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Abstract

The three-dimensional interaction between water waves and a submerged disc, in deep water, is considered. The problem is reduced to a
hypersingular integral equation over the surface of the disc. The integral equation is solved numerically using an expansion—collocation
method, generalizing a method used previously by Parsons and Martin for several two-dimensional water-wave problems. This method is
shown to be very effective: it incorporates the known behaviour near the edge of the disc and it permits all hypersingular (finite-part) inegrals
to be evaluated analytically. Numerical results are presented, with emphasis on the scattering properties of the submerged disc. © 1998

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nowadays, the interaction of surface water waves with
immersed structures is often calculated using sophisticated
boundary-element codes. Such codes are based on boundary
integral equations of a well-studied type. However, these
codes are not well suited to structures that have some thin
components such as plates, which are subject to fluid
loading on both of their sides: thin plates inevitably imply
hypersingular integral equations.

In this paper, we consider the interaction of water
waves with a thin rigid plate, in three dimensions. The
plate is modelled as an open surface S, and is submerged
in deep water. The velocity potential ¢ is discontinuous
across S by an amount [¢], which is unknown; it is [¢]
that solves a hypersingular integral equation, as shown in
Section 2.

Before describing our treatment of this equation, let us
mention previous work. First, there are several papers on
dock problems, where the plate is flat and located in the
undisturbed free surface, so that it is only wetted on one
side; see MacCamy [1], Kim [2], Miles and Gilbert [3],
Garrett [4], Miles [5,6], Maeda [7] and Farina [8]. Dock
problems can be reduced to the solution of a boundary
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integral equation for ¢; this equation is a Fredholm integral
equation of the second kind.

Second, Parsons and Martin have considered some ana-
logous two-dimensional water-wave problems, leading to
one-dimensional hypersingular integral equations for [¢]:
these problems are scattering by flat [9] and curved [10]
submerged plates, and by surface-piercing plates [10], and
the trapping of water waves by submerged plates [11]. They
used an expansion—collocation method to solve the one-
dimensional hypersingular integral equations, in which [¢]
is expanded using Chebyshev polynomials of the second
kind. This method is very effective, and its convergence
has been proved by Golberg [12,13] and by Ervin and
Stephan, [14] in various function spaces. Ervin and Stephan
{14] obtained the rate of convergence in appropriate
Sobolev spaces. See also Frenkel [15] and Kaya and
Erdogan [16].

Third, there are four articles on submerged plates. Yu and
Chwang [17] have used matched eigenfunction expansions
for scattering by a submerged horizontal circular disc, in
water of finite depth. This work was extended to elliptical
discs by Zhang and Williams [18,19]. The method of
matched eigenfunction expansions is limited to horizontal
discs, and does not incorporate the edge condition ([¢] = 0
around the edge of S) explicitly. These papers contain
results for the surface elevation in the vicinity of the disc.
Zhang and Williams [19] have also calculated the exciting
force and moment.
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Martin and Farina [20] have described a rigorous method
for axisymmetric motions of a submerged horizontal circu-
lar disc, in deep water. They transformed the governing
hypersingular integral equation for [¢] into a one-
dimensional Fredholm integral equation of the second
kind for a new unknown function; the new equation is a
generalization of Love’s integral equation, familiar from
the electrostatics of a circular-plate capacitor [21]. Numer-
ical results for the added mass and damping of a heaving
disc were obtained.

The methods described in the previous two paragraphs
are special and limited in scope. For a completely general
method, we could develop a boundary element method for
the numerical solution of our two-dimensional hypersin-
gular integral equation over S. Instead, we take an inter-
mediate path, and develop an expansion—collocation
method, preserving the nice features of the Chebyshev
method for one-dimensional hypersingular integral equa-
tions. At this stage, we suppose that S is a flat circular
disc. Then, we expand [¢] in terms of certain functions
that are orthogonal over the unit disc: we use a Fourier series
in the azimuthal angle, with the Fourier coefficients
expanded in terms of associated Legendre functions. This
expansion has two virtues: all hypersingular integrals are
evaluated analytically and the edge condition is satisfied
automatically. Numerical results for two problems have
been obtained. For the radiation of waves by a heaving
horizontal disc, we find excellent agreement with the results
of Martin and Farina [20]; these results are not repeated
here. For the scattering problem, where a regular wavetrain
is scattered by a fixed disc, we have computed the total
scattering cross-section Q and the differential cross-section.
(These are measures of the scattered wave energy.) Inter-
esting results are found when the disc is close to the free
surface: for example, the graph of Q against wavenumber
has sharp peaks; this quasi-resonant behaviour is examined
numerically, and is similar to that observed by Martin and
Farina [20] in the added-mass curves for a heaving disc.

