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Obliquely incident linear wave trains encountering an inlet on a straight reflecting
shoreline are examined to determine the response of the inlet to the wave forcing.
The problem is separated into a symmetric problem and an antisymmetric problem,
with respect to the channel centerline. Fourier transforms are used to solve the
Helmholtz equation in the ocean and an eigenfunction expansion is used in the
channel (which has constant depth and a rectangular cross-section). Matching
conditions at the mouth of the inlet provide the matrix equation to be solved
for the amplitudes of the wave motions. The amplitudes of the symmetric and
antisymmetric wave modes are provided as a function of dimensionless channel
width and angle of incidence. Plane wave and long wave approximations are also

provided. Copyright ©)1996 Elsevier Science Limited

1 INTRODUCTION

Water waves encountering entrance channels present
an interesting problem as the waves undergo reflection,
refraction, diffraction and shoaling due to shorelines,
shoals, jetties, tidal currents, and a variable depth chan-
nel.

Melo & Guza,!»? through field and numerical means,
showed that a tidal inlet comprised of rubblemound jet-
ties absorbs a considerable amount of the wave energy
entering the inlet from the ocean in the porous inlet side-
walls. Dalrymple® developed a simple model to explain
this behavior using a simple eigenfunction expansion of
the waves in the channel (assuming a rectangular channel
cross-section) and an impedance boundary condition at
the sidewalls. Dalrymple assumed that the waves at the
mouth of the inlet had a constant amplitude and phase;
that is, they were planar and normally incident. One con-
sequence of this assumption and the impedance bound-
ary condition was a fictitious amplification of the waves
occurring within one wavelength of the channel mouth.
Martin & Dalrymple* analytically examined the interac-
tion of waves and porous sidewalls, providing proof of the
analogy of wave propagation in a channel with absorb-
ing sidewalls and a breakwater gap (Peregrine, as cited

by Melo & Guza).

Recently, Kirby et al.5 and Dalrymple et al.® have ex-
amined the propagation of waves in inlets with variable
plan form, such as diverging or curved channels. In both
of these cases as well, the wave form at the mouth of
the channel was assumed to be a normally incident plane
wave train (in Cartesian coordinates).

Here we examine the interaction between obliquely in-
cident wave trains in the ocean and an inlet embedded in a
perfectly reflecting shoreline. The inlet will be assumed to
be infinitely long; any reflected waves occurring due to a
realistic finite length inlet channel are assumed to be neg-
ligible due to the strong damping referred to above. Our
idealized inlet has a rectangular cross-section of the same
depth as the ocean and has perfectly reflecting sidewalls.
Momoi’!? has treated normally incident long waves for
this case (with increasing orders of approximation), using
three separate domains with an eigenfunction expansion
in each. The domains are an outer region in the ocean,
a ‘buffer’ region consisting of a semicircular domain in
front of the channel, and the channel itself. Here we use
two domains (with an eigenfunction expansion in one
and an integral representation in the other) and include
obliquely incident short waves.

Eigenfunction expansions have long played a role in
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water wave problems, particularly for problems that in-
volve matching between two domains of different depths.
Takano!! treated a step discontinuity using eigenfunction
expansions over the depth (z direction) in each domain of
constant water depth. Newman'? examined waves prop-
agating in an infinitely deep ocean connnected to a finite
depth shelf, expressing the wave motion in terms of Have-
lock’s!? integral solution for a wavemaker in deep water
and an eigenfunction expansion in the shallower region.
Eigenfunctions expansions in the lateral direction (y in
our case) have been used, for example, by Dalrymple and
Martin'4 for waves past a series of offshore breakwaters,
and in fact lead to the angular spectrum model of water
waves (see Dalrymple and Kirby!5).

