve
a boundary integral equation such as (12): we have shown above that this is equivalent to
calculating 47 1.

MULTIPLE SCATTERING BY TWO OBSTACLES

In this section, we consider the same scattering problem as in the preceding section but with two
bounded obstacles. For the moment, we assume that their surfaces, S, and S,, are disjoint; other
configurations will be discussed later. Thus, the problem is to solve (1) in D, the unbounded region
exterior to S; and S,, subject to a radiation condition and the boundary conditions

du
%=f,- onsS;, j=1,2 (13)

where f; and f, are given functions.

We describe two methods for solving this problem. First, we derive a pair of coupled boundary
integral equations using G, in a standard way; these equations are weighted equally between
S, and §,. In practice, we may already have information on how to scatter by one of the obstacles
(82, say) in isolation, such as A~ !, GE or one of their discrete approximations. How can we use this
information? One way is to ‘partition’ the pair of integral equations; another is to replace G by G~.
We prove that these two approaches lead to exactly the same equations. A third approach is to
assume that we have two exact Green’s functions, one for each scatterer; this leads naturally to the
generalized Born series, discussed later.

Partitioning
The method used above to derive the boundary integral equation (5) works equally well for two

obstacles: simply replace S by §; U S,. The resulting equation can be written in the following

form:
Apgug + Ajouy = S i + 812 /2 (14)

Azyuy + Azous = So1 f1 + S22/2 (15)
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Here, u; = u(p;) where p;e §;for j=1,2,

i,
Ajuy = dpu(p) + f u(qe) I G(qy, pj)ds, (16)

Si q

Sihh = Lfk(qk)c(qk, p)ds, 1

and ¢;;is the Kronecker delta. We note that A ; is simply the operator A for S; (both the field point
p;and the source point (integration point) q; are on §;), whereas 4, and 4, give the interactions
between S; and S, (these integral operators have smooth kernels, as the field and source points
are on different surfaces).

It is known that the pair of integral equations (14) and (15) suffers from irregular frequencies.
Again, we disregard these here; for a discussion on methods for eliminating irregular frequencies
from such equations, see Martin.!2

Now, suppose we already have (a discrete approximation to) 453 ; for example, we may have
solved (5) using an accurate boundary element method. Then, (15) gives

U, = A3 {So1 f1 + Saafo — Azauy} (18)
Eliminating u, from (14), we obtain
Ay = L1 f1 + S ke (19)
where
A1 = Ay — A Az As (20)
F1j= 81— A1243482;, j=12 (21

Equation (19) is an integral equation to solve for u on S,. We shall return to it later.

We could view partitioning as merely a method for solving systems of linear algebraic
equations. However, we shall argue later that it is profitable to view partitioning as arising
directly from partitions of the boundary.

Use of the exact Green’s function

Suppose that GE is the exact Green’s function for S, (in isolation). Proceeding as for the
one-obstacle problem, using G for our chosen fundamental solution, we obtain the following
integral representation for the two-obstacle problem:

i) = [ (1100 65 @uiP) ) -G*ai ) ds, + [ fra) FlasPras, @2

This representation does not involve the unknown boundary values of u on S,. Moreover, in
some applications, f, = 0, whence the second integral in (22) is absent.
To find u on S, we let P — p, € §4, as usual; the result can be written as

ASquy =S5 fi + Shafa (23)
where

0
A = ulp) + | ular) 3o Gar p) s 4
3,

q
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ﬂm=Lﬁwﬂﬂ%mM% j=1,2 25)
j

If we subsequently want u on §,, we can calculate it by simply setting P = p, in (22); there is no
jump. Again, we note the obvious simplification if £, = 0.

Having solved (23) for u, , we can calculate u(P) for P in D from (22). To do this, we need GE(g,; P)
, G¥(q,; P) and (8/0n,) G®(qy; P). We can obtain GE(g,; P) by solving (34), and then G®(q; P)is given
by (31). Similarly, (6/0n,) G¥(q;; P) can be found by first solving (42) and then using (43).

