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On the added mass of rippled discs
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Abstract. The problemof three-dimensionalpotential flow pasta thin rigid screenis reducedto a hypersingular
boundary integral equation. This equation is thenprojected onto a flat referencescreen,which is taken to be a
circular disc. Solutionsare obtained for screensthat are axisymmetric perturbations from the disc, so that the
screenis rippledconcentrically. Theaddedmassis calculated for axisymmetric flow pastsuchscreens,correctto
secondorder.
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1. Introduction

Lamb’s Hydrodynamics gives theaddedmassof aflat circular discas[1, Section108]

M0 = 8
3ρa3, (1)

wherethedischasradiusa andismoving perpendicularto its planethroughanincompressible
inviscid fluid of densityρ. Herein,we calculatecorrectionsto M0 whenthedisc is perturbed
out of its planeinto a wrinkled surface�. Specifically, we considerrippled discs, meaning
thatthedisc perturbationisaxisymmetric.Thus,� is given by

�: z = εf (r), 06 r 6 1, −π 6 θ < π,

where (r, θ, z) arecylindrical polarcoordinates,f is agivensmoothfunctionof onevariable,
andε is a small dimensionlessparameter. We supposethat thescreen� translateswith con-
stantspeedU alongthe z-axis, so that the resultingboundary-value problemfor a velocity
potentialφ is axisymmetric.(Equivalently, we can hold � fixed in a uniform flow in the
negative z-direction.)

It turnsout thattheaddedmassisgivenby

M = M0 + ε2M2 + · · · ,

for any wrinkled disc� (not merely rippled discs)when� translatesalong the z-axis. (For
othertranslationdirections,this resultremainstrue for rippleddiscs,but, in general,thecor-
rectionto M0 is first orderin ε.) Consequently, we have to work to secondorderif we want
to obtainanon-trivial correction.Weshalldevelopamethodfor carryingout thiscalculation,
andpresentdetailedresultsfor quarticsurfacesgiven by

z = 1
2ε

2r2(1 − 1
2cr

2), 06 r 6 1, −π 6 θ < π,
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where c is aparameter. For this two-parameter family of surfaces,wefind that

M = 8
3ρ{1 + 1

20ε
2(3 − 39

7 c + 97
42c

2)}, (2)

with anerrorof O(ε4). In particular, whenc = 0, we recover a resultin agreementwith the
exactsolutiondueto Collins [2] for asphericalcap.Thegeneralizationof (2) for translations
in otherdirectionsis given in Section6.

Thereare othermethodsin the literaturewith a similar generalaim. However, theseare
limited to first-ordercalculations(which areeither trivial or canbe performedexplicitly for
any f ) or they are defective in some way. To put theseremarks in context, let us begin by
recalling that the classicalproblemof potentialflow pasta flat circular disc canbe solved
exactly by the methodof separationof variablesin oblatespheroidalcoordinates[1] or by
recastingtheproblemasamixedboundary-valueproblemin ahalf-spacez > 0 [3]. Attempts
have beenmade to adaptthe latter methodologyto problems for which � is a non-planar
perturbationof acirculardiscD.

Jansson[4] imagined� to be a pieceof an infinite interfaceseparatingtwo half-spaces,
andthenperturbedthis transmissionproblemaboutthe flat interface.(This is analogousto
the theoryof small-amplitudewater waves[5, Chapter2] andto the theoryof scatteringby
slightly roughsurfaces[6, Chapter3].) However, thebehaviour of thesolution neartheedge
of � inducesspurioussingularitiesat the edgeof D.

BeomandEarmme[7] beganwith assumedrepresentationsfor φ, namely

φ =
∫ ∞

0
A±(ξ)J0(ξr) e∓ξz dξ for ± z > εf, (3)

motivatedby theuseof suchrepresentationsfor flatdiscs[3, Chapter3]. However, wecansee
thattherewill bepointsnear� for which oneof (3) will diverge.

