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ABSTRACT

Consider a three-dimensional homogeneous isotropic elastic solid containing a flat crack, €, subjected to
a shear loading. The problem of finding the resulting stress distribution can be reduced to a pair of coupled
hypersingular integral equations over Q for the tangential components of the crack-opening displacement
vector. Here, these equations are first written as a single equation for a complex displacement. This equation
is then transformed into a similar equation over a circular region D, using a conformal mapping between
Q and D. This new equation is then regularized analytically by using an appropriate expansion method
(Fourier series in the azimuthal direction and series of orthogonal polynomials in the radial direction).
Analytical results for regions that are approximately circular are also obtained. These include formulae for
the crack-opening displacement and the stress-intensity factors in terms of the conformal mapping or the
shape of the crack.

1. INTRODUCTION

Consider a flat crack Q in a three-dimensional elastic solid. If the crack is pressurized,
the resulting discontinuity in the normal component of the displacement across the
crack, [u;], can be found by solving a two-dimensional hypersingular integral equation
over ). This equation is of the form

1 dQ
HQ{[“3]} = an % ["3(X,J’)]_3 = p(xo,¥0), for (x4,70)€Q, (1.1)
T o R
where R = {(x—x0)*+(¥—y,)’}"”* and p is proportional to the prescribed pressure
opening the crack ; (1.1) is to be solved subject to
[u3(x7y)] = 0 for (x’y)eaga

where 0Q is the boundary of Q (the crack edge). The hypersingular integral in (1.1)
can be defined in several equivalent ways; one natural definition in the context of
boundary-value problems is

0 1
\;}; w(x, y)g—% = lim i J w(x, y) {lim —(———-—-—)} dQ.
0 R 200 0z, |, =0 gz /R2+(z—zo)2
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If Q is a circular disc (a penny-shaped crack), analytical solutions of (1.1) are
available. In particular, expansion methods can be developed : use a Fourier decompo-
sition in the azimuthal direction together with an expansion in terms of Gegenbauer
polynomials in the radial direction. This method is effective because it incorporates
the known behaviour of [u;] around the edge of Q, and it allows the two-dimensional
hypersingular integral to be evaluated analytically (see Section 3).

In a previous paper (Martin, 1994), we have developed a method for treating (1.1)
when Q is not circular. In order to use an expansion method, we mapped Q onto a disc
D, using a conformal mapping. This preserves the structure of the hypersingularity,
allowing the use of the Fourier—Gegenbauer expansion method on the transformed
integral equation.

The problem of a crack subjected to a shear loading is more complicated. It can be
reduced to a pair of coupled hypersingular integral equations over € for the two
tangential components of the discontinuity in the displacement vector across Q. We
start by complexifying these equations, yielding a single equation for a single (com-
plex) unknown. For penny-shaped cracks, this equation has explicit solutions; in
particular, expansion methods can be developed as for pressurized cracks (although
the resulting formulae are more complicated). For non-circular cracks, we proceed as
in Martin (1994) and map the crack onto a circular disc, using a conformal mapping.
As well as leading to a viable numerical method, the combination of conformal
mapping and two-dimensional hypersingular integral equations can be used to obtain
analytical results for cracks Q that are approximately circular. Specifically, we consider
such cracks when they are subject to a constant uniform shear, and obtain relatively
simple results in the transform domain for the crack-opening displacement and the
stress-intensity factors.

The problem of the shear loading of an almost circular crack has been considered
by Gao (1988), extending earlier work of Rice (1985, 1989) and Gao and Rice (1987)
on pressurized cracks, and of Gao and Rice (1986) on the shear loading of a semi-
infinite crack. They consider the general problem of calculating the change in the
stress field around a flat crack when the crack front is perturbed in the plane of the
crack. Their approach is based on the use of three-dimensional weight functions.
There is also an extensive Russian literature on almost circular, pressurized cracks;
see Panasyuk (1970, Chpt. IX) and Panasyuk et al. (1981). Martin (1994) has used
the present method to confirm some of the results of Gao and Rice (1987) for
pressurized cracks. Here, we compare with some results of Gao (1988) for the stress-
intensity factors. Our results for the crack-opening displacement are new.

2. SHEAR LOADING OF FLAT CRACKS

Consider a three-dimensional homogeneous isotropic elastic solid containing an
arbitrary flat crack Q. We choose Cartesian coordinates x, y and x,, with origin O,
so that Q lies in the plane x; = 0 (the xy-plane). We assume that Q is a simply-
connected region and that O is a point in Q. Let us suppose that the crack is subjected
to a shear loading ; thus, we suppose that
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u u
7'-.‘(3()(’ Vs 0) = qu(x’ Y) and Ty3(x’ Vs 0) = :qy(x’ y)

for (x, y) e Q, where 7, is the stress tensor, p is the shear modulus, v is Poisson’s ratio,
and ¢ .(x, y) and g,(x, y) are prescribed.