Comparison

We have two boundary integral equations for u on §;, namely (19) and (23). It turns out that
these equations are identical: in Appendix II, we give direct proofs that

oy = A%, Y11 =S8t, and ¥, =S%, (26)

DISCUSSION AND CONCLUSIONS

The derivation of the partitioning integral equation (19) does not require two disjoint surfaces:
S, could be the surface of a defect buried inside a body with outer surface S, (such as a crack in an
elastic body); or S, U S, could be a partition of a single surface, S (the partition could be artificial
or physical, such as an edge-crack in a body). This latter interpretation suggests that partitioning
is related to other methods; it can also be related to certain iterative methods for solving multiple-
scattering problems. These relations are discussed next.

Generalized Born series
The standard integral equations, (14) and (15), can be written as
Ajyuy =Fy — Ajou,
Azouy = F3 — Ayuy
where F; = S;,f1 + S;2f>. The generalized Born series”® is a method for solving this pair
iteratively in the context of multiple scattering by two obstacles (actually, it can be recognised as
the block Jacobi method for linear algebraic equations). assuming that 4,, and A,, are

non-singular, construct uﬁ-"" according to

u(1m+1) = A;ll{Fl - A12u(ZM)}
“(ZMH) = Az_zl{Fz - AZIM(IM)
with 4{” = 4’ = 0. Eliminating u5”, we obtain
Wt =gy + By @
form=1,2,..., where
g1 = A7{F; — A2 A3, F2} and By, = A1 A3 455 Ay
Hence,

M-1
uf™ = Y BTy, forM=1,2,... (28)

m=0
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Also, since u'" = A[[F,, (27) gives
uEMAD = @M 4 BM AR, forM=1,2,... (29)
The (geometric) series in (28) and (29) converges if (Reference 13, p. 16)

IBill <1 (30)

with any reasonable norm. Under this condition (which will be satisfied if the two scatterers are
sufficiently far apart), the last term in (29) tends to zero and both sequences ({u£*’} and {uZ**"})
converge to u{™, say, where

ul™ = (I — Byy) 'g) = A1 4119,
=-52¢1—11{F1 —A12A2_21F2}
=L fi + P12 fa)

which is the solution of the partitioning equation (19). This latter equation is not subject to the
condition (30).

Note that the generalized Born series requires a knowledge of both A7;! and A43; this is
equivalent to knowing two exact Green’s functions, one for each obstacle. Rudgers'* has used the
sum of these two exact Green’s functions as a fundamental solution, followed by an iterative
method.

Comparison with other methods

Partitioning is simple and superficially similar to other methods, such as domain decomposition
and multi-zoning. In these methods, the original problem is broken down into smaller problems;
each problem is solved and then the solutions are patched together. For the partitioning method,
however, the original problem itself is reduced to a boundary integral equation; this equation is
then manipulated further by partitioning the boundary.

To expose these differences further, consider the following model problem: solve V2u = 0 inside
a bounded domain Q, subject to u = f on the boundary of Q, S (f'is given). Partition S into two
pieces, S = S; U §,. Then the usual boundary integral equation over S can be written in the form

<Bu Bu) (lh) — <b1)
By, B,, Uy b,
or Bv = f; here, v; = du/dn on S;. For the partitioning method, we eliminate v, or v,: if we

eliminate v,, we obtain
-1
B2,0;, = by — By By 'by

where
gzz = B;; — B2lBl_11B12

In discretized form (where B;; are matrices), this process is sometimes called condensation and the
matrix #,, is called the Schur complement of By, in B; see, for example, Golub and Van Loan
(Reference 15, p. 103) or Fiedler (Reference 16, p. 19).