When using the expansion—collocation method, care
must be taken in choosing the collocation points. We
describe our experience with this choice, so as to obtain a
well-conditioned matrix. At present, we do not have proof
that the numerical method is convergent; some remarks on
this are made in Section 4.4. In the paper, we limit ourselves
to horizontal flat circular plates. The method is easily
extended to flat circular plates at other orientations. More-
over, we can also use the method for flat plates of other
shapes; the key to this is a knowledge of the conformal
mapping between the plate and a circular disc [22]. These
extensions will be described elsewhere.

Finally, let us make a few additional remarks. First, we
note that submerged plates may find application in coastal
engineering, perhaps as components in a breakwater or in a
wave-focussing device. Second, we emphasise that we are
using an inviscid model. It may be possible to quantify the
effects of viscosity in thin-plate problems, but we have not

pursued this. We prefer to think of our solution as the limit-
ing solution for scattering by a submerged spheroid as the
spheroid degenerates into a disc. Third, we are not aware of
any published experimental results for three-dimensional
thin-plate problems. However, we can cite the interesting
review by Miles [23] of (theoretical and) experimental
results for the related problem of scattering by a submerged
truncated vertical circular cylinder, in water of finite
depth.

2. Formulation

Consider a thin rigid plate, S, completely submerged
beneath the free surface of deep water. We assume that S
is represented by a smooth open surface with a smooth edge
dS. We take Cartesian coordinates (x, y, z) with the origin in
the mean free surface; the water occupies the region z < 0.
Linear water-wave theory is employed. Thus, under the
usual conditions, the time-harmonic velocity potential is

Re{o(x,y,2)e '}

where ¢ satisfies Laplace’s equation in the water,

3’ o &

D SO A E Y | 1
ax? + 3y? + 0z° )
the linearized free surface condition

d¢

Q—KqS:O, onz=0 )
and a boundary condition on the plate,

od

v 3
n (3)

where V is prescribed and K = w?g is the wavenumber. We
also require that ¢ satisfies a radiation condition at infinity,

lim ri2 (%Y:— - quS) =0 €]

where r = (x> + y)'™.
Let us now introduce the Green’s function G, given by

G(P; Q) =G(x, 5,781, )

_ “k+K
N R K 0Tk dk
0

(&)

where R = [(x — £)° + (y — 7)*1"* and J, is a Bessel
function. This fundamental solution to our problem satisfies
Eq. (1), except at P = Q where it has a singularity. G also
satisfies Egs. (2) and (4). By using Green’s theorem it is
possible to represent ¢ as

1 9
d(P)= —J [6(9)] —G(P, q) dS, (6)
47 . on,



L. Farina, P.A. Martin / Applied Ocean Research 20 (1998) 121-134 123

where P is an arbitrary point in the water. Here

[B@l=d@ ) —d(g ")

is the discontinuity in ¢ across the plate, where ¢ € S, ¢
and g~ are corresponding points on S* and S, respectively,
S * are two sides of the plate, and 4/dn,, denotes normal
differentiation at g in the direction from S™ into the water.
Applying the boundary condition on S* gives

1 9 d et
4——371;! [¢(a)] a—an(P, 9dS,=V@p"). pES )

The same equation is obtained by applying the boundary
condition on $7; V(p7) = ~V(p*) as the plate is rigid.
The integro-differential equation, Eq. (7), is to be solved
subject to the edge condition

[¢]1=0on aS 8)

¢ is discontinuous across the plate only.

Interchanging the order of integration and normal differ-
entiation in Eq. (7) produces a hypersingular integral. Such
a procedure is proper as long as the resulting integral is then
interpreted as a finite-part integral. We obtain

1 9 G
f (p 9 dsq —V(p), pES )

which is to be solved subject to Eq. (8). The cross indicates
that the integral is a finite-part integral; these are defined by
Martin and Farina [20] in their Appendix A.