The tangential components of the discontinuity in the displacement vector across
the crack, [u.(x, ¥)] and [u,(x, y)], solve a pair of integral equations over Q. One form

of this pair is
—1 J /1 0 /1
r {"‘w(ﬁ)”@(i)} dQ = g.(xq, yo)s (2.1)

1 0 /1 il 40 — , 27
e PR

for (x4, ¥o) €Q, where R = {(x—x)*+(y—yo)’}'"

az%'—‘l-i—% and B:(l—v)(

oud _alu)
oy ox >

These equations are to be solved subject to

[u(x,»)] =0 and [u(x,y)]=0 for (x,p)edQ, (2.3)

where JQ is the boundary of Q (the crack edge); 9Q is a simple closed curve. The pair
(2.1) and (2.2) was derived by Bui (1975) and by Guidera and Lardner (1975). It
involves Cauchy principal-value integrals over Q, and is known as the traction BIE.
For its numerical treatment, see Polch ez al. (1987) and Weaver (1977).

Integrating by parts, using (2.3), we obtain an alternative pair of equations :

1 dQ

8 jtn {(2—v+3vcos20)u,]+ 3v[u ] sin 20} ri qdxg, Yo)s 2.4
1 . dQ

8 3 {3v[u]sin2@ + (2 —v—3vcos 20)[u,]} g = q,(x0, Yo), (2.5)

for (x4, o) € Q, where the angle © is defined by
X—x;=Rcos® and y—y,= Rsin0®.

The pair (2.4) and (2.5) is a coupled system of hypersingular integral equations for
[1,] and [1,]; it is to be solved subject to (2.3).

It turns out to be convenient to complexify (2.4) and (2.5), so that we replace two
real equations by one complex equation. As we will be using conformal mapping
later, we need two non-interacting complex units, i and j, withi? = —land j* = —1;
we will use 1 in the conformal mapping and j in the complexification of (2.4) and (2.5),
which become



278 P. A. MARTIN

1 o dQ
Mow = = jE {(2—v)w+3vwed®} roie q(xo,70), for (x4,¥,)€Q, (2.6)
Q

where

w(x, y) = [ux] +.][uy] ’ q(-x()s J’o) = qx +.]qy (27)

and the overbar denotes complex conjugation with respect to j: w = [u,]—j[u,]. Note
that (2.6) reduces to (1.1) when v = 0; this can provide a useful check on subsequent
calculations. In the sequel, we will concentrate on (2.6).

3. PENNY-SHAPED CRACKS

Suppose that Q is a penny-shaped crack of radius a; thus
Q=D,={r,0):0<r<a —n<b<n},

where r and 8 are polar coordinates in the plane of the crack, x = rcos 8, y = rsin8.
We can express the loading as

q) =S qlria)er, 3.1

n=—aoG

where the Fourier components g, are j-complex. Then, the j-complex crack-opening
displacement has a similar expansion,

w(x,y) =a i w(r/a)e”™.

n=—o

It is known that (the dimensionless functions) w, can be expressed as certain explicit
integrals of ¢,,; see Guidera and Lardner (1975) and Martin (1982). These formulae
simplify if we expand g, as

= 5 0 LUAIF U G372) CHLP(/1-7)
o S (k! fr
where the j-complex coefficients Q} are known and C2(x) is a Gegenbauer polynomial

of degree m and index A (Erdélyi et al., 1953, §10.9) ; these polynomials are orthogonal.
Then, it can be shown that

(3.2)

o R ym L(n+1/2)k! 5
wi(ry=r"Yy ka CHL YA/ 1—-1). (3.3)

k=0

The coefficients are related by the following formulae :
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—20,"=2—vW,", nz0,
=204 = RQ=VWi+vW), k>0, G4
—20i=Q-Wi—vyWii, n=2,k>0,
—20;"=Q-WWW,"—vWi*: nz20k>1.

These formulae are due, essentially, to Krenk (1979); see Appendix A. They answer
the following question : what loading produces a given crack-opening displacement?
Equivalently : given w, what is Myw when Q = D,?

As an example (which will be needed in Section 5), suppose that

) = (rfay"e™ /a*—r* and [u,)=0 (3.5
with m > 0, so that w = [u,). Then, as C}(x) = 24x, we obtain
Wi = %5()1(50," and Wg"= %(1 F 1) m

forn=1and k> 0. As Ci(x) = %i(i«k Dx{2(A+2)x*—3}, we find that the crack-
opening displacement (3.5) is produced by the loading g = ¢"™, say, where

T(m+3/2)T(3/2)

m) — __ ey
q - 2(2 V) m'

(r/a)"e™ +2v(1 +ij) e~ D, (r/a),  (3.6)

A

do =10,4,(r) = —inr and

. I'm+1/2) T(m+3/2) N
Golr) = F(3/2){ o R r }r for m>=2.

The equations (3.4) can be solved explicitly :

QC-—mWs"=-20,", nz0,

21=W) = —Q2—v)QLr+v0l, k>0, a7
20-)Wi= —Q-vQi—vQil, n=2k>0,
20-Wi" = —Q2-Qi"—vQitl, n=0,k>1

These formulae answer the following question: what crack-opening displacement is
induced by a given loading? Equivalently : given g, what is Mg 'g when Q = D,? They
can also be expressed (more cumbersomely) in real form ; see Appendix A.