Now, cut Q into two subdomains, Q; and Q,, using an interface I'y, so that I'; = §; U I'g is the
closed boundary of Q; (j = 1, 2). If we knew the values of u or du/0n on I'y (we do not), we could
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solve V2u = 0 inside each subdomain. One way of proceeding is to find these values. Write down
an integral equation over I'; and another one over I';. Then, enforce continuity of u and du/dn
across I'y. This leads to a larger system of equations (because of the additional unknowns on I'y),
of the form

By, Ao By O Uy by
By, Aoo Boo O U | bo1
0 — Aoo  — Boo Bo:z Vo B bo
0 — Ao — By B U2 b,

where v; = du/dn on I'; (j =0, 1,2) and u, is v on I'y. The occurrence of zero blocks can be
exploited; for a sophisticated recent treatment of such multi-zone analyses, see Kane et al.!”
Furthermore, the system can be condensed, eliminating some unknowns in favour of others; see,
for example, Kane et al.!” or Section 3.6 of Banerjee’s book.!8

An alternative to multi-zone analysis is domain decomposition. The basic idea here is: guess
ug (the boundary values of u on the interface I'y), solve the (Dirichlet) subproblems in Q, and Q,,
and then adjust the guess until the normal derivatives of the two solutions are continuous across
T,. This idea is exploited in Chapter 8 of Przemieniecki’s book,!® where it is called substructure
analysis. The subproblems can be solved, in parallel, using boundary elements,2% 2! and this leads
naturally to the Dirichlet-to-Neumann (DtN) mappings, one for each subdomain, mapping
Dirichlet data on I'y into the corresponding Neumann data. A symmetric form of the DtN
mapping is called the Poincaré—Steklov operator; for a single interior domain with boundary S,
this operator is given by

Jdu
922
on

where K and S, are given by (5) (with k = 0), K’ is the adjoint of K (replace d/0n, by 8/0n,) and
N is the usual hypersingular operator (normal derivative of a double-layer potential). Note that
the Poincaré-Steklov operator has the structure of a Schur complement.

We emphasise that, in both multi-zoning and domain decomposition, the interface I’y is
artificial. Of course, there are problems where I'y is an actual interface separating different media
in Q, and Q, (transmission problem), or where part of I'y is occupied by a crack.22 Such problems
can be solved by multi-zoning. However, the extension to exterior problems introduces further
complications: one can surround Q by a closed surface S, (such as a sphere) and then solve the
problem exterior to S,, explicitly (find the DtN mapping for the region exterior to S, );2* or one
can decompose the exterior of Q into infinite subdomains, using radial partitions.>* These
difficulties do not arise with (boundary) partitioning; its inherent simplicity makes it worthy of
further study.

= (N — (I = K) S5 (I — K)}u
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APPENDIX I: INTEGRAL EQUATIONS FOR G*®

Fix points P and Q in D, and then apply Green’s theorem to G&(L; P) and G(L, Q) with respect to
the point L; as both of these are singular solutions, the result is

26¥(Q; P) — 2G(P, Q) = — f G*(1 P) - Gil, Q)ds, (1)
S Il

If we apply the same argument, but with G(L, Q) replaced by GE(L; Q) , we deduce that
GE(P; Q)= GE(Q; P) forall Pand Qin D,P #Q (32)
Then, combining this symmetry property with (31) gives
0
2G%(Q; P) - 2G(P, Q) = — f G*(; Q) an G(, P)ds (33)
S 1
We can now obtain integral equations from the two different integral representations for G=.
First, let Q —» g € S in (31), giving
0
G¥(ai P) + | 6% P) 561l s = 26(0. P 34
s 1

which is a boundary integral equation for GE(g; P); note that, for fixed P, the operator on the
left-hand side is precisely A4, defined by (5). In particular, letting P — p € S, we obtain

0
G®(q; p) + J GE(; P) 5, G, g)ds; = 2G(q. p) (35)
5 1
Second, interchange P and Q in (33), and then let Q — g € S; the result is
0
GHPi) + | G(: P) 3Gl a)ds = 2G1a. P). 69
S 4

