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Abstract

When Boundary Integral Equation/ Boundary Element Methods (BIE/BEMEs) are used for halfspace problems, such as occur frequently
in elastodynamics, the fullspace (Stokes) fundamental solution or halfspace (Lamb) fundamental solution can be used to formulate the BIE.
Both Stokes and Lamb approaches have advantages and disadvantages. This paper presents systematic strategies, based on the BEM for 3D
halfspace elastodynamic problems, wherein the best features of formulations based on the Stokes and the Lamb solutions are exploited.
Strategies are illustrated and numerical results are given for point sources and radiation from a spherical void in a halfspace. © 1998
Elsevier Science S.A. All rights reserved.

1. Introduction

Boundary Integral Equation/Boundary Element Methods (BIE/BEMs) have proven to be powerful tools for
formulating and numerically attacking exterior boundary value problems. In this paper the BIE method refers to
the formulation of a problem in terms of integral equations defined on the boundaries of a domain. The BEM
refers to the procedure used to discretize the integral equations, using boundary elements, and the procedure
used to solve the integral equations numerically. These tools have certain advantages over domain-based
numerical methods for such problems. With the (radiation) conditions on the surface at infinity incorporated
analytically, only finite surface(s) need to be discretized when the only other surface(s) in the problem are finite
in extent. With domain-based numerical methods, such as the finite element method, element-modeling of an
entire infinite domain is, of course, impossible. Simply truncating the finite-element model of the infinite domain
is usually inadequate. Thus, special features are introduced into these methods to model such a domain and to
satisfy the radiation condition [1].

However, when a BEM is used for halfspace problems, such as occur frequently in elastodynamics, and the
fullspace (Stokes) fundamental solution is used to formulate the BIE, a truncated discretized model of the
halfspace surface is required. (Usually, a discretized model of a finite surface, such as a buried finite obstacle, is
needed as well.) Therefore, a truncation problem can exist in modeling a halfspace problem, even with boundary
methods. However, with Stokes and the BEM, the truncation issue is different than with, say, finite elements,
With finite elements the domain itself and not just a bounding surface must be truncated; thus the nature of each
kind of truncation is different in a very basic way. Indeed, a good boundary solution can usually be obtained
with the BEM even with severe truncation of the halfspace surface. This truncation may be simple, i.e. no
special layer of ‘infinite’ elements to simulate the ‘rest of the halfspace surface’ need be used.

Alternatively, if the BEM procedure uses the Lamb fundamental solution, which models the complete
halfspace surface analytically, no truncation issues even arise. But, since Lamb’s solution is available in an
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analytical form which requires (numerical) evaluation of infinite integrals with respect to frequency, the CPU
time spent on just forming a boundary integral equation is increased significantly and often prohibitively.
Further, for some combination of locations of source point and field point, it is especially difficult or, with
certain algorithms, impossible to evaluate the Lamb solution.

Problems of radiation and scattering in a halfspace have been under investigation via BIE/BEM for some
time. In the time domain, the BIE has been used for halfspace dynamics problems [2,3] for linear and nonlinear
problems. In both studies, the Stokes solution was employed, and discretization over the halfspace surface was
required. In the frequency domain, the BIE was used for the foundation problems in a halfspace [4] for studying
the dynamic response of rectangular foundations. Again, the Stokes solution was used, and a truncation on the
halfspace surface was needed. However, in [5] and [6] the Lamb solution was used to formulate the
axisymmetric BIE for a layered viscoelastic halfspace to avoid discretization of the halfspace surface. A BIE
formulation using Lamb’s solution for elastic halfspace problems, free from principal-value integrals, was
proposed in [7]. In a follow-up study [8], halfspace problems were considered by BIE formulations using both
Stokes’ and Lamb’s tensors. Comparisons were done by checking boundary solutions obtained with both
kernels. However, truncation effects on the boundary solution, as well as on the solution for interior points were
not addressed.