As a simple example, suppose that the crack is loaded by a constant shear, ¢ = —a,
say. Then, the only non-zero load coefficient is 0§ = —20/n. Hence
wi(x,y) = 8o Ja-r (3.9)
’ n(2—v) ’

in agreement with Segedin (1951).
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4. CONFORMAL MAPPING

Let us now consider mapping  onto a disc. Martin (1994) showed that it is
appropriate and advantageous to choose a conformal mapping. Any other mapping
will alter the singularity in the kernel in an essential way, so that the transformed
integral equation is not “‘similar” to that for a penny-shaped crack. [For a general
analysis of the effect of non-conformal mappings, see Eskin (1981, §19); such a
mapping has been used recently by Penzel (1994).]

Let us assume for simplicity that Q is star-shaped with respect to O, so that Q is
given by

Q={r0):0<r<p@®, —n<6<n}; “@.1)

thus, 0Q1is given by r = p(0). Next, let z = x+iyand z, = x,+ iy, be complex variables.
Then, by the Riemann mapping theorem (Ahlfors, 1966, p. 222) there exists a con-
formal mapping of the unit disc, |{| < 1, in the complex {-plane onto the region Q in
the z-plane. More precisely, let { = se', so that the unit disc is given by

D={(s9):0<s<1, —n<op<nu.
Then, given a length-scale « for Q, we have
z=af(() for |{| <1, 4.2)

as the conformal mapping of D onto Q; this form is most convenient for our appli-
cation. The analytic function f is known to exist for any simply-connected domain
Q; see Kober (1957) and Nehari (1952) for many examples. We assume that | f*({)| # 0
for all { with || < 1.

First, we investigate the effect of the mapping (4.2) on the kernels of (2.6). We have

z—zo = a(f()—f (o)) = Re® (4.3)
and define S and ® by
{—¢, = Se°.
Let us also define é and §, by
JOQ=1f©Ole’ and f'()=1f"Co)le™, (4.4)

respectively. Then, we have Re® ~aS|f'({,)|e®*% for small S. Hence,
R~al|f({yIS and ® ~ D+45,; we also have, to the same order of accuracy,
R~al|f (IS and ® ~ ®+4. These approximations lead to the following exact
expressions for the kernels in (2.6):

@R = |f QI Co)l S+ KV, L)} %072,
@R = |f(OI7 P f(Co) (S 2P+ KDL, {,)} ei0+),
where K" and K are defined by

O C sy
FO-fCP Lol

K", L) = (4.5)
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SO CN” oomssy_ L am

3 3 €
£ (D) —f o £ —Col
In Appendix B, we show that K" = 0(S™?) and k¥ = O(S™ ") as S — 0. Thus,
K" has a Cauchy-type singularity but K> has only a weak singularity.
Next, consider the Jacobian of the transformation : it is a*| f"())I. Hence, if we put

KO, L) = (46)

g = é+]71 = Sei‘l’ and CO = 60+”’]0 — sDei(p”’

we find that dQ = dxdy = &*| /() d&dn = &*|f(O)*sdsde.
Finally, setting

w(x (), M(O) = alf' (I e’ W(E,m),
q(x(Co), (o)) = 1S (Lo) 72 €00 (8o, 10), 4.7)
we find that (2.6) becomes
M+K)yW =0, for (&,no)eD, (4.8)

where M = M/, and all quantities are dimensionless. This equation is to be solved
subject to W = 0 on s = 1. The operator K is defined by

2- 3 _
KW=—87VJ[ WEDKIC L) dEdn+ o f W(E DKL) dEdn. (49)

The hypersingular operator M [defined by (2.6) with Q = D] is precisely the operator
for a shear-loaded penny-shaped crack. Consequently, as described in Section 3, we
have an explicit expression for M~'. Hence, we can write (4.8) equivalently as

I+M'K)W = M~'Q,

which is a regularized version of the hypersingular integral equation (4.8).
Computationally, the following schemes suggest themselves. First, expand W as

N L
WEn = 3 s"emy Wichil?((/1-5).
1=0

n=—N

Then, either use the orthogonality of the Gegenbauer polynomials and of the trig-
onometric functions, leading to a Petrov—Galerkin method, or simply collocate. The
efficacy of this numerical method for the shear loading of arbitrary flat cracks will be
investigated elsewhere. Here, we prefer to obtain analytical results for cracks Q that
are approximately circular.

5. SOMEWHAT CIRCULAR CRACKS

As in Martin (1994), we consider the conformal mapping

F©) = {+e9(D), 5.1
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where ¢ is a small dimensionless parameter and g is analytic ; we assume that g (0) = 0.
When (5.1) is combined with (4.2), we see that the unit disc in the {-plane is mapped
into a domain € in the z-plane that is approximately a circle of radius a; moreover,
{ = 0is mapped to z = 0. Specific choices for g will be considered later.