In the next section, we separate the incident wave field
into a problem symmetric about the channel centerline
and an antisymmetric problem. Each of these problems is
then solved by the use of Fourier transforms in the cross-
channel direction. Combining the two solutions then pro-
vides the total wave field for arbitrary channel width to
water wave length. The advantage of the eigenfunction
solution is that the near-field behavior of the wave field
is easily obtained. As alternatives, plane wave (only one
cross-channel eigenfunction) and long wave asymptotic
solutions are also obtained and compared to the full
eigenfunction solution and to another asymptotic solu-
tion obtained recently by Mclver & Rawlins.!¢ In Sec-
tion 3, the amplitudes of the various Fourier modes are
shown as a function of incident angle and dimensionless
channel width. The total energy propagating down the
channel as a function of the channel geometry and wave
angle of incidence is also computed.

The water wave problem is a two-dimensional analog
to the acoustics, electromagnetics, or optics problem of
waves entering an infinite slot. Many early solutions have
used variational principles (Miles!?) or a single dominant
mode (Chester'®). Modal expansions have been used re-
cently; see, for example, Scharstein!® in connection with
an integral approach, or Kabalan and El-Haji,?® using a
matrix method similar to ours (both of these papers are
in the field of electromagnetics). Here, a modal expan-
sion is used to provide a more detailed examination of the
wave field in the vicinity of the duct. One important re-
sult is the reduction of the area integrals, as required for
the solution of the modal amplitudes, into line integrals.

2 THEORETICAL CONSIDERATIONS

The ocean will be considered as the half-plane, x < 0 with
a reflecting shoreline at x = 0, except at the mouth of the
channel, which is located on the y axis, —b < y < b, thus
the channel centerline corresponds to the +x axis. The
velocity potential governing the linear wave motion in
the constant depth ocean satisfies the Helmholtz equation
and can be written as

_ coshk(h + z) _iw,}
®1(x,,2,t) =Re {dh(x. y)——_—coshkh e

where k and w are related by the dispersion relationship:
w? = gktanhkh
We decompose ¢ as
¢1 = <Pinc + ¢ref+ ¢T + 4)?

where

¢inc =p eilc(ysin 0+xcos 6)
gives the incident wave, scaled by the (dimensional) con-
stant p, propagating at an angle @ to the x-axis,

Prer = p eik(y sin —-xcos 8)
gives the reflected wave, and ¢35 + ¢} gives the wave ra-
diating out of the channel due to the interaction of the
incident waves and the channel. Rearranging ¢inc + @Pref
yields two different standing waves:

Dinc + Prer = 2p cos(ky sin 8) cos(kx cos 8)
+2ipsin(ky sin 0) cos(kxcos @) (1)

The first standing wave pattern is symmetric about the x
axis and the second is antisymmetric. Therefore, we split
the problem into two: one symmetric and the other an-
tisymmetric. Here, and below, we identify the symmetric
wave fields with a superscript ‘s’ and the antisymmetric
fields with a superscript ‘a’. Thus, we can use the fol-
lowing Fourier integral representations for the symmetric
and antisymmetric problems respectively:

¢} = %JAS(A) e BN cosAyda )
0

9t = = [ 4N B sinayan 3)
0

for x < 0, where

VK2 -A2, 0<A<k
B = {ivA2—k2, A>k @

The forms of A%(A) and 4*(A) are to be determined by
matching to the wave solution in the channel.

Within the channel of width 25, the wave potential is
coshk(h + 2) e"i""}

®,(x,y,z,t) =Re {¢2(x. ») ~osh K

where @2 = ¢35 + ¢3,

b= a4 P cos Ay ®)
n=0
oo

¢t =2, a; P sinAly ©
n=0

forx>0,-b<y<hb,
Ay =nm/b and A,‘ﬁ=(n+%)rr/b
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The first term in the summation (5) represents a wave
propagating directly down the straight channel; the re-
maining terms in (5) and all the terms in (6) are waves
which propagate down the channel obliquely, reflecting
from the vertical side walls. For values of » such that A3 >
k or A2 > k, these waves decay in the x-direction; see (4).