In summary, all of the researchers cited above attacked the halfspace problem by the BIE either by using the
Stokes solution, making a truncated discretization on the halfspace surface, getting a fairly good solution on the
boundary, or by using the Lamb solution without concern for computational efficiency. Several questions arise
then regarding the BEM for halfspace problems; such as, can good results be obtained everywhere by using the
Stokes solution alone? Is it always better to just use the BIE formulation using the Lamb solution? Is there a
way to take advantage of both formulations to attack halfspace problems if questions of practicality and
efficiency must govern? An attempt is made to answer these questions in this paper.

Specifically, we present systematic strategies, based on the BEM for halfspace elastodynamic problems,
wherein the best features of the Stokes solution and the Lamb’s solution are exploited. This research is
motivated by a general class of problems related to responses due to explosions or other disturbances inside an
underground structure. Here, we restrict ourselves to time-harmonic radiation problems, even though we can
study scattering problems in a similar manner and can deal with transient problems through the Fourier
transform and the Laplace transform [9].

Most of our strategies are illustrated and numerical results are presented for point sources in a halfspace and
radiation from a spherical void in a halfspace.

2. BIE formulations

Consider a homogeneous, isotropic, elastic halfspace bounded by a flat halfspace surface at z =0, which is
traction free, as shown in Fig. 1. The elastic material fills the halfspace z = 0. There is a finite obstacle B inside
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Fig. 1. The halfspace problem.
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the halfspace with a surface S,. In the region B’, exterior to B but within the halfspace, we assume that an
elastic field exists in the form of a time harmonic displacement vector u,( p,w), which must satisfy the familiar
Navier equation,
€ —cu, , +cou, , + o', =0 (1)
where ¢, and ¢, are dilatational- and shear-wave speeds, respectively, w is the circular frequency, and body
forces are assumed to be zero. This field is assumed to arise from a prescription of boundary data on S,.
Next, a Somigliana integral formula based on the Stokes point force solution may be derived (see [7]), and

written as

Cipu(p) = L s (T, (p. puilq) — Uy(p, 9)1(q)] ds(qg) (2)

H

in which U;; and T, are Stokes’ displacement and traction tensors, respectively, which describe the fields at a
point ¢ due to a time harmonic point force of frequency w at a point p in a fullspace [7]. Here, we assume no
incident wave in B’ and C,(p) is the coefficient tensor of the free term (again see [7]) and is a function of the
location of p. When p is inside B’, Eq. (2) is a representation integral which gives the solution at p in terms of
boundary values of u;(q), t,(q) on both S, and S,, and C(p) = §;. When p is on the boundary, either S or §,,
Eqn. (2) is a BIE in which half of the pair of variables u,(q), 1,(q) are prescribed for a well-posed problem. The
BIE (2) can be solved for the other half of the boundary data.

Indeed, in the BIE process, the first step is to put p on the boundary; the BIE is then solved for the unknown
boundary data. In the second step, the solution at any point inside the domain B’ can be obtained from the
representation integral. In both steps, all of the integrals are evaluated numerically, so a discretization is needed
on both the halfspace surface and the finite surface. Since S, is infinite, only a truncated finite area S, would be
discretized. Thus truncation arises when solving the BIE as well as when obtaining the solution at a field point.

Denote the neglected area on the halfspace surface as S, (see, Fig. 1), i.e. §, =5, US., and for all problems
of interest in this paper, #,(q) =0 on S,. Thus, the BIE equation (2) can be expanded as

C(pup)= J; [T(p, 9ulq) — Uyp, t{g)) ds(q) + L T,(p, puq) ds(q)

+ L Ty(p, @u(9) ds(q) - 3)

The last term is associated with the neglected area S,,. For p located on S, or §,, and ¢ on S, we find that the
contribution of this last term may be neglected without detriment to the accuracy of the boundary solution,
provided S, has at least a minimum size. This matter is discussed in some detail in the next section.