3. The kernel for flat plates

The hypersingular integral equation, Eq. (9), is applicable
to smooth plates S of any shape. However, considerable
simplification is obtained if S is flat. Denote the kernel of
Eqg. (9) by

’G
on,on,

It is an explicit but complicated function. Decompose G into
its singular and regular parts by G = G, + G,, where
=[R*+(z-¢"1 " and G, =G -G,

It will be useful to decompose H similarly as H = H, + H,.
Let n(p) = (n;, ny, n3) be the unit normal vector at p €
S*. As S* is flat, n(g) = n(p). Then we find that

3%G, 1 3 R
= — {n(p—
ondn,  Ip—q Ip—qf (-

where p and q are the position vectors of p and ¢, respec-
tively. But p — q is a vector in the plane of the plate, whence
n(p—-q) =0and

H,=Ilp—ql~° (10
The result of Eq. (10) holds for flat plates with arbitrary

orientation. We can calculate H, for such plates, but the
calculation is much simpler when the plate is horizontal,
as we henceforth assume. In this case, Ip — ql =

G, can be written in the form

f k+K k(zﬂ“)JO(kR) dk + 2miKeXet Oy (KR)  (11)

where the integral must be interpreted as a Cauchy principal
value. Define dimensionless coordinates X and Z by

X=KRand Z= —K(z+¢) (12)

Note that since z and { are negative, both X and Z are non-
negative. Then, a simple change to the integration variable
in Eq. (11) gives

G,=KF(X,Z)+2wiKe ™ %Jy(X) (13)
where
Y+ 1
F(X,Z)=J{, ETG_"ZJO(VX) dv (14)
-
0

Note that the semi-infinite integral in Eq. (11), which is
related to the main task of the evaluation of G,, is now
expressed as a function F of the two variables X and Z.
Using a Laplace transform, it is not difficult to show that
(24]

FX,Z)=(X*+2Z%) "2 — we " Z(Hy(X) + Yo (X))
V4
—2_[6"2(X2 +2)" "2 qr (15)

0
where Hj is a Struve function and Y is a Bessel function of
the second kind.

As the plate is horizontal, we have n(p) =
whence

oG F o
H’ = L = — — —_— G
az? (ax2 + é)yz) ’

As Jy(kR) satisfies the two-dimensional Helmholtz equa-
tion, we find that

n(g) = (0,0, 1),

R+K io-p)p2
L —%] K k*Jo(kR) dk
Next, as k> = K* + (k — K)(k + K), we see that
H =KG,+ I (K + 2Kk + KHete+ 9 1, (kR) dk
0

(This result can also be obtained by differentiating Eq. (11)
twice with respect to z.) The remaining integral can be cal-
culated from

©

Je_kyjo(kR) k=R +YH""?, y>0
! .
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by differentiation with respect to Y. The result is

37? 2Z -1
(XZ -+ 22)5/2 + (X2 + 22)3/2

m:ma+ﬁ{

1
+ i) (1)

In summary, the hypersingular integral equation, Eq. (9),
can be written as

-—fwwn{ +m@qﬁ —Vp).pES (D)

where S is a flat horizontal plate of any shape and H, is given
by Eq. (16). Eq. (17) is to be solved subject to the edge
condition, Eq. (8).

4. The expansion~collocation method
4.1. Review of the one-dimensional theory

In two dimensions, many wave problems involving thin
plates can be reduced {o an equation of the form

1

[l{—l-—Z+H(x,t)}v(t) dt=f(x) for —1<x<1
MCED

18)
supplemented by two boundary conditions, which we take to
be v( — 1) = v(1) = 0. Here, v is the unknown function, fis
prescribed and the kernel H is known. Assuming that f is

sufficiently smooth, the solution v has square-root zeros at
the end-points. This suggests that we write

v(x)= V1 —x%u(x)

Then, we expand u using a set of orthogonal polynomials; a
good choice is to use Chebyshev polynomials of the second
kind, U,, defined by

sin(n + 1)6
sind
This is a good choice because of the formula

7[ \/l—tZU ®

U,(cosf) = , n=0,1,2,-

— 7 dt= -+ DHU,x) (19)
Thus, we approximate u by

N
Y a,Unx)
n=0

substitute into Eq. (18) and evaluate the hypersingularity
analytically, using Eq. (19). To find the (N + 1) coefficients
a,, we collocate at (N + 1) points; good choices are the
zeros of Ty, or Uy, where T, is a Chebyshev polynomial
of the first kind.