To determine the functions 4° and A?, and the coeffi-
cients @5 and @2, two matching conditions are used. The
first is the continuity of the velocities in the x-direction
across the mouth of the channel,

39: _ 2
ox ox
The second is the requirement that the water surface be

continuous across the channel mouth, which can be ex-
pressed as a matching of the velocity potentials:

atx=0, |y <b 0

b2=¢1 atx=0,lyl <b ®
In addition, there is the reflecting-shoreline condition,

o1

ry =0 atx=0,|y|>b 9)

To proceed, it is convenient to solve the symmetric and
antisymmetric problems separately; it is sufficient to con-
sider y > 0. -

2.1 Symmetric problem

Combining (9) with the first matching condition, (7),
leads to

-1 JAS(A)B(A) cos Ay dA
0
> iaSB(AS) cosAsy for0<y<b
= { n=0 (10)
0 fory>b

We can solve for A*(A) by inverting the Fourier cosine
transform:

AA) =

s By
Z @y L an
where

2(=1)"AsinAb

L5Q) = 20jcos)\,,y cosAydy = A= ()2 (12)

Note that £;(A) is well defined for all values of A; in
particular,
€L (A) =2b
where €p = 1 and ¢,, = 2 for m > 0.
Substitute 4%(A) from (11) into (2), and then use the
second matching condition (8) to obtain

> a5 cosASy = 2pcos (kxsin 0)

n=0
lis o f dA
T 2P ochf,m cosAy g

O0<y<b

Using the orthogonality of {cos A} y} over the range 0 <
y < b removes the y dependency and provides equations
for a3,

ba,, = €mp L;,(ksin 0)

—Lem > @B D form=0,1,2,... (13)
n=0

The term D;,, is defined by
Dy = Dy =

JLS a) L) 2 (14)

B(A)

its evaluation is discussed in Appendix A. Rearranging
and truncating the summation to only N + 1 terms gives

Z (268 + €mB(AS) DE,,)

= 2p€,,,£s (ksin®)form=0,1,2,...,. N (15)

where 8,,; = 1 for m = n and is zero otherwise. Equa-
tion (15)is an (N + 1) X (N + 1) matrix equation for a5 ,;
it is solved by standard methods.

2.2 Antisymmetric problem

We proceed as in Section 2.1. Combining (9) with (7),
and inverting the Fourier sine transform gives

2 BQAY)

AW ==~ Z “BA)

L£2(A) (16)

where

2(=1)"*1A cosAb

A? — (A2)? (17

LiA) =2 Jsin?\ﬁy sinAydy =
0
L2(A) is also well defined for all values of A, including
A3, as L3(A%) =
Substituting for 4*(A) from (16) into (3), followed by

use of the second matching condition (8) and the orthog-
onality of {sinA2y} over the range 0 < y < b, gives

bas, = 2ip L} (ksin 9)

- > aB(A%) D form=10,12,... (18)
n=0
where
17 A
= = — AA) —— 19
D, n! BN LM g (19)
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the evaluation of D2, is discussed also in Appendix A.
Rearranging and truncating to N terms as before, we
obtain

N
D @ (b6 + B(A2)DE,) =2ip L2, (ksin6)
n=0
form=0,1,2,..., NQ20)

which is an (¥ + 1) X (N + 1) matrix equation for a2,
2.3 Alternative formulation

An alternative formulation is possible. From (11)
and (16), we can see that the functions 4%(A) and A2(A)
are even and odd, respectively. Hence, we can combine
(2) and (3) to give

x <021
where
AQA) = A5A) —i47(A) (22)

The third term in (21) is a Fourier integral representation
for the radiated waves. From (12) and (17), we can write
L3 and L3 as Fourier transforms:

b
LSA) = I cosAdy e W dy
b

b
J’ sin A%y eV dy
b
If we now substitute for 4(A) into (21), using (11), (16)

and the convolution theorem for Fourier transforms, we
obtain

¢1 = ¢inc + ¢’ref
_ = Z dsﬂ(As

LiA) =

J g (k X2+ (y— §)2) cosASLdT
-5 Z 4,B(A7)

x Jb HD (k,/xz + - g)z) SnALZdZ (23)