Now if instead of the Stokes tensor U;; and T,;, Lamb’s tensors U f]' and Tg are used, the Somigliana integral
need only be taken over S, because the presence of the traction-free halfspace surface is accounted for in

Lamb’s tensors. That is, TZ’( p, @) =0, whenever ¢q is on S, (see [14]). Thus, the Somigliana integral formula
has the simple form:

C,(pu(p) = L [T](p. Quq) — ULi(p. pt(q)] ds(q) . 4)

There is no truncation issue because the integral is taken only over the finite surface §,. However, the
computation of Lamb’s halfspace Green’s function for (4) as a BIE is very time consuming. To give an idea of
the CPU time difference between formulating and solving the BIE using the Stokes solution, and formulating
and solving the BIE again using the Lamb solution, an experiment was performed for a sphere, in a fullspace,
with an 8 element discretization. It took 2.8 seconds to solve the BIE using the Stokes solution. When the Lamb
solution was used, the CPU time was 820 seconds. Thus we were motivated to look carefully at the Stokes
formulation despite the shortcomings, conceptually at least, of truncation.
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3. Truncation study for the BIE using the stokes solution

To investigate truncation effects on boundary solutions and results at field points via Stokes, the problem of a
point load in a halfspace was considered first. Displacements on the halfspace surface obtained as the boundary
solution in the Stokes BIE should then be identical to the corresponding displacements given by the halfspace
Green’s function U g . Because of the absence of S, and the existence of the point source, the Stokes BIE (3)
reduces to

C,(pup)= L (T,(p, Puq) — U(p, t(Plds(q) + Uy(p. p)F{py) (5)

in which p,, is the location of the point source; F; is the magnitude or strength vector of the point source.

The point source is located at (0,0, 1) which is one meter below the halfspace surface, and is in the z
direction for all the results presented here. This makes F, =F, =0, F; =1 in Eqn. (5). In Fig. 2, we show the
comparison between our boundary solutions and exact point force solutions for the magnitude and phase angle
of u, and u, components along x direction on the halfspace surface. The results presented there are for a point
source in titanium alloy (c, = 6340 m/s, ¢, = 3030 m/s, Poisson’s ratio » = 0.352) when the discretized area S,
is chosen as a 24 X 24 square area. (Later, we will show that a much smaller discretized area S, can be used to
obtain a good solution.) The shear wave number is k, = 0.449 (which corresponds to frequency « = 1360 Hz),
The discontinuity in the phase-angle plot is caused by the jump in +180°/—180°. Note that the validity of our
BEM analysis is confirmed by the good agreement between our computed resuits and that given by the
analytical solution U :’

For the same point force, in the same material at the same frequency, we show, in Fig. 3, the variation of the
magnitude of field u, along the x direction for four different sizes of the discretized area 2L X 2L of
L =3,4,6, 12, respectively, over the halfspace surface. Again, analytical data obtained from U 5 are also shown
in Fig. 3 as the solid line for reference. Note that data points obtained via our BEM, for four different sizes of
truncation, represented as ‘x’, ‘*’, ‘O’, ‘+’, respectively, all fall equally well on the reference curve. This is an
important observation. It suggests that very good results can be obtained by using a relatively small (L = 3)
discretized model S, of S,. The main effect of a larger S, is to obtain additional surface data over the
added-discretized portion of S,,. However, the increase in accuracy of the boundary values of u, over a given
model of S,, by making that model larger, seems to be negligible.

We tested these observations at several higher frequencies up to a k, of 2.245. We found that the observations
held up. There was deterioration in the data with increasing frequency as expected, but that was attributable to
the fact that the boundary element size (which was held constant with changes in L and frequency) became
larger than the four-elements-per-wavelength known to be needed in the frequency range being examined. The
important thing is that larger L yielded data no better nor no worse than smaller L at a given frequency and
element size.

On the other hand, we do know that there are different L requirements, in general, for different depths 4 of a
disturbance. Although the magnitude of the surface disturbance decreases with increasing d, we have observed
that larger L is required to accurately pick up the decreased surface disturbance on the modeled portion S, of S,
as d increases. Moreover, how interior u (field data) might depend on the size of L, for any depth of disturbance,
is another question. Both of these issues, i.e., the size of L needed: (i) as a function of depth of source of a
disturbance, and (ii) as a function of location of the desired field, are considered further subsequently.