4.2. The two-dimensional method

‘We now describe the method employed for solving the hyper-
singular integral equation, Eq. (17), when S is a horizontal
circular disc. Introduce cylindrical polar coordinates (r, 6, z),
so that x = rcos@ and y = rsinf. Then, the disc is given by

S={(r6,2): 0sr=<aq, —7<0<m, z=—d} (20)

It has radius a and is submerged at a distance 4 below the
free surface; we can take a = | without loss of generality.

We will use an expansion—collocation method where the
unknown function is expanded into its Fourier series in 6,
and then the Fourier components (which depend on r) are
expanded using Legendre functions. This approach can be
viewed as a generalization of the one-dimensional method
for solving one-dimensional hypersingular integral equa-
tions using Chebyshev polynomials of the second kind,
described above.

If we write £ = scosa, 7 = ssina and { = — d, we have
R=[r+s- 2rscos(6 — oz)]3/ 2

Hence, we can write Eq. (17) as

—7[ s [p(s, a)]{ +H(r,0;s,a;d, K)}sdsda V(r,0),

(r,O)es @n

subject to [¢] = 0 on r = 1. Note that the hypersingular part,
R, does not depend on the submergence depth (or orienta-
tion) of the plate. Moreover, all wave effects are included in
H,.

For simplicity, assume that V(r, 8) is an even function of
0. Then, the integral equation, Eq. (21), implies that [¢(r, §)]
is an even function of 6. We shall expand it using the basis
functions By, defined by

BZ’(r,@):P:""+2k+1(v 1 —rz)cosmﬂ, k,m=0,1, -

where P) is an associated Legendre function. The radial
part of these basis functions can also be expressed in
terms of Gegenbauer polynomials.

The functions {Bf } are orthogonal over the unit disc with
respect to the weight (1 — r?)™"?

rdrdf

JBZ'(E 6)B;(r,6)

0’ 1—r2
=206,0mn _[Pﬂ+2k+1(ﬁ)P7’n+2l+ 1(0) dp
0

- m

T m+2k+32 "
where §; is the Kronecker delta,
Q2m+ 2k + 1)!
T TRk +1)!

o, = w2 if m > 0 and ¢ = T, in the last step, we used the
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fact that the integrand is an even function of p and ortho-
gonality relations for the associated Legendre functions [see
Erdélyi et al. [25], eqns 3.11(19) and 3.11(21)].

The next formula due to Krenk, [26—28] is essential in the
construction of the method:

1 | - n BL(r,®)
E%ﬁBk(S,lx)Sdsd(X:Ck 1—r2

(22)

where
m i n
Ci' = = 3 1Pn 2 (OF10;

Eq. (22) is the two-dimensional analogue of Eq. (19). It
allows us to evaluate the hypersingular integrals analytically.

To make use of Eq. (22), we expand [¢] in terms of the
functions By . For brevity, we write

N N, Ny
Gl =D a'By:=> > arBy (23)
k,m k=0m=0

Substituting Eq. (23) in the integral equation, Eq. (21), and
then evaluating the hypersingular integrals analytically
using Eq. (22), we obtain

S apl cp B0
k,m « g V 1 —rz

1
+ EJBkm(s, a)H, (r,0;s,a;d,K)s ds da p = V(r,0),
s

(rnhes 24)

It remains to determine the unknown coefficients af.
One possible approach is to use a Galerkin method:
multiply Eq. (24) by B}(r, f)) and integrate over S to give

N
n anCan?' 1 m-[‘ 1
Oty B} (r,6

a'n+2z+3/2+4w,§n“k ; 10

X JB;"(s,a)Hr(r,G;s,a;d,K)sdsdoz rdrdf
N

- JVB}’ ds
s

The main disadvantage of this method is the quadruple
integral; it is possible to evaluate some of these integrals
analytically for certain simple configurations, but we are
interested in developing a more general method. Hence,
we will use a collocation method, in which evaluation of
Eq. (24) at (W, 4+ 1)(¥, + 1) points on the disc gives a linear
system for the coefficients aj'.

Before discussing the collocation method itself, we com-
ment on some other computational aspects of the method.
The associated Legendre function can be defined by

P (x) = (— 1Y™(1 — x®)™(d/dx)" P,(x) (25)

In order to evaluate P;" for [ > m it is preferable to use a
recurrence relation. Since most recurrences on m are
unstable, the following recurrence on [, which is stable, is
adopted:

(I = m)P{'(x) = (21 = DxP{_ (x) = (I +m— P 5(x)
(26)

This formula is convenient since we can use the closed-form
expression for the starting value,

PR =(— "2m— N1 —x*)™? 27)

where n!! denotes the product of all odd integers less than or
equal to n. Moreover from Eq. (25) it is seen that P, _, =0.
Then using Eq. (26) with I = m + 1 gives

P 1 (0)=(2m+ DxPy(x) (28)

which can be used in conjunction with Eq. (27) to provide
the two starting values needed for Eq. (26). For more infor-
mation on the evaluation of Legendre functions, see Press
et al. [29], Olver and Smith [30], and Alpert and Rokhlin
[31].