In a previous paper[8], we began bereducingthe exact boundary-value problemto a
hypersingularintegralequationfor [φ], thediscontinuityin thepotentialacross�. Werewrote
this equationby projecting onto the unperturbed(reference)surface,which is the disc D.
This is an exact reformulation of the original boundary-valueproblem. Next, we introduced
perturbationexpansions,leadingto a sequenceof hypersingularboundaryintegral equations
of theformHwn = bn where

[φ] = w0 + εw1 + ε2w2 + · · ·

andH correspondsto potentialflow pasta rigid circulardisc.We derived anexplicit closed-
form expressionfor thefirst-ordercorrectionw1. We also derivedexplicit resultsfor w0, w1

andw2 for two particulargeometries,namely, an inclinedflat elliptical screenandaspherical
cap.We calculatedthe addedmassfor theseflows, andfoundagreement with known exact
solutions.

Thecalculationsin [8] arebasedontwo-dimensionalintegral equations,and donotassume
any symmetriesin thegeometryor theambientflow. However, thesecond-ordercalculations
aredifficult. In this paper, we investigateaxisymmetricproblemswith similar methods,in or-
derto seewhetherthisrestrictedclassof problemsallowssecond-ordercalculationstoproceed
more readily. Theaxial symmetry leadsto one-dimensionalhypersingularintegral equations
with kernels involving completeelliptic integrals.Their analysisis quite differentfrom that
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describedin [8]; in particular, wemake essentialuseof certainintegral representationsof the
completeelliptic integrals.

A secondmotivation for this study is as a model for other more complicatedbut more
importantphysicalapplications.Thus, the basicmethodology(namely, formulate an exact
boundaryintegral equation,project exactly onto a referencesurface and then introducea
regularperturbationexpansion)haswide applicability, and it will succeedwhenever onecan
solve the underlyingboundaryintegral equationfor the referencesurface.For example, we
cancite problems of Stokes flow [9, 10], wheresmall obstaclesare immersedin a viscous
fluid (so that the Reynolds numberis small); a lengthyanalysisof sucha flow pasta per-
turbedsphereis given in [9, Section5-9]. Foranotherexample,wecancitecrackproblemsin
elasticitytheory;theseareimportantbecausethey arisein theoriesof crackstabilityandquasi-
staticpropagation.Applicationsof the methodologydescribedhereinto problems involving
perturbedpenny-shapedcracksare currently beingmade.In-planeperturbationsof circular
discsand cracksare analysedin [11, 12].

2. Formulation

Let � bea thin rigid screen,definedby

�: z = F(x, y), (x, y) ∈ D,

where (x, y, z) areCartesiancoordinates,D is theunit disc in thexy-plane,and F is a given
smoothfunction;later, we shall restrictF to bea functionof r =

√

x2 + y2. Theproblemis
to solve Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0,

in theunboundedregion exterior to �, subjectto

∂φ

∂n
+ ∂φ0

∂n
= 0 on � (4)

andφ = O(R−1
3 ) asR3 → ∞, where R2

3 = r2 + z2, φ0 is thevelocity potentialof thegiven
ambient flow, and ∂/∂n denotesnormal differentiation.We also requirethat φ is bounded
everywherein theflow.

It is known thatφ canberepresentedas adistribution of normaldipoles

φ(P ) =
1

4π

∫

�

[φ(q)]
∂

∂nq

G(P, q) dSq , (5)

whereG(P, q) = |r − q|−1, q ∈ � haspositionvectorq with respectto theorigin O, andP

haspositionvectorr. Furthermore,denotethetwo sidesof � by �+ and�−, and define the
unit normal vectoron�,n, to point from �+ into thefluid. Then,wedefinethediscontinuity
in φ across� by

[φ(q)] = lim
Q→q+

φ(Q) − lim
Q→q−

φ(Q),
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whereq ∈ �, q± ∈ �± andQ is apoint in thefluid.
Applying theboundarycondition(4) to (5), weobtain

1

4π

∫

�

× [φ(q)]
∂2

∂np∂nq

G(p, q) dSq = −
∂φ0

∂np

, p ∈ �, (6)

which is the governing hypersingularintegral equationfor [φ]. The integral in (6) must be
interpretedin the finite-part sense.Also, (6) must be solved subject to [φ(q)] = 0 for all
q ∈ ∂�, the edgeof �. More information on (6) andits derivation, andon two-dimensional
finite-partintegralscanbefoundin [12] and[13].