In general, observations made about data from point source results are very important because the radiation
from any kind of a shape in the halfspace could be viewed as the radiation by a distribution of point sources. To
confirm this, we studied the radiation from a spherical void which is used to simulate a spherical wave in the
halfspace.

Consider a spherical cavity of radius r the center of which is buried a distance d inside a homogeneous,
elastic half-space and which is radiating harmonic dilatational waves into the halfspace, such that ¢, = 1.0,
ty =t,=0.0. Since the magnitude of spherical waves decreases with distance from the source, the reflected
waves due to the presence of the halfspace surface also have a diminishing effect as they travel through the
medium. Thus, it is expected as the distance d increases, the surface data on the sphere should approach the
corresponding fullspace solution. This observation can be viewed as a check for the algorithm and coding
(analytical comparison data are not available for this problem), and the expected behavior is apparent from Fig.
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Fig. 2. Comparison of boundary solutions from L = 12 discretization with Lamb’s solution for point loading (d = 1).
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4, in which there is a polar plot of the magnitude of the radial displacement component on the sphere surface
and on plane y =0 for several different depths of the sphere when k,r=0.913 (k, is the dilatational wave
number), and Poisson’s ratio » = 0.25. The solid circle is the solution for a radiating sphere in the fullspace.
Points ‘*’, ‘+’, ‘O’, *x” represent our BEM solution at eight angular positions for a radiating sphere located in a
halfspace at d = 3r, d = 5r, d = 8r, d = 30r, respectively. The BEM data are obtained by solving the BIE with
Lamb’s solution, i.e. Eq. (4). The trend that as d increases, the solution at all eight data points along the
circumferential direction all go correspondingly closer to the circle, indicates the correctness of the algorithm
and coding. It can be seen when d = 8r, the surface data are quite close to the corresponding fullspace solution.
Thus, for sufficiently large d, it may be possible to avoid discretization of §,, altogether (See Section 6 below,
especially Fig. 8).

Returning to d = 2r, Fig. 5 shows the variation of #, and u, components on the halfspace surface obtained
using three different sizes of discretization 2L X 2L on the S, surface for k, = 0.449. The solid line is obtained
by first solving for the boundary displacements on the surface of the sphere by means of Eq. (4). Then, as a
second step, the boundary integral representation is used for finding the displacements on the halfspace surface.
Note only the surface of the sphere needs to be modeled since Lamb’s solution is used both in the BIE equation
(4) and the boundary integral representation. There is no truncation issue related to the solid line in Fig. 5.
Notice that, when the BIE formulation with Stokes’ solution and a truncated model on the halfspace surface are
used, the calculated boundary data points on the halfspace all fall on the solid line. As in Fig. 3, it is again very
clear that we pick up more information as we increase the size of the discretization. However, values of new
data compared with values of previously-obtained data again show little change.

The situation for interior points is, however, different. Calculation for u, and u, at various interior point
locations, for the largest discretization of S, were performed and compared to the analytical solution for the
point load case. The general conclusion, for interior points, is that we can obtain good results for points only
under the ‘shadow’ of the halfspace discretization. Fig. 6 shows the result for interior point samples one unit
below the halfspace surface from x =2 to x =25 due to the point load in the halfspace. It can be seen that
beyond x = 10 the result from BEM deviates considerably from the Lamb solution. We expect resuits to be even
worse for deeper sample points and for deeper sources of disturbance.

Therefore, while we can obtain very satisfactory boundary data over the discretized surfaces with reasonable
truncation of S, via the Stokes BIE, we cannot obtain satisfactory field data at distances much beyond the edge
of the truncated S,,. It is obviously impractical to use ever-larger models of S, just to get desired field data at
large distances from the sources of disturbance. Thus, what can be done?