The functions Hg and Y are computed by approximating
Chebyshev polynomials. This procedure produces a very
efficient way of evaluating these special functions since
polynomials of sixth-degree are sufficient to give an accu-
rate approximation [32].

The method described above was implemented and a
FORTRAN program was produced. This code uses
LAPACK routine cgerfs for solving the linear system
and NAG routine DO1GCF to evaluate the double integrals
in Eq. (24).

4.3. Collocation points and numerical results

In choosing the collocation points we look for a scheme
which makes the matrix of the linear system for ay’, in Eq.
(24), well conditioned.

We have assumed in Eq. (23) that the solution is sym-
metric about § = 0. This means that we can assume that the
collocation points lie about a semi-disc given by {(r,0): 0 =
r<1,0 =6 =< 7}; collocating at symmetric points on the
other semi-disc would give no further information for
obtaining the solution of the linear system.

Consider a tensor-product collocation: the collocation
points are taken as the intersection of concentric circles
(radius r;) with equally separated rays emanating from the
origin (angle 8,). Precisely, the collocation points are

(rl90n)a l=05 1, '”’Nla n=0a 15 ‘”’N2
where {r;} is a certain set of distinct points in (0, 1) and
0,=2n+ Dn/(2N,+2), n=0,1,---,N,

are the zeros of cos (N, + 1) in (0, ). However care must
be taken when choosing the distribution of the numbers r,.
For instance, choosing equally spaced numbers in [0, 1]
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Table 1
Condition numbers for two collocation schemes and N collocation points.
Here, Ny = Nysothat N= (N, + 1)>, K=0and d=0.5

N Equally spaced r; Chebyshev r,
4 7.5 5.7
9 90.6 16.1
16 3.0 X 10° 389
25 22 X 10° 92.1
36 1.6 X 107 1323

gives a badly conditioned system. We adopt a Chebyshev
tensor-product collocation, which means that the points in
the radial variable are zeros of Chebyshev polynomials of
the first kind, T5y, 4 »(r) in [0, 1]; explicitly,

ry=cos[(2l+ 1)x/(4N, +4)], 1=0,1,---,N,

Table 1 shows the condition numbers associated with two
different tensor-product collocation schemes; they were
obtained with K = 0 and d = 0.5. The second column
gives the results obtained by employing equally-spaced
points in the radial direction. The third column gives the
results obtained with Chebyshev tensor-product collocation.
The table illustrates that there is a considerable difference
between the conditioning of these two schemes. Henceforth,
all results associated with the expansion—collocation
method are obtained using Chebyshev tensor-product
collocation.

In Table 2, the complex coefficients g (in parentheses)
of the expansion, Eq. (23), of the solution [¢] are shown for

Table 2
Expansion coefficients af ford = 0.1 and K = 0.3

a disc submerged to a depth given by d = 0.1, at K =0.3. In
this example, the potential solves a scattering problem
where V is given by Eq. (32) below.

The coefficients change little as N, and N, increase and
they decay rapidly; only the first terms have significant
values. This indicates that the series converges rapidly and
the solution is very stable.

4.4. Convergence

We do not have a proof that the expansion—collocation
method is convergent. We can adapt the arguments of
Golberg [12] formulating the problem in a weighted-L,
space. Then, the collocation method can be viewed as a
projection method; it will converge if the corresponding
interpolation polynomials converge (see p. 187 of Kress
[33]). Such convergence results are well known in one
dimension, but the question seems to be open in two dimen-
sions. It is closely related to the existence of convergent
bivariate quadrature (cubature) on the semi-disc with
respect to the weight w. In particular, if there exists a
Gaussian-type cubature formula (that is, a formula that pre-
serves polynomials of the highest degree) on the semi-disc
with respect to w, convergence in the mean of the corre-
sponding interpolation polynomials can be shown, as in Xu
[34,35]. However, this specific Gaussian-type cubature is
not yet known to exist. The existence of such a cubature
is equivalent to the existence common zeros of a family of
orthogonal polynomials. The latter is characterized through
certain nonlinear matrix equations.

