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Abstract

A plane acoustic wave insonifies an infinite rough surface. The reflected field is written as an angular-spectrum representation
(plane-wave expansion), with an unknown amplitude function A. It is pointed out that A must be considered as a generalized
function, and not as a continuous function. Various decompositions of A are suggested and analysed. Energy considerations
lead to relations between the coefficients in these decompositions, generalizing some known results for scattering by periodic
surfaces (gratings). It is shown that the reflected field must include at least one propagating plane wave.

1. Introduction

Many wave problems can be phrased as boundary-value problems in a semi-infinite domain, nominally taken
as z > 0. The simplest such problem is the reflection of a plane acoustic wave by a plane rigid boundary z = 0;
then, the angle of reflection equals the angle of incidence, so that there is a single reflected plane wave propagating
away from z = 0. Text-book solutions of such problems (for example, [1, Section 5.5] or [2, Section 3.1]) usually
start by assuming that the reflected field is a plane wave with an unknown amplitude propagating in an unknown
direction; these unknowns are then determined from the boundary condition on z = 0.

Now, consider more complicated problems, obtained by

replacing the boundary z = 0 by a rough surface z = s; or

introducing a finite gap in z = 0 through which waves can propagate; or

replacing the rigid plane boundary by a non-uniform impedance boundary; or by

some combination of the above.

For these problems, a standard procedure is to represent the scattered (reflected) field u as a linear combination
of plane waves, including evanescent waves:

u(x,z) = / A(u) exp {ik (,u,x +2z4/1— ,uz)} du. (1)
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This is known as an angular-spectrum representation. (References and further details are given below.) Use of such
a representation reduces the problem to finding the amplitude A.

This paper is concerned with properties of A(u), where u is real. The simple case of a rigid plane boundary
shows that A should be thought of as a generalized function, and not as a continuous function.

Some authors replace (1) by a contour integral in the complex w-plane:

u(x,z) = /A(M) exp {ik (ux +2z4/1— u2)} du; @
C

A(u) is usually assumed to be a meromorphic function of x in a suitably cut plane. However, the solution for
plane-wave reflection by a plane boundary cannot be represented in this way; there are also other physical problems
for which A is not analytic (see, for example, [3, Section 5.B]).

For some problems, such as a finite gap in a plane rigid boundary, one can write

A(p) = Aod (i — po) + B(w) 3

in (1), where § is the Dirac delta function, B(u) is continuous, and Ag and uq are known constants: the first term
gives the reflected wave in the absence of the gap, and the second term gives the ‘correction” due to the gap. The
crucial observation is that the ‘correction’ really is small at large distances from the gap; the term involving B gives
rise to a cylindrical wave, which is asymptotically negligible compared to the reflected plane wave.

The solution to the finite-gap problem can also be represented as (2), where A(u) is analytic apart from a simple
pole at . = o, and the contour C is indented below the pole. (In particular, A(u) is not continuous at u = pg.)
Note that the reflected plane wave arises as a residue contribution from the pole. Further comments on the use of (2)
will be made in Section 3.

For other problems, such as the problem of the scattering of a plane wave by an infinite rough surface, we do not
have a rational way of making a decomposition like (3). One plausible possibility is to assume that we can write

Au) =) And (i — pn) + B(w) @

in (1), where B is continuous, as before; but we do not have a prescription for A, and p,. Note that if the rough
surface is a periodic surface, then we know p,, (from the Bragg equation) and we know that B = 0.

In this paper, we investigate some consequences of the assumption (4). We prove that, in general, it is impossible
for A(u) to be a continuous function of the real variable . Furthermore, we prove that (4) implies that at least
one of the coefficients A,, with || < 1, must be non-zero; physically, this means that there must be at least one
reflected propagating plane wave. We also derive certain energy-based relations between A, and B; these generalize
some known results for scattering by periodic surfaces, and include a new relation akin to the optical theorem for
obstacle scattering.

All of our results are derived for acoustic waves in two dimensions. However, we anticipate generalizations to
three dimensions, to elastic waves, and to penetrable boundaries.