Substitute (5.1) into (4.9) to give K = e + O(¢?) as ¢ - 0. The operator X is
defined by

1 - .
(I W)Co) = ¢ J {@=W(En)+3vyW(E,n) e K, L) dEdy

1
+a£ W(E K. Lo) dE dn

=XIW+f2W,

say, where the kernels K, and KX, are defined by

1 1 e
K\((,{o) = & Re {(3 + 2ij)[5 GO +g' o))~ Mil},

=7
) — 9
6.t = "5 Re i 0 - 292 |

we use Re {Z} to denote the real part of an i-complex quantity Z.
If we now approximate W and @ by

W(n) = Wo&,m+eWi(&n) and  Q(&,n) = QoS +eQi(E,m),
we find that W, solves
MW, =0, 5.2)
and then W, solves
MW, = Q,— X W,. (5.3)

Both (5.2) and (5.3) are (j-complex) integral equations over the unit disc; they can be
solved using the methods of Section 3. Then, from (4.7), using

If'(Ol =~ 14+¢Re{g’(()} and e”~1—¢cRef{ijg’ ()}
for small ¢, we obtain
w(x(), y(0)) = aW,+ae(W, — W, Re {(%-i—ij)g’({)}) ; (5.9

this yields an approximation to the crack-opening displacement, via (2.7), correct to
first order in e.

In order to proceed, we must be able to calculate ¢ I¥,. Assume that g is analytic
in a domain that includes D, so that we can surround D by a simple closed contour
C. Then, the residue calculus gives
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L1 (342 (SR
K((,8o) = 253 Re{ 2mi JC (0—Dw-L

v—2 2ij {—0o
K ((,l)=—Res— | ————— dot,
20, 8o) e {Zm L (w—C)z(w—Co)g(w) ®
which are integral representations involving the values of g on C. Hence,

3+24 g(w)
2m [ (=)

W) = 2 Re {2—“ J 9@) | . dw},

)zg(w) dw},

1
(X WoXlo) = 2Re{ L(w, o) da)},

2 2m . 0—{,
where
Li(@,00) = M{(C‘“)Z WO(C)}, (5.5)
@0
Liw,lg) = H{ i Wo(o}, (5.6)
=0

H = Hp and H,, is the basic hypersingular operator defined by (1.1) and studied by
Martin (1994). Note that L, and L, are independent of the mapping g. To proceed
further, we must specify the loading ; we consider a simple non-trivial choice.

6. UNIFORM SHEAR OF A SOMEWHAT CIRCULAR CRACK

Suppose that the crack is subjected to a constant shear,
T.3(%,3,0) = —1 and 1,5(x,»,00 =0 for (x,»)eQ, (6.1)
where 7 is a constant. Then, ¢ = — (1 —v)1/u = —o0, say, whence
Qo= —0¢ and Q, = —3oRe{(3+2i))g'(lo)}-

From (3.8), we obtain

8a —
W, = M_IQO = mﬁ—sz.

The calculation of W, = M~'(Q, — A W,) is complicated. In outline, it proceeds
as follows (the details are given in Appendix C).

(1) Evaluate L,, defined by (5.5), by expanding in powers of { and then using the
formulae for M {{"/1—s”}, namely (3.5) and (3.6). The resulting infinite series
can be summed to give (C.3).

(2) Evaluate L,, defined by (5.6). To do this, use the formula for H{{"./1—5°}
given by Martin (1994); the result is (C.4).
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(3) At this stage, we have expressed J# W, as a contour integral around C, so we
do the same for Q,. This yields a contour integral for Q, — A4 W, (C.5).

(4) Next, apply M~'. To do this, expand the integrand in powers of {,, and then
use (3.2), (3.3) and (3.7). Again, the resulting infinite series can be summed.

(5) Evaluate the contour integral around C. It turns out that the integrand has a
double pole at w = 0 and a double pole at w = {.

The final expression for W, is (C.7). When this is substituted into (5.4), we obtain

w(x(0), y(c»—i—{)%;’ 1= {I+eRe(hQ+A+H¥ QL. (6.2)
where
v 2R =R | A0)—h()
W_Z(Z—v){ ‘ + C } (6.3)

Here, we have found it convenient to introduce the function 4, defined by

h(Q) =90 (6.4)

h is analytic within C, with /2 (0) = ¢’(0). Note that j occurs in only one place in (6.2),
whence

[wl=—"5"3 ( {1+ eRe[A()+# (O} /15,

] = % % O/ 1=

Equation (6.2) is our approximation for the (complex) crack-opening displacement ;
it is correct to first order in ¢. Note that #~ vanishes when v = 0; in this case, (6.2)
reduces to a result of Martin (1994). At the “crack centre”, z = 0, we find that

8(1 —v)a 3v(1+ij) ,,
w0,0) =~ ){1+ ¢Re [h(0)+ Fren h(O)]}. (6.5)

Let us express (6.2) in terms of the original variables. From (4.2) and (5.1), with
z=reand { = se'®, we have

r=ase®?+ase g ().
The imaginary part of this equation gives 8 = ¢+ O (¢), whence the real part gives
r =as(1+eRe{A()}).
In particular, 0Q corresponds to s = 1:
r=p(0) = a(l +¢Re {A(e'?)}).