Let usdefineanormal vectorto � by

N =
(

−∂F

∂x
,
−∂F

∂y
, 1

)

,

whencen = N/|N | is aunit normal vector;thiseffectively specifies�+. Supposethatp ∈ �

andq ∈ � areat (x0, y0, z0) and(x, y, z), respectively. Let

[φ(q)] = w(x, y).

Then,wecanproject(6) ontoD. Thus,usingz = F(x, y) andz0 = F(x0, y0), werewrite (6),
exactly, as an integral equationover D [8],

1

4π

∫

D

× K(x0, y0; x, y)w(x, y) dA = b(x0, y0), (x0, y0) ∈ D, (7)

where dA = dx dy,

K = R−3
1 {N(p) · N(q)} − 3R−5

1 (N(p) · R1)(N(q) · R1), (8)

R1 = (x − x0, y − y0, F (x, y) − F(x0, y0)), R1 = |R1|, and

b(x, y) = −N · gradφ0. (9)

Equation(7) is to besolvedsubjectto theedgeconditionw(x, y) = 0 for r = 1.
In thesequel,we take

φ0 = −Uz whence b = U.

Wewill thencalculateanapproximationto w by solving(7).Theaddedmassitself isgiven
exactly by [8]

M = −
ρ

U

∫

D

w(x, y) dA; (10)

this formula comesby noting that,by definition, T = 1
2MU2, where T is thekinetic energy

of thefluid motion [1, Section44]. Exactsolutionsfor M are known when � is aflat circular
disc,aflat elliptical screenanda sphericalcap;see[8] for references.
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3. Axisymmetric problems: rippled discs

Assumethat� is given by

�: z = F(r), 06 r 6 1, −π 6 θ < π.

Thus� is circularly symmetric- it is rippled.As φ0 = −Uz, thesolutionw is independent
of θ

w(x, y) = w(r).

Then,thetwo-dimensionalintegral Equation(7) becomes

1

4π

∫ 1

0
× L(r0, r)w(r)r dr = U, 06 r0 < 1. (11)

This is a one-dimensionalhypersingularintegral equationfor w(r); it is to be solved subject
to w(1) = 0. The integral in (11) is a Hadamardfinite-partintegral. Thekernelisgivenby

L(r0, r) =
∫ π

−π

K(x0, y0; x, y) dθ, (12)

wherex = r cosθ, y = r sin θ, x0 = r0 cosθ0 andy0 = r0 sin θ0.
It is well known that the standardboundaryintegral equationsof axisymmetricpotential

theory can be reducedto one-dimensionalintegral equationsin which the kernels involve
completeelliptic integrals[14,15]. Thepresentsituation isno exception,asweshallsee.

In theAppendix,it is shown that

L = 1
2κ

3(rr0)
−3/2(I 0

3 − F ′F ′
0I

1
3 ) − 3

8κ
5(rr0)

−5/2(AI 0
5 − BI 1

5 + CI 2
5 ), (13)

whereF ≡ F(r), F0 ≡ F(r0), F
′ ≡ F ′(r), F ′

0 ≡ F ′(r0),

I n
m ≡ I n

m(κ) =
∫ π/2

0

cos2nθ dθ

(1 − κ2 sin2 θ)m/2
, (14)

A = (F − F0)
2 + (F − F0)(F

′
0r0 − F ′r) − 3

2F
′F ′

0rr0, (15)

B = (F − F0)(F
′r0 − F ′

0r) + F ′F ′
0(r

2 + r2
0), (16)