2. Scattering by an infinite rough surface: Introduction
Consider the scattering of a plane wave by an infinite rough surface, S. We assume that the surface is one-
dimensional, so that it can be described by
z=s(x), ~00<Xx <00

with —A < s(x) < O for some constant 2 > 0. The acoustic medium occupies z > 5. For definiteness, we assume
that S is a smooth, sound-hard surface, so that s(x) is a differentiable function (although this condition can be
weakened). Thus, we can write the total field as
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Utot = Uinc + U,

where u is the scattered field and

Uine (r, 0) = eik(x sinfj—zcos ) _ e—ikr cos (6+9i), 6] < %T[, 5)
is the incident plane wave; k is the positive wave number, 6; is the angle of incidence (it is the angle between the
direction of propagation and the negative z-axis), and (r, ) are plane polar coordinates: x = r sinf and z = r cos 6.
The boundary condition is

ot
on

where d/0n denotes normal differentiation out of the acoustic medium. The scattered field u must satisfy the
Helmbholtz equation,

=0 ons, 6)

(V2+Eu=0 )

in z > s, and it must represent outgoing waves at infinity.
If S is flat (s = 0), we know that

u(r, ) = eik(x singi+zcosb;) _ eikr cos (G—Gi). (8)

Note that this field does not satisfy the Sommerfeld radiation condition,

b
ﬁ(%—iku)—)O asr — 0o, )

and so this radiation condition is inappropriate for problems where a plane wave is scattered by an infinite (rough)
surface.

More generally, consider the scattered field above the corrugations, z > 0. It is customary to write this field using
an angular-spectrum representation,

u(x, ) = / Fuyeikertm m—‘i’;—) (10)

where F(u) is the spectral amplitude, and

V1-42 lul<1,
m(u) = (11
iyu?—1, |ul>1.

The integral is a superposition of plane waves; these are propagating, homogeneous plane waves when || < 1, and
they are evanescent, inhomogeneous plane waves when |i| > 1. The definition (11) ensures that all the component
waves propagate away from z = 0 or decay exponentially with increasing z.

Angular-spectrum representations are discussed at length by Ratcliffe [4], Clemmow [5] and Nieto-Vesperinas [6].
For applications to rough surfaces, see [6, Chap. 7; 7, 8]. For applications to surface water waves, see [9]. The three
books [5,6,8] also consider three-dimensional problems for a half-space z > 0; the appropriate angular-spectrum
representation is

00 00

: du di

u(x, y,7) = / / F(u, 3) elk(ux+}»y+mz)_l:“n__’ (12)
—00 —00
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where m = m(y/p? + A2) with m(u) defined by (11). Analogous representations for time-dependent fields are
discussed in [10,11].

It is worth noting that the free-space Green’s function G (in two or three dimensions) has an angular-spectrum
representation, known as the Weyl representation. For example, in two dimensions, we have [2, Section 2.9.5]

G(x, 2, 0) = —5iHy" (k\/<x -2+ (z - ¢>2)
1 7 au
=5 f exp {ik[p(x — §) + m(u)lz — ¢ 11} —. (13)
a1 m

So, for z > ¢, G can be written as (10), with

F(p) = Qmi)™" exp {—ik(ug + mo)).

3. Properties of angular-spectrum representations

The spectral amplitude F can be determined in terms of the field or its normal derivative on the plane 7 = 0.
Thus, from (10), we have
x

10 .
N(x) = .*—u(x,O) = / F(uye™ * dp,
ik 8z

—00

which is a Fourier transform. Inverting this gives
k oo
Fp) = — f N(x)e *ux gy, (14)
2
—C0

Indeed, the standard derivation of (10) uses a Fourier transform of (7) with respect to x.

If N(x) has compact support, so that it vanishes for all |x| > X, say, we know that F (x) is an entire function of
the complex variable w. In particular, F (1) is a continuous function of .

On the other hand, when a plane wave is scattered by an infinite surface, ' cannot be a continuous function. To
see this, consider again the flat surface (s = 0), for which u is given by (8): from (14) and

k o0
8(u) = = f e~ Hkax gy,
T
—0

where § is the Dirac delta-function, we obtain
F(u) = 8(u — sin 6;) cos6;.

This shows that we should treat F as a generalized function; see also [9, p.387].

As we noted in Section 1, there are some applications of angular-spectrum representations in which F(u) is
considered as an analytic function of u in an appropriate cut plane, and (10) is replaced by a contour integral. If
a discrete set of plane waves is to be represented, F' (i) will have simple poles on the real p-axis. However, if u
consists solely of this discrete set of plane waves, F (1) cannot be analytic apart from poles. In particular, as the
flat-surface case shows, the assumption of analyticity is too restrictive for most of the problems of interest to us.