Hence, discarding terms of O (&%),
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a\/1—s* = /p*—r*{1 —&(1—5?) "' Re[h(€*) — s*h(0)]}.
Then, eliminating ./1—s? from (6.2), we obtain

w(x, y) = 8 =v) foF—r {1 +¢&Re [@):_%‘ﬂ +(1 +ij)~11f(c)]}, (6.6)

(2 —v) 1
which is well defined as s —» 1

lim %0) _ 81 _V)T\/Z{l +a(w, +Re [(1 +i)# (€], 6.7)

e p—r nu(2 - V)

where

w, = s Re [h(e") —eh’' (')}

2

This formula can be used to extract the stress-intensity factors. Thus, using the same
notation and normalisation as Gao (1988), we find that

K(0) = a/ma{cos 8+ e(w, cos 0+ ysin 6+ Re [e?# (€7)])}, (6.8)
K:(0) = —(1 —v)ay/ma{sin 8+ s(w, sin 6 —y cos 6—Re[ic*# (€?))},  (6.9)

where o« = 4t/(n(2 —v)) and
£7(0) = p'(0)/p(6) = ¢ Relieh'(€*)}; (6.10)

7 arises because the normal to 0Q at a point P on dQ (in the plane of the crack) is not
in the direction of the position vector of P with respect to O.

6.1. The flat elliptical crack

This geometry provides a simple check on the theory, as the exact solution is
known ; see Appendix D. The conformal mapping from the interior of the unit disc,
D, onto the interior of an ellipse, €, is complicated ; it involves a Jacobian elliptic
function (Nehari, 1952, p. 296 ; Kober, 1957, p. 177). However, for ellipses of small
eccentricity, there is a simple approximation (Nehari, 1952, p. 265, Ex. 2), namely

z = f({) = aC+3e(1+ %)), (6.11)
so that h({) = 5(1 +¢?). This maps D onto
Q= {(x,y): >+ +e)’ < a’}

approximately, which is an ellipse with major and minor axes of length 2a(1 + ¢) and
2a, respectively. Substituting into (6.3) yields %~ = %v/(2—v), which is real, whence
[4,] = 0 as expected. Substitution into (6.6) then gives [«,], in agreement with the exact
result, (D.1).

For the stress-intensity factors, we find that w, = %sinQO and y = —sin26. Sub-
stitution into (6.8) and (6.9) then gives results in agreement with the exact results,
(D.2) and (D.3).
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6.2. Harmonic wave-form perturbations
Consider the choice
hl) =",
where n is an integer. This leads to a crack Q with boundary 0Q given by
r = p(0) = a(l+¢ecosnb),

with an error of O(g?). Such geometries were considered by Gao (1988) in his study
of the configurational stability of a crack with an oscillatory edge.
It turns out that the case n = 1 is special : w; and #” both vanish identically, whence

8(1— 0

The corresponding stress-intensity factors agree with those obtained by Gao [1988,
equation (52)].

For higher values of n, we can easily calculate w, K, and K;. We find that [1,] = 0
if n = 2, but not for n > 2. We also find complete agreement with Gao [1988, equation
(53)] for the stress-intensity factors.

6.3. Mapping independent formulae

One objection to our formulae for w, K, and K; might be that they involve the
conformal mapping 4. However, for domains that are perturbations of a circle, there
is an explicit formula for A, correct to first order in &. Thus, it was shown by Nehari
{1952, p. 265, equation (146)] that () = al(1 +¢eh(()), with

1 AV
W= | SEepwa

_ 1" 1-s+2issin(p—¢)
T2 ) 1452 —2scos(@p—y)

p(¥)dy,

maps |{| < 1 onto the domain Q, given by (4.1) with p(6) = a(l +¢p(8)). Differ-
entiating,
L e i [ PW)
() =- — dy = — . d
O=7| @ grWa=" f Nl
after an integration by parts. We can then substitute into (6.2) and (6.3) to obtain a
formula for w; in particular, we obtain

v 3—fe ¥
v = 22 —) J: @ —0) pY)dy.

However, care is needed when calculating / (¢'?) and 4’(€'), for the resulting integrals
are singular : the basic result needed is
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lim f .:7('1’). dy = :I:n ,f(lll). dys + ne " F(¢p),
sol— 4 e¥—gse¥ _n e¥—ge"

which can be derived from the Sokhotski-Plemelj formula (Kress, 1989, Theorem
7.6). Thus,

eV e

—n

' i n iy i
R e e LY

o5, | wreo(* o,

A2

e —giv

W(e®) = —ie "D (9)— ][

T

dy.

In particular, we have

Re{h(e?)} = p(¢) and Re{ic“h'(c")} = p'(p).