C = −1
2F

′F ′
0rr0 (17)

and

κ2 = 4rr0

(r + r0)2 + (F − F0)2
; (18)

notethat

κ2
6

4rr0

(r + r0)
2

=
4rr0

(r − r0)
2 + 4rr0

6 1,
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with κ2 = 1 only whenr = r0.
The integralsI n

m canbeexpressedin termsof completeelliptic integralswhenm is anodd
integer[16,Section2.58]

I 0
3 (k) = k′−2E(k),

I 1
3 (k) = k′−2(1 − 2k−2)E(k) + 2k−2K(k),

I 0
5 (k) = 2

3k
′−4(2 − k2)E(k) − 1

3k
′−2K(k),

I 1
5 (k) = −2

3(kk′2)−2(1 − k2 + k4)E(k) + 1
3(kk′)−2(2 − k2)K(k),

I 2
5 (k) = −2

3(kk′)−4(8 − 12k2 + 2k4 + k6)E(k) + 1
3(k

2k′)−2(16− 16k2 − k4)K(k),

where k′2 = 1 − k2 andthecompleteelliptic integralsE andK aredefinedby

E(k) =
∫ π/2

0
(1 − k2 sin2 θ)1/2 dθ and K(k) =

∫ π/2

0
(1 − k2 sin2 θ)−1/2 dθ,

respectively.

3.1. THE FLAT DISC

If � is flat and lies parallel to thexy-plane,F = F0. Hence,F ′ = F ′
0 = 0,A = B = C = 0

andκ = k, where

k2 = 4rr0

(r + r0)2
. (19)

ThusthekernelL simplifiesto

L0(r0, r) ≡ 1
2k

3(rr0)
−(3/2)I 0

3 (k) = 4

r + r0

E(k)

(r − r0)2
(20)

andtheintegral equation(11) reducesto

1

π

∫ 1

0
× rE(k)

r + r0

w(r) dr

(r − r0)2
= U, 06 r0 < 1, (21)

with w(1) = 0; here,wehave used

k′2 = 1 − k2 = (r − r0)
2

(r + r0)2
.

The hypersingularintegral equation(21) for axisymmetricpotentialflow pasta rigid flat
circular disc seems to be new, although it canbe extractedfrom [15, Equation(6)]. (It also
yieldsthecrack-openingdisplacementw for apressurizedpenny-shapedcrack.)

As r → r0, k → 1 and E(1) = 1, sothatrL0(r0, r) exhibits thebasichypersingularityin
onedimension,namely (r − r0)

−2.
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Theflat-discintegral equation(21) canbesolvedexactly, usingseveral differentmethods.
Thus,if we replacetheconstantU on theright-handside by agiven functionb(r0), we have

w(r) =
−4

π

∫ 1

r

1
√

t2 − r2

∫ t

0

b(s)s ds
√

t2 − s2
dt, (22)

for aderivation of this result,see,for example,[17] or [18]. In particular, whenb(r) = U , we
obtainw(r) = −(4/π)U

√
1 − r2.

3.2. THE SINGULARITY OF THE KERNEL

We areinterestedin thesingularityof thekernelL(r0, r) as|r − r0| → 0, for any F(r). Let
usdefine

R = r − r0 and 3 = (F − F0)/R,

sothat3 is boundedfor all R. In particular, 3 → F ′
0 asr → r0. It follows that

κ ′2 ≡ 1 − κ2 =
R2(1 + 32)

(r + r0)
2 + R232

,

whenceκ ′ → 0 as R → 0. In this limit, thecompleteelliptic integral K is singular:K(κ) ∼
log(4/κ ′) asκ ′ → 0.