J.A. DeSanto, PA. Martin/Wave Motion 24 (1996) 421433 425

Some examples where F has a simple-pole singularity are discussed in [5, Section 3.3]; there are also situations
where F has poles off the real axis.

Two questions arise naturally. First, given the spectral amplitude F, what is the far-field behaviour of #? Second,
given the problem of plane-wave scattering by an infinite rough surface, what can be said about the smoothness
of F? We consider these in turn.

3.1. Far-field behaviour

The first question is well known. If F (1) is a continuous (bounded) function of the real variable p, then u behaves
like an outgoing cylindrical wave,

u(x,z) ~e® /\fr asr=+vx2+ 22— .

Such fields, decaying with » and propagating outwards, do satisfy the Sommerfeld radiation condition (9). This
result is derived in [5, Section 3.2]. In fact, if we neglect the evanescent components (|| > 1), we have

/2
. 2T .
u(r, 0) ~ / F(sing) e s @0 gg ~ k—”e‘“‘"”/“) F(sinf) askr — oo (15)
¥
—m/2

using the method of stationary phase [12, p.220].
For three-dimensional problems, u (defined by (12)) behaves like an outgoing spherical wave,

u(x,y,2) ~ e /R asR =\/m—> 0.

This result can be found in [5, p.44], but a much more complete and rigorous derivation has been given in [3].
(Results from [3] are quoted in [6, Section 2.12], but without mentioning the crucial continuity constraint on F).

If F has a singularity, the above results are not applicable. Various asymptotic results are available for certain
types of singularity. For example, if F(u) is an analytic function of p, apart from poles, the method of steepest
descent may be used; see [12, Chap. 7] or [5, Section 3.3].

3.2. Smoothness of F
For the second question, we start with a negative result.

Theorem 1. Suppose that a plane wave, defined by

Uine (r, 0) = e Hreos@+0) iy 0| < %Tr

is incident upon an infinite, sound-hard, rough surface. Then, the scattered field u does not have an angular-spectrum
representation with a continuous spectral amplitude.

Proof. Assume that u can be represented as (10), where F is continuous. Thus, u is a cylindrical wave, with far-field
asymptotics given by (15). We show that this assumption leads to a contradiction, using an energy argument.
The time-averaged flux of energy through a surface S is (proportional to)

dus 1 ou* ET.
B = Im/ Hor a;t:t ds = Z/ (“tot a;t:t — ot ano ) ds,
s s

where asterisk denotes complex conjugation. We take S = H, U S;, a closed curve, where

Sy ={x,2):z=sx), x| <r}
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is a truncated rough surface and H, is a semicircle of radius r. (H, may be a little larger than a semicircle as the
rough surface has s(x) < 0; however, this will not affect the argument below.)
Applying Green’s theorem in the region bounded by S to u and ug,, shows that

E(S)=E(H;,)+ E(S)=0.

But the homogeneous boundary condition on S,, namely (6), implies that E(S;) = 0. (Other common boundary
conditions, such as ut = 0, could also be imposed.) Hence,

0 = E(H;) = [tot; Uiotl,

where, by definition,

7/2
[u; v] = %/ (u%li—* — v*g—:)rde ~ % / (uaal;* - v*g—’;) de. (16)
H, —w/2
AS Utor = Uine + U, We obtain
0 = [#inc; #inc] + [1; Uinc] + [Minc; u] + [u; ul. amn
Substituting from (5) and integrating over 0 gives
[inc; Uinc] = 2kr cos 6y, (18)

which is unbounded as the radius of H,,r — oc. (Recall that |6;] < %n, so that we do not consider grazing
incidence.)
Now, assume that # behaves like (15) for large r, where F is a continuous function. We find that

/2
[u; u] ~ ~27 f |[F(sin®)|?do asr — oo. (19)
—m/2
Similarly,
/2
TKY ir—n/4) . ikr cos (6-+6;)
[u; tinc] ~ —2—-6 F(sinf)[cos (@ +6;) — 1]e v de (20)
- /2

for large kr. The integral can be estimated using the method of stationary phase. The stationary-phase points are
given by

6 +6; =0, tm,

provided that 6 is in the range of integration. When 8 = —#6;, we have cos (6@ + ;) = 1 which implies a contribution
of O((kr)™1) to the integral. If § = —6 + 7 is in the range of integration, it gives a contribution of O((kr)~1/2);
for (20), it is not, and so

(u; tinc] = [tinc; uI™ =o(1) askr — oo.