4. Lamb’s formulation revisited

We mentioned earlier that using the Lamb solution in forming and solving a BIE would be prohibitive for any
problem requiring a substantial amount of discretization over S, because of the CPU time involved to get
function evaluations for the many p-Gaussian quadrature point combinations involved. Note, we speak of
prohibitive CPU time despite the fact that discretization of (a portion of) §,, is not even an issue with Lamb.
However, suppose we get good boundary displacements over S, with a fairly small discretization (reasonable
truncation) of Sy, as we have shown that we can do. Then, if we ask for field data, remote from S,, via Eq. (4)
used as a representation integral for comparatively few points p, the costs are very reasonable indeed. In fact,
we may view this as an ideal compromise, the best of both worlds in a sense: specifically, use Stokes, with a
reasonable truncation of Sy, to form and solve the relevant BIE; thus obtain u,(p) on S, accordingly, efficiently,
and in reasonable time; then use Lamb in the representation integral to get the farfield data which requires
boundary data over S, only. A similar strategy was used in [15] for scattering from a halfspace surface-breaking
crack problem.

Fig. 7 shows the interior results calculated by using Stokes in the BIE and using Lamb in the representation
integral (indicated by +) compared with the results from using Lamb’s solution in both the BIE and the
representation integral. Also in Fig. 7 is the uncorrected results if Stokes is used both in the BIE and in the
representation integral. Note we used a frequency (k, = 1.58) which is almost three times higher than the
original one for Figs. 6, 7 and 8. The proposed Stokes-plus-Lamb strategy still works fine. It is very obvious that
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those uncorrected results denoted by circles deviate from the good results even for field points which are close
to the origin.

5. A more efficient and faster strategy: the library

The efficiency of using the Stokes-plus-Lamb strategy described above can be improved by incorporating the
idea of a ‘Green’s function Library’ (see [11,12}). For problems with two surfaces as the boundary, such as
halfspace problems (S, plus S, ), a sub-matrix of the coefficient matrix is the essential part of the partial Green’s
function for the problem. The library idea is closely related to partitioning of the system matrix.

The BIE in discretized form for the halfspace problem, using the Stokes tensors, can be written as

i 2e-6)
Ay Apilu, 2

where A, are coefficients related to collocation (source point p) on S|, and integration (integration point g) on
§,; A, are coefficients related to collocation on S, and integration on §,; A, are coefficients associated to
collocation on §, and integration on S|; A,, are coefficients associated to collocation on S, and integration on
S,; In recent papers [11,12], it has been shown that A is in fact the essential ingredient in a ‘discretized
Green’s function” for the halfspace problem.

Indeed, suppose we attempt to solve this system of equations via partitioning, i.e. form A ,, A,,, and A,, and
write the following reduced system of equations:

(A22—A21A1_11Al2){u2}={fz_A21A1_llfl}‘ (7

Then, obtain u, by

{ul}=A;ll{.fl — AUt (8)

Further, suppose that the discretization on the halfspace surface is bigger than the discretization on the finite
surface. The size of A, is then much bigger than the size of A,,. The most computationally intensive part of the
solution via Eqs. (7) and (8) then is the formation and inversion of A ,,. This leads to the idea of making an
accurate discretization of the halfspace surface, obtaining A;ll, and storing this large matrix so that it can be
reused over and over again with different S,. This idea is becoming attractive as storage and retrieval of
mass-amounts of data become easier and cheaper. Also, only the boundary data on §, is of interest when using
Lamb. Thus, we do not really need to go through Eq. (8) to get u,. In actual implementation, the matrix saved is
not the inverse of A, but the LU decomposition of A .

As an illustration of the benefits of this partitioning-library strategy, Table 1 shows some CPU times for a

Table 1

CPU time comparison for partitioning using Library idea

Method/Task CPU time (s)
CPU time for solving the problem in one step 1920

144 elements on the halfspace surface, 8 elements on the sphere
CPU time via Partitioning

Form A, 870
LU decomposition 866
Pre-effort (form A, and save LU decomposition of A ) 1636
Form A,,, A,,, A, 70
read LU decomposition of A, 78
Calculate new coefficient matrix and right hand side 95.5
Solve the reduced equations 0.05

Total CPU time for partitioning 173
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typical halfspace problem solved in two ways. It can be seen that by doing partitioning, the CPU time is
approximately 1/10 of the CPU time needed for solving the whole problem in one step.