A cursoryglanceat L suggestsa very strongsingularity, dueto thetermscontainingκ ′−4

in I n
5 (κ). However, variouscancellationsoccur. To seethis, all quantitiesmustbe expanded

for small R. Expandingaboutr0, we have κ ′2 ∼ 1
4β0r

−2
0 R2 asR → 0, whereβ0 = 1 + F ′2

0 .
For thefirst termin (13),wehave

1
2κ

3(rr0)
−(3/2)(I 0

3 − F ′F ′
0I

1
3 ) ∼ 1

2r
−3
0 β0κ

′−2

∼ (2/r0)R
−2 as R → 0, (23)

thus,this termreducesto theflat-disckernelfor small R, as seenin (20).
For thesecondtermin (13),wehave

A ∼ −3
2D + R2r0F

′
0Ã,

B ∼ −2D + R2r0F
′
0B̃,

C ∼ −1
2D + R2r0F

′
0C̃

asR → 0, where

D = r0F
′
0{r0F

′
0 + R(F ′

0 + r0F
′′
0 )},

Ã = −5
2F

′′
0 − 3

4r0F
′′′
0 ,

B̃ = 3F ′′
0 + r0F

′′′
0 ,

C̃ = −1
2F

′′
0 − 1

4r0F
′′′
0 ,
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F ′′
0 = F ′′(r0) andF ′′′

0 = F ′′′(r0); thus,D, which is common to A,B andC, containsall the
termsin R0 andR1. Then

AI 0
5 − BI 1

5 + CI 2
5 ∼ DQ1 + R2r0F

′
0(ÃI 0

5 − B̃I 1
5 + C̃I 2

5 )

= DQ1 + R2r0F
′
0(F

′′
0 Q2 + 1

2r0F
′′′
0 Q1),

where

Q1 = −3
2I

0
5 − 2I 1

5 − 1
2I

2
5

= 8
3κ

−4(1 + κ2)E(κ) − 4
3κ

−4(2 + κ2)K(κ),

Q2 = −5
2I

0
5 − 3I 1

5 − 1
2I

2
5

= 2
3(κ

2κ ′)−2(4 + κ2 − 6κ4)E(κ) − 2
3κ

−4(4 + 3κ2)K(κ),

whenceQ1 ∼ 4 logκ ′ andQ2 ∼ −2
3κ

′−2 asκ ′ → 0. It followsthatthesecondtermin (13)has
a logarithmicsingularity, so thatL hasa dominantsingularity given by (23), with additional
(weaker) logarithmicterms.

4. Slightly rippled discs

The hypersingularintegral equation(11) is exact. It is valid for axisymmetricflow pastany
rippleddisc,and it couldbe solved numerically. Here,we supposethat theripplesaresmall,
andwrite

F(r) = εf (r),

where ε is a small dimensionlessparameter andf is independentof ε. Then we look for
approximate solutionsof (11),valid for small ε.

It turnsout that

L = L0 + ε2L2 + O(ε4) as ε → 0, (24)

where L0 is theflat-disckernelgivenby (20) andL2 is given by (25) below. To obtain(24),
westartby setting

3 = ελ with λ =
f (r) − f (r0)

R
and R = r − r0.

Next, write L = L(1) + L(2) where

L(1) = 1
2κ

3(rr0)
−3/2I 0

3 (κ) and L(2) = L − L(1).

Forsmall ε, wehave

κ = k − ε2δ + O(ε4) with δ = 1
8k

3(f − f0)
2/(rr0),
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where f ≡ f (r), f0 ≡ f (r0), κ is definedby (18) andk is definedby (19).L(2) is quadratic
in F(r) andF ′(r), whenceits contribution to L2 will come by replacingF by f andκ by k.
ForL(1), wemusttake accountof thedifferencebetweenκ andk; this gives

L(1)(r0, r) = L0(r0, r) −
ε2(f − f0)

2k5

16k′2(rr0)
5/2

{

2

k′2(2 − k2)E(k) − K(k)

}

.

Finally, simplificationgives

L2(r0, r) =
−2

r + r0

{

S1E(k)

(r − r0)
2

+
S2E(k)

(r + r0)
2

+
S3K(k)

(r + r0)
2

}

, (25)

where

S1 = 6λ2 − 4λ(f ′ + f ′
0) +

r2 + r2
0

rr0
f ′f ′

0,

S2 = 6λ2 − 4λ(r + r0)

(

f ′ − f ′
0

r − r0

)

,

S3 = −3λ2 + λ(r + r0)

(

f ′r0 + f ′
0r

rr0

)

− (r + r0)
2

rr0
f ′f ′

0,

f ′ ≡ f ′(r) andf ′
0 ≡ f ′(r0). Note that the apparenthypersingularityin (25) is removable

becauseS1 = O(R2) asR → 0.
Having expandedthekernel for small ε, wenext expandw as

w(r) = w0 + εw1 + ε2w2 + · · · .