Now, suppose we fix . Then, we can choose to set the scale @ as a = p(f). We then
have

ep(¥) = [p(D))/[p(0)] -1

from the definition of p, so that p(p) ~ p(f) = 0 and p'(p) = y(8) [which is consistent
with (6.10)]. Hence, substituting into (6.6), we obtain

8(l—v)yr — - -,
w(x,y) = m(l o _")v) N {1 +wo+y - Re[( +ij)~fr,]}, (6.12)

where

o LJ* PO)p(Y) —p(8)]
T 2n o [p@) +7* =2rp(8) cos (8— )

1 3p(6)—re@—¥»

Y0 | iy W) P00 dY.

dy,

The formula (6.12) is new. When v = 0, it reduces to a formula obtained previously
by Gao and Rice (1987) and Martin (1994).
Finally, consider the stress-intensity factors, defined by (6.8) and (6.9). We find that

| O .
W= po)— 4 J[ pw)cot(“’z‘”)dw.

Choosing a = p(0) so that p(¢) = 0, as before, we can integrate by parts to give
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SR I () S N
T8 T p@sin’ (0 9)/2]

We also have

.8

y(Y)e " cot <0_T¢> dys

[ : 0—y\| o) —p(0)
+Ze J[_n {]—-—100t<2)} 20) dn//}.

We can then verify that the resulting expressions for K, and K, agree with a special
case of the formulae obtained by Gao [1988, equation (31)].

e W (e) = {—2ie‘“’y(9)+ % J[

7. DISCUSSION

In this paper, we have done three things. First, we have drawn attention to the
simplifying consequences of complexifying the well-known pair of integral equations
for the shear loading of an arbitrary flat crack ; the result is a single integral equation
for a complex displacement discontinuity. Then, in Section 4, we showed how to
transform this hypersingular integral equation over the crack into a similar equation
over a circular region, using an appropriate conformal mapping. The new equation
is then amenable to expansion—collocation methods, which are known to yield efficient
schemes for the numerical treatment of integral equations over circular domains. In
particular, this method could be applied to the shear loading of a rectangular crack.
Finally, we obtained various analytical results for cracks that are almost circular:
these results are much simpler if they are expressed in terms of the conformal mapping,
they include new formulae for the crack-opening displacement under uniform shear,
and they give stress-intensity factors in agreement with Gao (1988).

The method will generalize to dynamic problems, such as the scattering of elastic
waves by a flat crack. This is because the singular part of the elastodynamic fun-
damental solution (Kupradze matrix) is the same as for the static problem, and so the
regularization method of Section 4 is applicable. For somewhat circular cracks, the
method of Section 5 could then be used to study low-frequency diffraction problems.
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APPENDIX A : COMPLEX SOLUTIONS FOR PENNY-SHAPED CRACKS

Polynomial loadings of penny-shaped cracks are considered in Krenk (1979) and Martin (1982, 1986).
We start by writing the loading as

.

qdx,y) = Y, t(rlaycosnf+ i i.(r/a)sin nd,

n=0

oo

(%, ¥y = Y sfrla)sinnf+ i S {ria)cosn8.
1 n=0

n=

Then, the crack-opening displacement can be expanded similarly,
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[udx, N =a Z u,(r/a)ycosnf+a Z ,(r/a) sin nd,

n=0 n=1
[u(x,p)) = a z v,(r/a)sinnd+a Z 7,(r/a)cosnf.
n=0
Next, expand ¢, as
T(n+1/2)T(k+3/2) CyElA(J1=r7)
(n+k)! m ’

with similar expansions for s,, , and §,, involving coefficients S7, 77 and N respectively. Then, it can be
shown that

O
Ln=ry T}
fur}

I 1/2)k!
o) = $ Ui I et (/T

with similar expansions for v,, 4, and #,, involving coefficients V3, U7 and V7%, respectively. The coefficients
7 and V7 are related to 7% and S} by the following formulae (Martin, 1986):

=275 = 2-v)U;3, )

—4T) =2Q2—vUL—wU}_ + Vi), k=1,
—(Ti+8) = U+ V4, k>0,
—XAT2+8Y) = Q-WUi+VH-=2U2,,, k>0, > (A1)
— AT+ 87 = Q-w)(UI+ Vz)—v(ukH Vizh), n=3,k>0
=2AT5—8%) = R—v(Ui— nzl,

—2AT}—8}) = Q—W(Ui— Vk)—v(U"“ Vich, n= k1.

Similarly, the coefficients U} and V7 are related to 7% and S} by the following formulae, obtained by
following the procedure given on p. 527 of (Martin (1986):

—28% = 2w, b

—480 = 20—+ w Vi =07 ), k=1,
—(Si—TH = A —wVi-Up, k=0,
—AS—TH = Q- -U0H+ 70, ., k>0, > (A.2)
—2$i— T = Q—Vi—-T)+v(Vii+ UL, n=23,k20,
-85+ T8) = Q-5+ T, n>1,

S+ Ty = QWY+ 0D +v(Vi -0, n21,kz1. )

The complexified form of these equations can be obtained by using the definition (2.7). Specifically, we
have

QL =Ti+j8% and QF" = (Tt SD+;i(SiF T,

for n = 1 and k > 0, with similar expressions for W73,
For the record, we note that (A.1) and (A.2) can be solved explicitly :