6. Some useful approximations

Some useful approximations might be appropriate for the halfspace problem. First, if the finite obstacle is
deep enough below the halfspace surface, we can approximate the boundary solution on the surface of the finite
obstacle by solving a fullspace problem, and then this approximation gives very good results. Fig. 8 shows the
interior results calculated in this way for d = 8r compared with the results from using Lamb’s solution. This
approximation gives good results for both the magnitude and the phase angle even for farfield points. Further,
we found that certain asymptotic techniques for special locations of the field points are often warranted. For
example, we found that the scattered field on the halfspace surface exhibits very good Rayleigh wave features
when the distance from the origin gets large. This can be seen from Fig. 9 in which the scattered field on the
halfspace surface is plotted. The two main characteristics of the Rayleigh wave, i.e. the magnitude of the
displacement decays very slowly and a 90° phase angle difference exists between u, and u,, are very apparent.
For the field caused by the radiation from a spherical void, even though the Rayleigh wave is not evident in the
near field, it is found that, at certain larger distance from the origin, the scattered field also exhibits the Rayleigh
wave characteristics. Thus, if the major part of the field on the halfspace surface comes from the Rayleigh wave
for large distance from the origin, it is possible to use the Rayleigh wave representation and boundary solutions
from the BIE to approximate the farfield on the surface. However, specific strategies for using the boundary data
from BEM to construct an appropriate Rayleigh wave representation is itself an interesting topic for future
research.

7. Conclusions

Both BIE formulations, i.e. via Stokes’ and Lamb’s solutions, are used to attack halfspace problems, and
compared with each other. Each has its own advantages and disadvantages.

It is found that when Stokes is used, the halfspace-surface truncation affects both the boundary solution and
the solution at field points. However, it is also found that this truncation has a small effect on the boundary
values themselves, i.e. very good boundary solutions can be obtained with a small size of discretization on the
halfspace surface. On the other hand, the truncation has a big effect on the results for field points, especially
those field points which are out of the ‘shadow’ of the halfspace surface discretization. This is true even though
important ingredients in the remote field point values are the truncation-insensitive boundary values. It is also
found that when Lamb is used, the CPU times are usually prohibitive.

In this paper then, to counter the negative effects of truncation with Stokes and to address the excessive CPU
issue with Lamb, we suggest the following: use Stokes to formulate the BIE and obtain good boundary solutions
over the truncated halfspace plus a finite surface; then use Lamb’s solution in the representation integral to
evaluate results at field points. In this way, there are no adverse truncation effects on the results for field points,
since the boundary solution on the finite surface is good, as stated, and the finite surface is the only one which
must be integrated over with Lamb. For the relatively few function evaluations of Lamb’s solution required in
getting field point values only, CPU time is seldom a problem.

We also suggest that when using the fullspace fundamental solution in the BIE, considerable time and effort
can be saved by pre-computing the coefficient matrix for the truncated halfspace surface model and storing its
inverse (in reality the LU decomposition of that coefficient matrix) for repeated use. The Green’s function
Library idea, with the coefficient matrix for a fine discretization on the halfspace surface which is identified as
the main ingredient of the partial Green’s function, precomputed and stored, gives an even more efficient and
faster way to attack halfspace problems.

Further, we found that certain approximations are applicable for the halfspace problem. For example, when
the finite surface S, is deep enough below the halfspace surface, we can approximate the boundary solution on
the surface of S, by solving a fullspace problem, and then obtaining the field in the halfspace by using Lamb’s
solution. Also some asymptotic techniques for special locations of the field points are often warranted. For
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example, if the major part of the field on the halfspace surface comes from the Rayleigh wave, we can use the
Rayleigh wave representation and boundary solutions from the BIE to approximate the farfield on the surface.
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