k

N|=N2=2

N|=N2_—'3

N|=N2=4

PARABALLUWWBLURNNRNNRN - ——-—~—~000C0C| 3
AU N~ORWLRN—ORAWN—~ORWN~ROSR,WN—O

(—1.0393, 0.32806)
(0.50626, —0.12737)
(~0.00596, 0.00150)

(~0.00003, —0.07947)
(0.00001, 0.01982)
(0.00000, 0.00022)

(0.00358, 0.00000)
(~0.00064, 0.00000)
(—0.00001, 0.00000)

(—1.29326, 0.32237)
(0.50629, —0.12620)

(—0.00903, 0.00225)

(—0.00349, 0.00086)

(—0.00003, —0.07902)
(0.00001, 0.01985)
(0.00000, —0.00007)
(0.00000, —0.00019)

(0.00356, 0.00000)
(—0.00063, 0.00000)
(0.00001, 0.00000)
(0.00001, 0.00000)

(0.00000, 0.00013)
(0.00000, —0.00002)
(0.00000, 0.00000)
(0.00000, 0.00000)

(—1.29162, 0.32149)
(0.50517, —0.12599)
(—0.00546, 0.00136)
(—0.00347, 0.00086)
(—0.00393, 0.00098)
(—0.00003, —0.07899)
(0.00001, 0.02001)
(0.00000, 0.00009)
(0.00000, ~0.00034)
(0.00000, —~0.00017)
(0.00355, 0.00000)
(—0.00064, 0.00000)
(0.00000, 0.00000)
(0.00002, 0.00000)
(0.00001, 0.00000)
(0.00000, 0.00013)
(0.00000, ~0.00002)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)
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On the other hand it should be possible to construct a
demonstrably convergent tensor-product type of cubature,
using convergent one-dimensional quadrature formulas.
This approach seems likely to provide the desired result
given the fast convergence demonstrated numerically by
the Chebyshev tensor-product collocation earlier in this
section.

5. Radiation

The radiation of waves from a heaving horizontal
submerged disc was treated by using the expansion-—
collocation method described in this section and the added
mass and damping coefficients were computed. The results
obtained recover those of Martin and Farina [20] where a
different method was employed. In particular, the occur-
rence of negative added mass is noticed for small sub-
mergences and a critical physical behaviour is observed
when both d and K are small. These aspects will also be
seen in conjunction with the scattering problem examined
next.

6. Scattering

We now turn our attention to the scattering of a regular
wavetrain by a submerged horizontal disc. We are espe-
cially interested in the scattering cross-section parameters;
these are the differential cross-section and the total scatter-
ing cross-section. We are not aware of published work on
these quantities for a submerged disc, although they have
been computed for circular docks; see, for example, Miles
[5]. We begin by separating the total potential ¢, into two
components such that

¢tot =@inc + 9 (29)

where ¢;,, corresponds to the unperturbed motion and ¢
corresponds to the scattering of ¢,., by the disc. The inci-
dent wave potential is

Bine = (gAlw)eX T (30)

where A is the wave amplitude; ¢;,. satisfies Eqs. (1) and
2).

The disc is held fixed so that d¢,,/3,, = O on S, whence
Eqg. (29) gives

a¢ a¢im:

n on @D
Thus, ¢ must satisfy Egs. (1)—(4), with

V= —Aweker® (32)

Hence, the scattering potential can be represented by the
integral formula, Eq. (6), wherein Eq. (21) is solved with
Eq. (8). Note also that [¢] = [@] as [¢inc] = O.

6.1. The scattering amplitude

In this section we examine some parameters of direct
physical interest to our problem. They can be computed
without great difficulty once we have the scattering poten-
tial on the disc.

For deep water problems, the scattered wave satisfies the

condition
\/Ei(e)e’“’- KT a5 r— 0 (33)

where f(6) is called the scattering amplitude or the far-field
pattern; fi) describes the angular dependence of the out-
going waves. Let us calculate f{f) in terms of [¢], using
Eq. (6).