—-wU} = -2T%,

Hi—UL = —2Q—v)T?—w(Ti_,+S2_), k21,
Q2-nWUG—V5 = —2AT—S5), nxl,
21=Ui= V) = —Q-WTi—SH— T +8713), nzLk=>1,
Ui+ Vi=—(TL+Sh), k=0,
2AL-UE+VY) = —Q—wTi+S)—2T},., k=0,
200 —wWWUi+ Vi) = ~ Q=T+ SD)—wTisi -8, n=z3,k=0
Q-wPi= —28,
41— = 208+ w(Si_, —T2_), k>1,
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A=-WPi-U) = —(Si-Th, k20,
20-nVi-U0) = —Q—-wWSi-TH+ 287, k>0,
21-0Vi=00 = -Q-WSi—TD+vSi3i+ T, n=23,k>0,
C—Vo+Up) = —2Se+T3), nxzl,
20—+ 0D = RS+ TD+u( S -T2, w2k 1.

These results simplify greatly if they are expressed in terms of w and ¢, defined by (2.7); see Section 3.

APPENDIX B: THE KERNELS K" AND K»

The kernels K" and K® are defined by (4.5) and (4.6), respectively ; we expand them for small S. Write
/"G _
f¢o)

Hence, f'({) = f'({){1 +F} and f'({o) > f(O{1-F}.
Consider K. From (4.4), we have

gimsy _ SO UG 1+#

LS 1O T H+2)

giving 6 — 3, >~ F, = 0(S). Now, Martin (1994, Appendix B) showed that
£ O Gl 1

FO-COF  K—=Lof

Hence, K" ~ j#,57, which is O(S™?) as § - 0.
Next, consider K. From (4.3), we have Re’® = a({—{,)/"({){1 +3F}, whence

*97=(C_C0) f,-}-lfz:O(S) as S—0.

=(1+F)1~F ) = 1+iF,,

—0(S"") as S—0.

OO~ (141 )1 +3F| 7.
Also, Re® > a({—{) /({1 — F}{1 +5F}, whence
@0~ (1 L —LF

1
Hence

ei(ZO—ZOvé-éo) ~ 1+0(S2)
as S — 0. It follows that K?is O (S~ ') as § - 0.

APPENDIX C: EVALUATION OF W,

To begin, we evaluate L,, defined by (5.5). We have

(=G & m+ .,
— m -2 m+ I{ +CmC2
il Ml i R
for |{/w| < 1 (which is satisfied since |{| < I and |w| > 1). But M {{"/1 —s?} can be evaluated using (3.5)
and (3.6); hence

40 & .2 2ov(1+1j) & m+1 imo
Y= LA bl Sl 4 imo, 1
L@ = =7 ¥ (nt DZE IOt 5 =8 T N (s (1)

where
_F(m+7/2)_ L(m+5/2) I‘(m+3/2)= [(m+3/2)

" (m+2) (m+1) m! T 4m+2r
Nor) = G o(r) = 20Gy o (D) +12Gl7)
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=6 (m+ 1)

{l"(m +12) _ Temt 3/2)}rm
m.

and Z, = {,/w. The sums in (C.1) can be evaluated, using

I'(m+a) ‘Z_'(;'
I'x) m!’

(1-Z)~* = io 1Zol < 1: (C.2)

3av(] +1j)
) 2

To evaluate L,, defined by (5.6), we note from Martin (1994) that
H{{"/1=5"} = =T (n+3/2)I'(3/2)¢5/n!;

Ly(@,{o) = 30{(1=Z) P +(1-Zp)"* — 2}+ {(1=Z) 2+ (1=s)(1—~Zy) ¥} (C3)

hence,

Lyw,{o) = — (1=Zg) 2. (C4

0z,
2—vw

Next, consider the right-hand side of (5.3). We have expressed "W, as a contour integral around C, so
it is convenient to do the same for Q, :

0.6 = ~oRe{Cidg | 2 duf.

c (@={)?
Hence
Q- KWy =— {1 J _6@) ,S,”(w,Co)dw} (k)
2mi Jo (=)
where

& = GHijo+L)—2—vijlw—{o)Ls
= oG5~ Zo)" P+ G—3i(1 — Z0)" "}
150v(1 +ij)
162—v)0?
The next step is to apply M ', using (3.2), (3.3) and (3.7). We write (C.5) as
0~ AW,y = —(%>Re{ij g—i)“i)(,sf +_S,”2)dw}

2ni

{(1=Zy) "+ (1= s —Zp) ¥}

where
L (S0, @05 0) = 7G+3)(1 = Zo) P+ (G- 31~ Zo) 72,
157v(1 +1ij) _
L5000 0) = ————={(1=Z) 2+ (1 —sH(1 = Z,)~ "},
(50, 9o ; W) 16(2_v)w2{ o) (1—s5)( 0”7

Consider %, ; using (C.2), we obtain [cf. (3.1) and (3.2)]

2= 5 emangyTUITIRICH) Che 1 /1I=5)
e JI=7

where Qf =3+2ij, Q%= —(1 —ijl-nw™", Qi"= —(1 +1ij)(5+3n)w™", n>0 and we have used
(1+ij)e™ = (1 +ij)e " to pass between e and "™, Then