Here, we have used the known representation

T amiBA)xgity
H(U(k x2 +y2) 17 da,

=3 I x<0

for the Hankel function, H, ( ); see, for example, Chester'®
or Dalrymple & Greenberg.?! The last two terms on the
right-hand side of (23) represent the waves scattered by
the inlet in the ocean. Each Fourier mode (correspond-
ing ton = 0,1,...) in the channel acts as a wavemaker,
creating a radially spreading ocean wave, similar to that
discussed by Dalrymple and Greenberg. Note that we can
write (23) as

i
¢1 = Pinc + Prec + 5

f %10, 08" (kfer+ - 07) a8

this formula could have been obtained directly by apply-
ing Green’s theorem in the ocean to the radiated field,

$1 — Pinc — Prer, and
# (=87 + - 02)
+HD (kJ(x +DI+ (- 02)

this latter field (source plus image) being chosen as it
satisfies the reflecting-shoreline condition.

If we use the second matching condition, (8), and or-
thogonality of {cos A3y} and {sin A%y} in turn, we obtain
the same systems of algebraic equations as before, except
we obtain different (but equivalent) expressions for the
matrix elements; these are

b b
DS, = % J JHé” (kly — 1) cos AS,y cos ASTdT dy
—b—b
(25)

Df,,,,—zjj HY (kly — 1) sin ALy sin ASCAZ dy

These expressions, being double integrals, are less con-
venient for numerical computations than the single inte-
grals given in Appendix A.

2.4 Plane wave approximation

The plane wave approximation, based on taking only a
single symmetric propagating (dominant) mode in the
channel, can provide a reasonably accurate solution with
far less computational effort than the full solutions out-
lined above, particularly for small values of kb. Here, ¢,
will remain as given in (21), while ¢ is taken simply as

¢y = aje™ (26)

so that we have neglected all the oblique waves in the
channel (that is, all terms with » > 0 in equation 5 and all
terms in (6). Following the same methodology as above,
we match the velocities at x = 0, obtaining an expression
for ¢ in terms of aj:
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¢1 = ‘l)inc + ¢ref
b
- jb B (We+0-27) @ @

which is the same as (23), keeping only the first term in
the first summation.

Matching the potentials across the mouth of the chan-
nel, leads to

b
aj = 2p cos(kysin ) — g‘%}f JHO(”(kIy -Zdg (28)
b

Integrating across the channel and rearranging yields

s _ pLylksin 6)

= 29
RCAY LkD}, 29)

where Dy is defined as before (25).

For very small arguments, the Hankel function can
be approximated as Ho(l)(x) ~ 1+ 2i(log(x/2) +y) /m,
where y ~ 0.5772... is Euler’s constant. With this ap-
proximation, Dj, can be determined analytically. The fi-
nal result, valid for long waves and small channel widths
(kb < 1),is

B pLylksin®)/b

1+ kb (Zlogkd) + 1)

_ 2sin(kb sin 0)

"~ kbsin® (1+ kb (Zlog(kb) + T3 ))

0

(30)

where we have defined the (complex) constant
2i (3
o125

Mei?? and later Mclver & Rawlins'® used the matched
asymptotic expansion method with the assumption of
kb < 1 to solve the same problem. Mclver & Rawlins
provided both a first and a second order (in kb) solution.
In order to compare with their solution, we can rewrite
@j to second order in kb and normal incidence as

ay=2p (1 - kb (%logkb+l])

: 2
+ (kb)? (%logkb+1}) ) (31

Their expression differs from af only in the definition
of I, which they have as

I =1—%(1—y+logn/2)

The two values of I are quite close, 1 — 0.5566i for ours
and 1-0.5875i for theirs. These approximations are com-
pared with the eigenfunction solution given by (15) and
(20) in Fig. 1, again for normal wave incidence. In the
figure, the solid line is the solution obtained using N =

08 - N
06 | "
04 o

02 ~.

0 0.1 02 03 04 05 06 Oj7 08 09 1
kb

Fig. 1. Approximations and full solution for aj as a
function of kb for normal incidence. Solid line is the full
solution (N = 8), the approximately similar dashed line
is the plane wave approximation;? the similar dotted
line is the long plane wave approximation.® The dashed-
dotted line corresponds to the Mclver & Rawlins’ first
approximation and the upper dashed line is their second-
order solution.