Then,(11) gives

Lw0 = U, Lw1 = 0, and Lw2 = b2,

whereL, defined by

(Lw)(r0) = 1

4π

∫ 1

0
× L0(r0, r)w(r)r dr = 1

π

∫ 1

0
× rE(k)

r + r0

w(r) dr

(r − r0)2
,

is thebasichypersingularoperatorfor axisymmetricpotentialflow pasta rigid circulardisc

b2 = −L2w0 and (L2w)(r0) =
1

4π

∫ 1

0
L2(r0, r)w(r)r dr.

It follows immediatelythat

w0(r) = −
(

4

π

)

U
√

1 − r2 and w1 = 0.

Forw2, wecanforeseethatthemostdifficult partof thecalculationwill involve theevaluation
of b2 = −L2w0. In the next section,we describethis calculationfor a certainquarticsur-
facef .
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Finally, wecancalculatethesecond-ordercorrectionto theaddedmassfrom (10)

M2 = −2πρ

U

∫ 1

0
w2(r)r dr. (26)

But thesolutionof Lw2 = b2 is given by (22) as

w2(r) =
−4

π

∫ 1

r

1
√

t2 − r2

∫ t

0

b2(s)s ds
√

t2 − s2
dt. (27)

Substitutingthisexpressionin (26),andinterchangingtheorderof integrationtwice,weobtain

M2 =
8ρ

U

∫ 1

0
s
√

1 − s2b2(s) ds, (28)

which avoids an explicit calculationof w2.

5. A rippled quartic surface

Consideraquarticsurfacegiven by

z = εf (r) with f (r) = 1
2r

2(1 − 1
2cr

2), 06 r 6 1, −π 6 θ < π, (29)

where c is aparameter. Thusf ′ = r − cr3,

λ = 1
2(r + r0){1 − 1

2c(r
2 + r2

0)},

S1 = (r − r0)
2{1

2 + 1
2c(r

2 + 4rr0 + r2
0) − 1

8c
2(r2 + r2

0)(5r2 + 12rr0 + 5r2
0)},

S2 = (r + r0)
2{−1

2 + 1
2c(3r2 + 4rr0 + 3r2

0) − 1
8c

2(r2 + r2
0)(5r2 + 8rr0 + 5r2

0)},

S3 = (r + r0)
2{−3

4 + 3
4c(r

2 + r2
0) + 1

16c
2(r4 − 14r2r2

0 + r4
0)},

whence

L2(r0, r) = −4c{1 − 5
8c(r

2 + r2
0)}(r + r0)E(k)

+{3
2 − 3

2c(r
2 + r2

0) − 1
8c

2(r4 − 14r2r2
0 + r4

0)}(r + r0)
−1K(k).

Thenext step is to evaluate b2; we have

b2(r0) = −(L2w0)(r0) =
U

π2

∫ 1

0
L2(r0, r)

√

1 − r2r dr.

The difficulty is that r occursthroughk (definedby (19)) in the argument of the complete
elliptic integrals.Weproceedindirectly by usingcertainintegral representations[19, p. 249]

K(k)

r + r0
= 1

2π

∫ ∞

0
J0(rt)J0(r0t) dt,
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(r + r0)E(k) = (r2 + r2
0)

K(k)

r + r0
− πrr0

∫ ∞

0
J1(rt)J1(r0t) dt,

whereJn(x) is aBesselfunction.Thesegive

L2 = π(α1r + α2r
3)

∫ ∞

0
J1(rt)J1(r0t) dt + π(α3 + α4r

2 + α5r
4)