_ & & I(jn| + 1/2)k! —
! - 2 jno | 2 wr——~— T i+ 12 —
M2 2L A M T+ k+3)2) CHLP(/1=5), (€6)
where the only non-zero coefficients are given by (3.7) as 2—v)Wy" = -20;" for n20,

20 —VW5 = ~(2—v)Q4 forn = 2, and 2(1 —v)W ;" = —vQ5*? for n = 0. Substituting into (C.6) gives
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g _ Qo= 4G4 2040 (i)
M 'z,—\/:{ A—w ST Ty oy S’+3(1—v)w’s3}’

where { = se*, Z = {/uw,

2 z? = Z(8—52)
S, = —nzr = . 8= Y Bm+5)zr =22
' m; tn=1) a-zy mz.( ) (1-2)?

2Z 42+ $Z~5)
21— Z)

and we have summed the series using the geometric series and its derivatives.
A similar calculation succeeds for .#,. We obtain

S, = i (m+D{m+3H(1-sH -3 2z" =

e L Tk+32) /1=
Lisp0) = L eI Y 0" §n+k>') B =),
” =0 ’ 1—s

where

_ w1 +1))(2n+3) and Q7" = v(l+1])(n+l)‘ n>0.

(Z—V)(D'HZ 2(2——\/){4}“+2
Then, M~'%¥, is given by (C.6), where, now, the only non-zero coefficients are given by (3.7) as
Q-Wi"= —2Q05" for n2 0, 20 —-WWi = —v@} " for n2 2, and 21 —W"= —(2—v)Q;" for
n 2 0. Substituting into (C.6) gives

2 -- .. .
M-y = _ sl (1—1ij) s v(141ij) s 4v(1 +1j) s }’
' * {2(1_V)(2_") o 3(1—v)w? a Q-

00"

where

3-7
(1-2)"
Combining the above results, we have M~ (¥, + ¥,) = /1 —s* .#, where

Si= Y Qm+3)Z" =
m=10

2 (1 +ij
=2 fa-si—a s, 200,

Q-vw?

221 5-2Z
S;=8~-1= s Se=8+5=- o

(1-zy (1-zy

Next, we substitute .# into
1
W, = *<E) 1—-s*Re{/} with 1=——.J g(—wzﬂdw (o)}
n 2 o o?

and evaluate the contour integral over C. The integrand has a double pole at w = 0 and a double pole at
o = {; evaluating the residues at these poles gives

2(1—1j) 20044y ..., . 4v(1+1)) (2 () —h(0)  A(O)Y~A(0)
=S ) — T ey Sh(O) —
1= 5= Q= O}~ =5 (BIH QO+ S5hO) (2-v)2{ ot }

where 4 1s defined by (6.4).

APPENDIX D: THE FLAT ELLIPTICAL CRACK

Consider a flat elliptical crack,

Q= {(x,y): (x/4)’+(/B)* < 1}

subjected to the shear loading (6.1). Then, it was shown by Eshelby (1957, 1963) that the crack-opening
displacement is given exactly by [¢,] = 0 and
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—2(1—-v)k’B
] = — TR

where A = (v—kD)E(k)— vk’ K (k), k' = B/A, k* = 1 —(BJA)*, B = (x/AY+(y/BY, and K and E are com-
plete elliptic integrals of the first and second kind, respectively. The two stress-intensity factors were
obtained by Kassir and Sih (1966} ; they are given by

K, = —(nB/A)"2 V4 (k*|A)rBcos §,
K; = (1—v)(nB/A)' 2o = *(k*/A)c A sin ¢,

where x = Af cos ¢, y = BB sin ¢ and of = A? sin® ¢+ B? cos’ ¢.

We can approximate the above formulae for an ellipse of small eccentricity. Thus, suppose that
A =a(l+¢) and B = a, where ¢ is small. As k* ~ 2¢ is small also, we can use the power-series expansions
for K (k) and E(k) to give A = %nkz{v—2+%k2(v+4)} + O (k% as k — 0, so that

k* —4 { 44v }
— 1+¢ .

il

AT 72— 02—
Also, as p? ~ a*(1 + 2ex?/r?), we have
(1= f*) ~ a* —r* +2ex? ~ p* —2ea’(x/r)* —r’ 4+ 2ex?® = (p* — r*)}(1 —2ex?/r?),

whence a/1—f% ~ /p*—r’(1—ex?*/r?). Hence
fux, )] = U=V {1 +e (% —cos? 0)} (D.1)

(2 —v)

correct to first order in ¢. For the stress-intensity factors, we have /B/4 ~ 1— %s, A =~ a*(1+4 2sin? 9),
Bceos ¢ = (1—esin*Pacos 8, Asing ~ (1+£(1 +cos?8))asin 8. Hence, the stress-intensity factors are given
approximately by

4 /ma 3v 3.,
K, —n(2—v){1+8[4(2~v) —3sin 0]}cos€, (D.2)

—4(1—v) 3 . .
K, = n(ziz)\/ﬁ {Hs[‘t(ziv)+2”%S’n29}}5m9' ®-