8. The dashed line very close to the ‘exact’ solution cor-
responds to the plane wave solution (29), which shows
very little error. The dotted line is the long plane wave
solution, using the small argument form of the Hankel
function (30). Finally the lower curve corresponds to the
first order solution of Mclver & Rawlins, while the up-
per dashed curve is their second order solution. For small
values of kb, say, kb < 0.4, their second order solution
is better than the long plane wave approximation; how-
ever, the exact plane wave solution (29) is better for all
kb (due to its different dependency on kb) and retains its
validity over the full range of the figure as does the long
wave approximation (30). The accuracy of the Mclver &
Rawlins solution rapidly deteriorates as the assumption
of kb <« 1 is violated.

The dependency of long wave approximation of ay
(equation 30) on wave angle 6 is very weak, as kb is small
and the sin 6 term in the numerator tends to cancel the
same term in the denominator.

3 RESULTS

The total velocity potential (obtained by solving the two
matrix equations, (15), (20) and adding the results) is
readily obtained using a complex matrix solver (we use
the IMSL package, LEQT1C, with the Bessel functions
computed using the algorithms of Press et al.!'®). To ob-
tain the integrals needed for the D%, « = s, a, 150 point
Gauss quadrature is used. Further, N does not need to
be large, if only the first few a%s are desired; the coeffi-
cient a2 is quite stable for N > m+2. For all results given
below, p is taken as unity.
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Fig. 2. Instantaneous free surface for thirty degree inci-
dent wave train, kb = 12.

An overhead view of the instantaneous wave field for
a wave train encountering an inlet is shown in Fig. 2 as a
shaded contour plot. The wave train is incident from the
upper left in the figure at a 30°angle of incidence and re-
flects from the shoreline, creating a short-crested seastate
(maximum amplitude of 2). The wave train propagates
into the inlet and reflects from the downwave (right) side-
wall. Diffraction of the incident and reflected waves oc-
curs in many locations. Most obvious is the diffraction
of the incident wave train from the upwave (left) corner
of the inlet within the inlet. However, the seaward prop-
agating waves reflected from the shoreline diffract into
the shadow in the reflection pattern caused by the inlet.
Further, the reflected wave from the downwave channel
sidewall diffracts as well. Here, kb = 12, and N = 16 for
a total of 34 symmetric and antisymmetric modes. Eight
of the modes are progressive, four symmetric and four
antisymmetric; the remaining 26 modes are evanescent.

Convergence of the assumed series for the potentials
(5,6) is predicated on the convergence of the & and a2
forn=1,2,..., N, as N increases. In Tables 1 and 2, the
first three symmetric and antisymmetric (complex) coef-
ficients are shown for N ranging from 4 to 100 for the
above example. Due to discontinuities in the velocity pro-
file at the channel mouth and the Gibbs phenomenon
occurring with Fourier techniques, the evanescent modal
amplitudes decay slowly in magnitude with increasing »
for large V; this then results in slight changes in the pro-
gressive modes with increasing N. However, if we examine
the percentage change in absolute value of a5 (the largest

modal amplitude) from N = 4 to N = 100, we find that
there is an 0.8 % change. For N = 16, the value used for
the figure, there is a 0.11% change. It is clear that high
N solutions are only incrementally more accurate than
N = 16; further, the additional evanescent modes decay
rapidly away from the channel mouth.

For normal incidence, the instantaneous wave field for
kb = 7.368, roughly corresponding to one of Melo and
Guaza’s cases, is shown in Fig. 3. For this case, N = 25,
For this case, as well as the last, the small reflection from
the inlet leads to a progressive wave train in front of the
inlet in the reflection shadow. Note that there is no fo-
cusing after the mouth of the inlet. The normalized ve-
locity across the mouth of the inlet is shown in Fig. 4; it
is given in terms of amplitude and phase. At the sides of
the channel, the presence of the standing waves along the
ocean shoreline creates larger velocities and a phase shift
(of about 23°). In the center of the channel the velocities
are nearly constant. (Lanczos smoothing (Hamming??) is
used here for the velocity profile. It removes the high fre-
quency oscillation of the N terms. It was not necessary
to use it for the wave field shown above.) Clearly, for a
reflective shoreline, it is improper to assume a constant
potential or velocity across the mouth of the channel.