The Green’s function has the behaviour

G~2wiKeKCH OHM(KR)~24/ Z=e 27K k(4 0+ iR+ i)
R

o(P) =

(34

as R— o where we have used the well-known large-

a:§ument asymptotic approximation of the Hankel function

. Then recalling that x = rcosf and y = rsind, we see that

R = [(rcosf — 2) + (rsing — )12 ~r — £cosf — 7sind
as r— o,

Hence, from Eqs. (6) and (34),

o~ K KzeiKr+ ir/4Ke —Kd f[¢]e — iK(§cosf + nsind) ds (35)
V 2xr
N

as r— x©,

6.2. The Kochin function

At this point, it is conventional to introduce a Kochin
function, H(#). For a closed surface S, this can be defined as

H@O)= KI(__d) ) &Ko — iK(Ecos + nsind) dSq

where ¢ = (£, 9, {) is a point on Sz, and the normal
vector points into the water. This is the definition used by
Newman [36]. In particular, for the submerged disc,
Eq. (20), we have

H(0) I KZC —Kd [ [¢]e — iK(cos + nsind) dSq (36)
s

and so Eq. (35) becomes

¢~ — (27Kr) " PH(§)eF T ™ a5 r — 0 (37)

Moreover, comparison with Eq. (33) gives

H(®) =i2m) *f(6)e'™* (38)
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It is known that H satisfies
2%
w 2
—ImH(0)= —J |H(6)I* do (39)
47gA 0

This is known as the ‘ ‘forward-scattering theorem’’, and is a
consequence of energy conservation. See Newman [36] for
more information.

Eq. (39) can be used as a test when computing numerical
solutions of our problem. After estimating [¢] numerically,
we can compute the Kochin function from Eq. (36) and then
see how well Eq. (39) is satisfied.

It is possible to calculate H(f) directly in terms of the
coefficients a; in Eq. (23). The exponential in the integrand
of Eq. (36) is
e~ Hreosl-2) - N ¢ (~i)"J,(Ks)cosn(f — o) (40)

n=0
where eg = 1 and €, = 2 for n = 1. Then, after substituting
Eq. (23) into Eq. (36), the integration over « is elementary
and then the integration over s can be effected using another
integral due to Krenk {28], namely

1

JJm(KS)PZ;+Zn+I( V1—s%)sds

0
=(~ 1Pt 10 s 2011 (K)

where j(w) = (1/2 7/w)"? J,.1p(w) is a spherical Bessel
function. The result is

N
H(0)=2xK% K> af(—iy"(— !
k,m

X Pt St 10V 4 2k 4 1 (K)cOSMO

6.3. Scattering cross-sections

We are interested in how effective the disc is at scattering
energy. The average flux of energy through a fixed control
surface S is

1 I «0p
—pwl —dS
2pwms¢ an

where ¢ is a velocity potential, n is in the direction of the
flux and the asterisk denotes complex conjugation. Thus, the
average flux of energy in the incident wave Eq. (30) passing
through a fixed vertical plane parallel to the wave crests is

L 240

-pg°A’lw

4Pg

per unit width; this is P,, the mean power per unit crest

length, familiar in the theory of wave-power devices [37].
The average flux of energy in the scattered waves, away

from the disc, is
1 « 09
P= —pul J —dS
2pw mS ¢ an

where S, is a large vertical cylindrical surface enclosing the
disc; P will be evaluated by inserting the far-field asymp-
totic behaviour of ¢. Then, the (dimensionless) total scat-
tering cross-section o is usually defined by

o= Pl(2aP,)

where 2aP,, is the mean incident power in a channel of
width 2q, which is the diameter of the disc. We find it
convenient to work with a scaled version of ¢, and define

Q=2Ka)’c
We find that

0 2n 2
_1 2 404, — PW j 2
P= 2puK _LJ) lp(r, 0, 2)I*rdfdz = 7k ) |H(6)1* d6

using d¢/or~iK¢ and Eq. (37). Hence
2w
K -
0=—2 j OB
2 A

where
H(60) = [w/(gA)1H(6)

is a dimensionless Kochin function. From Eq. (39), we have
2%

—ImA(0) = ;—J |(6)* do (41)
0

whence
Q= — 2KalmH(0)

(Note that Miles [5] uses a slightly different definition of Q.)

Q gives a global measure of the energy scattered by the
disc. In scattering theory, it is common to introduce the
differential cross-section D(0), defined by

DO) = (27) "~ 'KalH(O)

so that
2n

Q= J D(6) db
0

Thus, D gives an indication of the directional distribution of
the scattered energy.