When this result, (18) and (19) are substituted into the right hand side of (17), we find that (17) cannot be satisfied.
Thus, we have a contradiction. O
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3.3. Discussion

General results, based on energy considerations, are well known in scattering theory. Waterman [13] gives a
systematic study for periodic surfaces. Voronovich [8, Section 2.3] considers infinite rough surfaces, but his analysis
is incomplete: his closed curve S comprises S, a straight line L, at height z = zg, and two line segments at x = +r;
the contribution due to these segments is supposed to vanish as r — oo, assuming that » and us,c decay suitably —
but these fields do not decay, and so a more careful analysis is required.

For scattering by a bounded obstacle, consideration of (17) leads to a known result. Thus, we replace H, by a
large circle surrounding the obstacle. We find that [#jyc; #inc] = 0, and that one stationary-phase point contributes
to (20). The result is

Re {F(sin6)} + 1 f |F(sin6)|2d6 = 0, o3}

which is known as the optical theorem or the forward-scattering theorem.

3.4. A conjecture
Theorem 1 suggests that we examine the following conjecture.

Conjecture : Suppose that a plane wave, defined by (5), is incident upon an infinite, sound-hard, rough surface.
Then, the scattered field u contains at least one propagating, plane-wave component.

If this conjecture is true, Theorem 1 would follow as a corollary. Physically, the conjecture seems to be obvious:
the energy in the incident wave, coming from infinity, must be reflected back to infinity as it cannot pass through
the rough surface. However, some books on scattering by rough surfaces suggest that only the incoherent field is
worthy of our attention. (For example, in [14, p.5], one finds: ‘For very rough surfaces the field is totally diffuse’.)

The conjecture is true trivially for a flat surface, when the scattered field is simply the specular plane wave (8). It
is also true for periodic surfaces (gratings); such surfaces can support a finite number of propagating plane waves,

Uy (r, 9) — eikr Ccos (9—9,1)’

where the angles 6, satisfy |0,] < %n and the Bragg equation
sin 8, = sin 6; + 2nn /(kd),

and d is the period of the surface: s(x + jd) = s(x) for any integer j. In general, there will be (N1 + Ny + 1) real
values of 8, with 6y = 6;, N1 > 0, N > 0 and —N;1 < n < N3, so that we can write the propagating part of the
scattered ficld as

N
D Anun(r,0),
=—MN

where A,, are coefficients. The values of N1 and N, will depend on 8; and kd. However, there is always at least one
propagating wave, namely the specular wave, 1. For more information on scattering by periodic surfaces, see [13]
and references therein.

The difficulty in establishing the conjecture, rigorously, for general surfaces s (x) is that we need to know something
about the far-field behaviour of u which in turn implies that we have a complete representation for u.
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In Section 4, we assume a rather general representation for u. It implies that the conjecture is true. It also leads
to some constraints on the terms in the representation, generalizing some results of Waterman [13] and others for
scattering by periodic surfaces.

4, Scattering by an infinite rough surface

Let us represent the field in z > 0 above a rough surface 7 = s(x) < 0 using an angular-spectrum representation.
We assume that the total field ui can be decomposed into four parts,

Utot = Uinc + Upr T Uev T Ucon- (22)
The second part consists of N reflected homogeneous plane waves u,, (propagating in N discrete directions 6,,
where —N1 <n < Ny, N = N1+ Ny +1,and |6, < %n). Thus
N
upe (1, 0) = Y Agitn(r, 6),
n=—Nj

where

un(r, 0) = %7€ O=0n) — exp {ikr <un sinf +,/1 — pu2 cos 6)} ,

Un = sin b, and {u,| < 1. Without loss of generality, we take
6o = 6.