The coeflicients ¢ and a2 comprising the solutions are
functions of kb (the channel width normalized by the
wavelength), and the wave angle of incidence. Figure 5
shows the |a5], n = 0, 1, 2 for normal incidence (@ = 0)
and p = 1. The upper solid line in the figure depicts |ag],
obtained from the full solution based on N = 6. The
neighboring dashed line is | 43| obtained by the plane wave
solution. The only discrepancy between the two curves
occurs for 1 > kb > 2.5, which implies that the plane wave
approximation is quite good for most values of k5. Both
curves show that for a narrow channel (kb << 1), |4} is
2.0, the same height as the standing wave at the reflective
shoreline; however, as the channel becomes wider, the
wave amplitude drops to unity, as the standing wave at
the shoreline has little influence across most of the mouth
of the channel. The lower dashed line in the same figure
corresponds to ||, which reaches its maximum at kb =
1. In fact for normal incidence, the maxima for |ai|s
occur at kb = nm.

For an incident wave angle of 45°, the modal ampli-
tudes are significantly different. The }a,s|s,n = 0,1,2,3
are shown in Fig. 6. Again the plane wave solution for
Jag] is plotted along with the full solution with very little
discrepancy between the two. As the wave length becomes
shorter with respect to the channel width (kb larger), the
higher channel modes exceed the fundamental mode in
magnitude. Maxima for each |a5,| occurat ksin8 = AS, =
mrt/b.

The corresponding antisymmetric modal amplitudes 2
for this case are shown in Fig. 7. The peaks for the mth
mode occur at ksiné = A% = (n + %)Tr/b.

Figure 8 shows the fundamental mode amplitude |aj|
as a function of kb and 8. The upper left edge of the draw-
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Table 1. Symmetric modal amplitudes, @, » = 0,1, 2 for different values of N for kb = 12 and 6 = 30°

N a4 a a3

2 —482835x 1072 +8.02038 x 107931 0.131986— 1.67377x 10~ 9% 0.959272 + 1.91355 X 10~ 04
4 -503636x 10702 + 1.21041 X 10~02{  0.136314 — 2.54473 x 10792  0.954346 + 3.00230 x 1092}
8  —4.88583x 1072 4 1.40675x 10792  0.133097— 2.94901 x 10~%%i  0.958356 + 3.44728 x 1070
12 -483347x 10~ +1.43210x 10~%j  0.132011 —2.99970 x 10~%2i  0.959585 + 3.49780 x 109
16  —4.80901 x 10792 + 1.43944 x 107%%i  0.131507 — 3.01422 x 10~%%  0.960142 + 3.51176 x 10~%%
20 —-4.79520% 10702 4+ 1.44225x 1079  0.131224-3.01973 x 10~%]  0.960452 + 3.51691 x 10792
50 —4.76622x 10702 + 1.44446 X 10~92  0.130631 — 3.02391 X 10~2i  0.961094 + 3.52030 x 100
100 —475747x 10792 + 1.44422 x 10792  (.130452 - 3.02337x 1079  0.961287 + 3.51954 x 1092}

Table 2. Antisymmetric modal amplitudes, a3, » = 0, 1, 2 for different values of N for kb = 12 and 0= 30°

af

a4

N ag

2 234564 x 10~92 —0.3423171
4 1.49803 x 10792 — (.339053i
8§  1.27827 x 10792 - 0.338360i
12 1.20915x 10792 — 0.338155i
16 1.17660 x 10792 — 0,338066i
20 1.15800x 10792 — 0.338019i
50 1.11799 x 10792 — 0.337933{
100 1.05270 x 10792 — 0.337888i