6.4. Results

We have used the expansion—collocation method to com-
pute the total scattering cross-section Q as a function of the
dimensionless wavenumber, K, for values of the submer-
gence depth d varying between 0.8 and 0.04. (Recall that,
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Fig. 1. The added mass (solid line) and the total scattering cross-section, Q (the dotted line), as functions of K, for submergence d = 0.06.
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Fig. 2. The added mass (solid line) and the total scattering cross-section, Q (dotted line), as functions of X, for submergence d = 0.04.
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Fig. 3. The added mass (solid line) and the total scattering cross-section, Q (dotted line), as functions of K, for submergence d = 0.4.
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Fig. 4. The total scattering cross-section, Q, and the component Q, as functions of K, for submergence d = 0.06.
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Fig. 6. The total scattering cross-section Q(-**), and the components Qq(dashed line), Q, (solid line) and Q(dash—dotted line), as functions of K, for
submergence d = 0.1.
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Fig. 7. The differential cross-section D(6). The vertical and horizontal axes are the y and x axis, respectively, and (0, 0) indicates the centre of the disc. The

submergence depth is given by d = 0.1.

for, dimensionless results, we scaled with respect to the
disc’s radius, and so set a = 1.) We notice the existence
of peaks in the graphs of Q against K. These peaks are
sharper and more pronounced when K is small and d
goes to zero. A similar striking behaviour was observed

before in our computations of the hydrodynamic coefficients
(added mass and damping) for a heaving submerged hori-
zontal disc [20].

As the frequency is increased from zero, for a given small
depth of submergence, the first peak of Q is found to occur
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Table 3
Relative error when evaluating the Kochin function relationship. The depth
of submergence is d = 0.1 and 49 collocation points were used

Table 4
Relative error when evaluating the Kochin function relationship. The depth
of submergence is d = 0.06 and 64 collocation points were used

K Relative error K Relative error
0.1 0.00000 0.1 0.00005
0.5 0.00003 0.9 0.00000
1.0 0.00005 1.0 0.00002
1.5 0.00001 1.5 0.00010
2.0 0.00020 2.0 0.00111
2.5 0.00014 25 0.01560
3.0 0.00007 3.0 0.00977
35 0.00003 35 0.00127
4.0 0.00091 4.0 0.00305
4.5 0.00028 43 0.00201
5.0 0.00144

55 0.01693

6.0 0.05710

at the same frequency as the first peak of the added mass.
See Figs 1 and 2.

This relation is less clear for d = 0.2; see Fig. 3.

In fact, this maximum in Q has its origin in the axisym-
metric mode present in the incident potential, Eq. (30). To
show this, we decompose the incident potential into its
Fourier components as

Binc(r0,2)= D $5c(r,8,2)
k=0

where
ok (1,0, 2) = (gAlw)e e, i* 1 (Kr)coskd

and we have used Eq. (40). Let Q, denote the total scattering
cross-section obtained by solving the scattering problem
with

k
Dinc = Dinc

Fig. 4 shows numerical results which indicate that the first
peak in Q has its origin in Qg; indeed, the two curves are
indistinguishable for K less than about 0.6.

Furthermore we can see (Figs 5 and 6) that the subsequent
extrema are related to different modes ¢f,.. The calculations
also confirm that Q = 2;0Q;, which can be deduced from the
linearity of the problem. The spikes in the physical para-
meters occur at frequencies called resonant frequencies.
Determining the location of these frequencies in the present
problems has been studied by Farina [8].

In Fig. 7, the differential cross-section D(6) is plotted for
five values of K and 4 = 0.1. It is interesting to note the
varying angular dependence as the frequency increases and
the areas defined by the closed curves which give the
corresponding total scattering cross-sections, described
previously.

Table 3 and Table 4 give the relative error found in
Eq. (41) for two values of d; this error is defined by ILHS
— RHSV/ILHS!. The small relative errors suggest the good
accuracy and stability of the method even for small

submergences, such as d = 0.06. Moreover only a modest
number of collocation points is needed, which means a low
computational cost.

7. Conclusions

An expansion—collocation method has been developed
for solving the two-dimensional hypersingular integral
equations that arise in the radiation and scattering problems
for a submerged circular plate. This is an extension of a
well-known method for solving one-dimensional hyper-
singular integral equations. The results for the radiation
problem recover those of Martin and Farina [20]. The
results for the scattering problem reveal a strong depen-
dence on the frequency, especially when the plate is
close to the free surface. Similar results were found
for the heaving disc. The relationships between the scat-
tering cross-section and the peaks in the added mass have
been explored. The connections between those peaks
and so-called resonant frequencies are currently being
investigated.
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