The third part in (22) consists of a discrete sum of M evanescent waves,

—N;—1 My
Ue(0) = D Buvp(r,O)+ D Buua(r,0), 23)
n=—Mj n=Ny+1

where M = M1+ My — N +1,

v (r, 0) = exp {kr (iun sinf — /pu2 —1 cos@)} and |p,| > 1. 24

Note that, for simplicity, we do not include grazing waves in up; or ey (|its| = 1). (Our notation in (23) seems
cumbersome, but it will facilitate comparison later with known results for periodic surfaces.)
The fourth part in (22) consists of a continuous spectrum of plane waves,

o0
ucon(r,6)= / F(M)eikr(usine—\—mcose) d,LL .
m (i)
—00

The coefficients A, and B,, and the continuous function F are all unknown. Moreover, for a non-periodic surface,
we know neither the integers N and M nor the real numbers p,,. (For a periodic surface, these are given by the
Bragg equation.) Nevertheless, we can deduce some constraints that must be satisfied by these unknowns, using
energy arguments.

Exactly as in Section 3.2, we obtain
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0 = [uto1; tot] = [tinc; Uinel + [Upr; tpr] + [Ueys uev] + [#con; #con]

+ 2 Re{[tine; wpr] + [Uprs thev] + [Uey; Ucon] -+ [#con; Uine] + [tine; Uev] + [Upr; Uconl}s (25)

where [u; v] is defined by (16). As F is continuous, we know that ucon(r, ) will behave like (15) for large kr,
whence

/2
[Ucon; Ucon] = — 27T / |F(sin6)>df +o(1) askr — oco. (26)
—m/2
Similarly,
A /2
[con; tpr] ~ =) -0 37 4 f F(sin) [cos (8 — 6,) + 1]e~ 470 0= gg
-
No
=27 A*F(sinf,) + o(1) askr — oo 1))
n
n=—N;

using the method of stationary phase. From Section 3.2, we also have
[Uine; Uinc) = 2kr cosB;  and  [ucon; Uinc] = O(1)

as kr — oco. An integration by parts shows that
[tevs oon] = O((kr)™'/?)  askr — oo.

The five remaining terms in (25) can be evaluated exactly. We find that (see the Appendix)

Mm; unl = — B + 85) Skr, i — ta), 28)
[Vm; tnl= — (Vm + &) SK7, i — ), (29)
(Vs Vnl= — (Vm — ¥u) S(kr, Hom — M), (30)
[Um; tinc]l = — (B — cos 6;) S(kr, i, — sin 6y), @3
(Vs tinc] = ~ (i¥m — c0s 6;) S(kr, b — sin 6;), (32)
where v, = /u2, — 1 and §, = /1 — u2 = cos 6, are real and positive,
Stkr, ) = p~ ' sin (kry) and  S(kr, 0) = kr. (33)
Note that
ltn; un] = —2krcosby,  [a;va] =0 [uo; tinc] = 0.

Hence,

[pe; pr] = — 2kr > |An?COSOy + D AmAf [tms un],
" misin
[tev; tey] = Z BmB; [vm; vnl, [#pr; tey] = Z AmB;: [ms val,
m,n

m,n

(upe; tincl = Z A [t tinel, [tey; Uinc] = Z By [Vm; #incl-
m m
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Let us substitute all these results into (25). For the terms of O(kr) to balance, we must have

Ny
costy— > |Anl® cosb, =0. (34)

n=—Ny

This result is well known for scattering by periodic surfaces [13]. Moreover, if all the reflected propagating plane
waves are absent (A, = 0 for all n), (34) cannot be satisfied (|6;] < %n), implying that the conjecture in Section 3.4
is true.

The terms of O(1) will balance provided that

N /2
> Re{A} F(sin,)} + 3 / |F(sin0)|>do =0, (35)
n=—M /2

which is reminiscent of the optical theorem (21) for obstacle scattering. Note that this relation, which appears to be
new, is satisfied trivially for periodic surfaces (F = 0).

The remaining terms in (25) involve the function S(kr, p) with various values of u # 0. Explicitly, these terms
combine to give

0= E AmA: Qe ual + § BmB;‘:[vm; Un]
m,n m,n
m#n

+2Re {ZA,, [4n; incl + Y Am By hm3 val + Y By [vn; uincl} :
n m,n n

To simplify this equation, write

C. = Ap, —Ni<n <N, w — | U ~N1 <n <N,
"™ 1B,, otherwise, "7 1 v,, otherwise,
whence
0=2Re Y Cr[wy; tinc] + Y, CnCy[wm; wal,

n#0 m;’én
where we have used [uy,; v, 1" = [vn; um]. We have
(W5 Wn] = Cn SGr, om — i) and  [wy; inc] = cfy SCkr, pn — po)-

where the coefficients ¢, and c}l can be read off from (28)—(32). As S(kr, 1) is an even function of 1, we have