2.60223 x 10~%2 + 0.833990i
—1.64364 x 1072 + 0.830156i
—1.40667 x 10792 + 0.829286i
—1.33343 x 107% + 0.829040i
—1.29907 x 1092 + 0.828936i
—1.27948 x 10792 + 0.828881i
—1.23738 x 10792 + 0.828782i
—1.16904 x 10792 + 0.828734i

3.45957 x 10~Z + 0.449957i
2.14719 x 1079 + 0.455746i
1.86336 x 10792 + 0.457186i
1.77854 x 1092 + 0.457555i
1.73898 x 10~02 + 0.457706i
1.71648 x 109 + 0.457783i
1.66824 x 10792 + 0.457919i
1.59083 x 10~ + 0.457975i

ing corresponds to 0°of incidence, the same as shown in
Fig. 5. A transect from upper right to lower left through
the middle of the figure would correspond to Fig. 6. The
kinks in the surface that are particularly evident at the
90°angle of incidence correspond to multiples of 7r. Fig-
ures 9 and 10 show the higher symmetric modes, || and
|a5| in the same way. Note that higher modes look very
similar, just displaced by multiples of 1t along the kb axis.
Figures 11, 12 and 13 show the antisymmetric modes,
also as a function of kb and 6.

These figures of modal amplitudes provide information
concerning the importance of each of the modes in a
particular case. For example, for Fig. 2, corresponding to
a 30°angle of incidence and kb = 12, the first important
symmetric mode is a5, while all the antisymmetric modes
shown (ag—a3) are important. For Fig. 3, the 4 mode is
the most important, due to the normal incidence of the
waves, and all the antisymmetric modes are zero.

The energy flux into the channel, relative to the flux
on the inlet due to a plane wave at normal incidence, Tz,
is a measure of how much energy is transmitted into the
bay. This quantity can be calculated from Stoker? (see
page 48 of that reference):

j¢2 €2y ay

’TE = %Im

where the asterisk denotes complex conjugation. Due to
the orthogonality of the eigenfunctions across the chan-
nel this quantity can be separated into symmetric and
antisymmetric parts

Tp=T5+ T8 (32)

where

T= 14+ 2ZR (=) iar 3

=13 Re (E02)

n=0

(34)

Note that the above sums involve only a finite number of
terms, corresponding to the allowable propagating modes
in the channel for which B is real. Figure 14 shows T¢
as a function of the angle of incidence (0°-90°) and the
relative width of the channel. For small channel widths,
the value of Tr approaches 4, as the wave amplitude in
the channel is 2 due to the standing waves at the ocean
shoreline.

4 CONCLUSIONS

The wave field in the vicinity of an inlet allowing for
diffraction and reflection has been obtained. A plane wave
approximation is shown to provide accurate values for
the normal wave mode in the channel, better for small
kb than those solutions obtained by matched asymptotic
expansions. This plane wave solution (29) is shown to be
valid for large values of kb as well, when the other wave
modes become important.

The full solution, truncated to N symmetric and anti-
symmetric modes, has been examined to find the depen-
dency of wave modes on channel size (kb) and angle of
incidence. Cross channel responses to external wave forc-
ing can be quite large when ksin 6 is a multiple of 7
(symmetric mode) or 1r/2 (antisymmetric mode).

The case examined here is simple in geometry and
the results provide test cases and guidance for numer-
ical models for more complicated situations. Changing
the slope of the side walls (say as in Dalrymple et al.?6)
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Fig. 3. Instantaneous free surface for normally incident
wave train, kb= 7.368.

can lead to amplification of the wave motion at the still
water line by the presence of edge waves. Large damping
may occur within the channel for roughened or porous
sidewalls as mentioned in the Introduction.
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APPENDIX A: EVALUATION OF D, AND Dy