Subtracting this equation from (34) shows that
GE(q; P) = GE(P;q) forall PeD and ge S (37
Third, let Q —» g € S in (33), giving
a
26%(: P) = 26(a, P) - | G*(:.) 5 G P)ds 39
S 1

(there is no jump as Q — g), which is not an integral equation. However, if we let P - p € S, we
obtain

G*(ain) + [ G¥(k0) 5 GO s~ 2600, (9)
s m

If we interchange p and q in this equation and then subtract the result from (35), we deduce that

GE(q; p) = GE(p;q) forallpand gon S (40)
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whence (39) becomes

0
G*ai) + | 6%ai 13- G sy = 26(a.) ay
s m

Multiplying this equation by f(g) and then integrating over q € S gives AS§ = 2S, f, in agree-
ment with (11).

Combining (32), (37) and (40), we see that GE is symmetric for all locations of the source and
field points, (8).

Finally, we note that we can derive integral equations giving the gradient of GE at any point
P not on S, gradpG(g; P). Thus, taking the gradient of (34) gives

grad, G5(g; P) + L grad, GE(l; P) :3%, G(l, q)ds, = 2 gradp, G(q, P) 42)
which is an integral equation for grad, G¥(g; P) . Then, (31) gives
2 grad, GE(Q; P) = 2grad, G(P, Q) — L gradp GX(I; P) 6in, G(l, Q)ds, 43)
for any point Q not on §.

APPENDIX II: PROOF OF (26)

We make use of various formulae from Appendix I, but with S replaced by S,.

Proof that A%, = o4,

From (33), we can let P — p; € S, to give

0
2G¥(Q; p1) = 2G(Q, py) — L Gl Q) o Gz, p1)ds,. (44)

Computing the normal derivative at q; € S, yields

0

J g 0 1 0 &
— ; = — — — : — 45
an,, G*(q1; p1) é’nq G(q1, p1) 3 Lz 5nq Gl q1) on; G(l3, py)ds, (45)

Multiply this formula by u(q,) and integrate over S;. Adding u(p,) to the result, making use of the
definitions (16) and (24), gives

A]151“1 = Ay uy — %AuUzE (46)
where
0
Us(p,y) = 5— GE(‘h; p2) u(q1)ds,
Sy nq

for p, € §,. U¥ satisfies a boundary integral equation over S,: from (34), we have

0
GE(0; p2) + L GH(@: 1) - Gllz, p2)ds = 26/(Q. ) 47)
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multiply the normal derivative of this equation at q; by u(q,), and then integrate over S, to give
A,,U¥ = 24,,u,. Inverting this equation and then eliminating U} from (46), we obtain the
desired result:

A%y = Ay — A1AZ7 Ag
Proofthat Sllil = yll

Evaluate (33) at P = p, and Q = ¢q,. Multiply the result by f;(q, ) and then integrate over S, to
give
Sllalf1=Sllf1_%A12F2E (48)

where

FE(ps) = f G5(ax: p2) fi(dn) ds,

Sy
for p, € S,. EE satisfies a boundary integral equation over S,: evaluate (47) at Q = ¢,, multiply
the result by f1(g;) and integrate over S, to give 4,,F% = 2S,, f;. Eliminating F} from (48) gives
the final result:
SI151 =Sy — A12A2_21521-

Proofthat S1132 == ylZ

Evaluate (38) at P = p, and g = ¢,. Multiply the result by f,(g,) and then integrate over S,
to give

Sllszfz = S12f2 - %Alzg’—f (49)
where

F(p2) = j G®(q2; p2) f2(g2) ds,

Sz

FE satisfies a boundary integral equation over S,: evaluate (41) at p = p, and g = g,, multiply
the result by f,(q,) and integrate over S, to give 4,,#% = 2S,, f>. Eliminating #F from (49) gives
the final result:

S‘EZ =812 — A12A2_21522
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