0=2Re ) (c,Cn S(Ur, n ~ o) + €L, Cn SKr, 110 — f4—n))

n=1
+ D (emnCmC;y + camCrC)S KT, ttm — thn). (36)

m>n

We now reorder the summation. Assume that @, > w, whenever m > n. Let
E={gg >0:5 = wm — uy for some m and n, m > n}

be the set of all allowable distinct values of w,, — @y, m > n. This set will have L elements, §;,/ = 1,2,..., L.
Then, we can rewrite (36) as
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0=

L
0; S(kr, &1), 37

=1

where Q; is a quadratic combination of Cy,. As (37) must hold for all kr, we deduce that Q; = 0 for each/, yielding
L constraints on the coefficients A, and B,,. We cannot make these constraints more explicit without specifying the
numbers ji,. Below, we give a simple example with N = 3 and M = 0, and the specialization to periodic surfaces.

4.1. A simple example

For simplicity, suppose N = 3 and M = 0, with
—l < p_1 < pp=sinf < u; <1,
so that there are three reflected propagating plane waves and no evanescent waves. Let us assume that the numbers
{1 = 11 — Mo, {2 = U1 — p—-1 {3 = po — H—1
are distinct (L = 3). Then, we find the following three constraints:
(cos B, —cos6;) Re {A,} + (cos B, +cosé)Re{A,Aj} =0 forn==+1 and Re{A1A*;}=0; (38)

these are to be supplemented with (34). Thus, in this (non-degenerate) case, we have found four real constraints on
the three complex coefficients, A_j, Ag and Aj.
If u_; = —pu1, then we obtain only rwo constraints from (37): we have

G =p1—po and & =2u (L=2)
giving (38) and
(cosy —cosGRe{A_1 + A1} + (cos 01 +cosHRe {(A_1 + ADAG} = 0.

4.2. Periodic surfaces

For periodic surfaces, the Bragg equation gives
Un = o +ni, where X =2x/(kd).
Hence, & = IA, 1 = 1,2, ... so that L = oo. Thus, we obtain an infinite nurpber of constraints, Q; = 0, where
. . m
Q1 =2Re(c|C; +c,C)+ D (Cnt1,nCrtiCy + CnntiCnCryy)-
n=—00

We suspect that these constraints are known, although we have been unable to deduce them from Waterman’s
results [13].

5. Discussion
Another way to solve the problem of the scattering of a plane wave by an infinite rough surface is to use a

boundary integral equation (BIE). To derive such a BIE is not straightforward. For obstacle scattering, there are two
well-known possibilities, both of which may be used here.
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First, one might seek a solution for u as a distribution of wave sources over the surface S,

o0

u(x,2) = f V()G (x, 2: £, 5(6)) dE,

—0

where v is an unknown source density and G is defined by (13); application of the boundary condition on S leads
to a BIE for v. However, we see immediately that non-uniform behaviour must be expected, for if v has compact
support, # will behave as a cylindrical wave in the far field whereas we know that # must include a propagating
plane wave.

Second, one might attempt to derive a BIE for the boundary values of u# (analogous to the Helmholtz integral
equation for obstacle scattering). This implies that one has to address the problem of the radiation condition. In a
subsequent paper, we will do this, making use of our results for angular-spectrum representations.
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Appendix

The evaluations of (28)—(32) are similar, so we describe one of them here, namely [vy,; v,]. [#; v] and v, are
defined by (16) and (24), respectively. Hence,

/2
1
[vm; vn] = / ¥ (0)e®® do,
1
—/2

where

D () = kr{i(pm — pn) Sin 6 — (Y + yn) cos 0},
W (0) = kr{—i(tm + Un) sin 6 + (Vm — ¥n) cos 0},

Ym = /12, — land y, = /u2 — 1. We have

@' (0) = kr{i(tim — tn) €088 + (Vm + ¥n) sin 0}
- Ym + Vn ,bL?’n - }1%
Hm + Un Vm T Vn

=ik {~i(um + ) Sin O + cose} :

But y2 — y2 = u2, — u2, whence

') =it T g0y,

m T Mn

Thus
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[oms vl = 20 (o (0 (L)} — exp {0~ b))

2 Vm+t¥n
— il B G et — 1))
Ym + Vn
= —i(Vm — yn)Skr, iy — tn),
where S is defined by (33).
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