From (12) and (14), we have

R

4(_1)m+n+1 <
ImD;, = K2 J O

where K =

1
4(_1)m+nf
s
eD,, = K2 ) T

w2 sin? Ku du
— )N W2 - (p)?) JT- 42

w2 sin® Kp du

— )2~ (1)) ViE -1

ntt/K. Similarly, from (17)

kb and 1, =

and (19), we have

1
ReD: — 4(—1)m+n w?cos? Ky du
m k2 (u2 — (13)2) (2 - (112)2) 1~ p2
4( 1)m+n+l UZ 0052 Kﬂ dl-l
Im D2
m = TR ) (2 = (pu3)) (2 = (12)?) 12 -1

where 12 = (n + %)Tr/K. To simplify these real inte-
grals, we identify two cases, depending on whether m # n
orm=n.

Caselim=+n

(Note that we allow the possibility that one of m and n
is zero). Using partial fractions, we have

« _ 4(___1)m+n _ o
Re D = R () — () G
__1ym+n+1
Im DS, = ——p ) [USES — uSES} (A1)

wK2[(u%)? — (u2)?]

where o = s, a,
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Fo= J sin’fKy  dp
2= (8) 1= 12
Fo = SJ sin® Ky du
= ) V-1
1
N cos? Ku du
F;‘a —_ BJ
“”0 B =3 T2

Foo aJ cos?Ky  du
T - )2 -1

For %, the integrand has a removable singularity at y =
pg, if 0 < p% < 1. It also has a square-root singularity at
# = 1; this can be eliminated using the substitution y =
sin 8. We can rewrite F,* as an integral over a finite range
as follows. First, we use partial fractions again to obtain

EX = 1L(K, 4*) — $L(K, —u), (A2)
where
[sin?[K(u-v)]  dy
L(K,v)—J i Ny

1
and, making use of the definitions of u$ and 2, we have
sin? Ky = sin® [K(u + il
cos? Ky = sin® [K(u + M1

Next, we consider K and v as independent variables, so
that

0

3L (. B du
aK(K,\/)—J’sm[ZK([J V)]\/l?"—l

= %n {Jo(2K) cos RKV) + Y(2K) sin (2Kv)}

using standard integrals for the Bessel functions Jy and
Yy. Integrating, using L(0, v) = 0, gives

L(K,v) = inkK f {Jo(2Ks) cos (2Kvs)

+Y5(2K5s) sin (2Kvs)} ds
Setting v = +u%, and substituting into (A2) gives
E =F, and F?= Fy4, (A3)
where F,(K) is defined by

N!—‘

1
I 0(2K5) sin (mrts) ds
0

whence Im D, is given by (Al).

Casell: m=n

From (12), (17), (14) and (19), we have
1
s usin Ku du
ReDnn—" 6[(#2_ us ) /l_uz

4J ucos Ku du
K2 I\ =) T2

for n > 0; these integrals do not seem to simplify further.
For Im Dg,, we start with
1 1 2
2= @0 (w—p9?  (u+pp)? - (py)?

for o = s, a. Apart from the case n = 0 and « = s, we
have

Re D, =

Im Dy, = —(mK*) " {M (K, 1) + M(K, —uy)
+(Q2/ U FX} (Ad)

where £ is given by (A3) and

(sl [K(u-v)] dy
M(K'V)‘J i—v?  JE=1

We proceed as for L(K, v), except that now we differen-
tiate twice to give

0

2
M(K V)= ZIcos[2K(u -v)]

\/;72—_1

=17 {JO(ZK) sin (2Kv) — Y5(2K) cos 2Kv)}

Integrating twice, using M = dM /0K = 0 at K = 0, gives

MK, v)=1K? J(l — 5){Jo(2Ks) sin (2Kvs)

—Y5(2Ks) cos (2Kvs)} ds

Hence, (A4) gives
ImD;, = E;, and ImDj, = Eyyy, (A5)
where E,,(K) is defined by

1
-
0

The first equation in (AS) is not valid when n = 0; in this
case, we have

sin (mTrs) }

Yo (2Ks) {(1 — 5) cos (mrrs) —
m1

Im Dgp = -T%M(K, 0) = 4[(1 — 5)Y5(2Ks) ds.
0