×
∫ ∞

0
J0(rt)J0(r0t) dt,

where

α1 = 4cr0(1 − 5
8cr

2
0), α2 = −5

2c
2r0,

α3 = 1
16(12− 44cr2

0 + 19c2r4
0), α4 = 1

8(−22c + 27c2r2
0)

andα5 = 19
16c

2. So, if wedefine

Jm
n (t) =

∫ 1

0
Jn(rt)r

m
√

1 − r2 dr,

weseethat

b2(r0) = U

π

∫ ∞

0
J1(r0t)(α1J

2
1 + α2J

4
1) dt

+
U

π

∫ ∞

0
J0(r0t)(α3J

1
0 + α4J

3
0 + α5J

5
0) dt.

The integralsJm
n arestandard[20, Equation(11.4.10)]

J1
0 = t−1j1(t), J3

0 = t−1j1(t) − 3t−2j2(t),

J5
0 = t−1j1(t) − 6t−2j2(t) + 15t−3j3(t),

J2
1 = t−1j2(t), J4

1 = t−1j2(t) − 3t−2j3(t),

where jn(x) = (1
2π/x)Jn+1/2(x) is asphericalBesselfunction.Hence

b2 = U(γ1W
1
01 + γ2W

2
02 + γ3W

3
03 + γ4W

1
12 + γ5W

2
13),

whereγ1 = α3 + α4 + α5, γ2 = −3(α4 + 2α5), γ3 = 15α5, γ4 = α1 + α2, γ5 = −3α2 and

W l
mn(r0) = 1

π

∫ ∞

0
t−lJm(r0t)jn(t) dt, 06 r0 < 1.

W l
mn is a Weber–Schafheitlinintegral [20, Equation11.4.34]; it canbeexpressedin terms

of a hypergeometricfunction. In all the casesof interestto us, the hypergeometricfunction
reducesto apolynomial

W1
01 = 1

8(2 − r2
0),
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W2
02 = 1

128(8 − 8r2
0 + 3r4

0),

W3
03 = 1

1536(16− 24r2
0 + 18r4

0 − 5r6
0),

W1
12 = 1

32r0(4 − 3r2
0),

W2
13 = 1

256r0(8 − 12r2
0 + 5r4

0).

Hence, wefind that b2 is asextic polynomial givenby

b2(r0) = U(p0 + p1r
2
0 + p2r

4
0 + p3r

6
0),

where

p0 = 3
16 − 11

64c + 19
512c

2,

p1 = − 3
32 − 23

64c + 155
1024c

2,

p2 = 83
512c + 491

4096c
2,

p3 = − 515
8192c

2.

Wecannow use(28) to calculatethesecond-ordercorrectionto theaddedmass.Theresult
is

M2 = 8
3ρ(p0 + 2

5p1 + 8
35p2 + 16

105p3)

= ρ(2
5 − 26

35c + 97
315c

2), (30)

which gives(2); here,wehave used

∫ 1

0
s2m+1

√

1 − s2 ds = m!Ŵ(3/2)

2Ŵ(m + 5/2)
.

Whenc = 0, the result (30) agreeswith the known exact result for a sphericalcap [2]
when the capis shallow; see[8] for more details.Anotherinterestingcaseis c = 2, sothat
f (0) = f (1) = 0; thenM2 = 46

315ρ. Also, when c = 117
97 ,M2 takes its minimum valueof

− 163
3395 ≃ −0·05. NotealsothatM2 vanishesfor two positive valuesof c, approximately 0·8

and1·6; at thesevalues, thecorrectionto theaddedmassis fourthorderin ε

Finally, we cancompute the second-ordercorrectionw2. By substitutingb2 in (27), and
evaluatingtheintegrals,wefind that

w2(r) = −(U/π)
√

1 − r2(W0 + W1r
2 + W2r

4 + W3r
6), (31)

where

W0 = 2
3 − 211

225c + 14011
44100c

2,

W1 = −1
6 − 41

75c + 9337
29400c

2,
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W2 = 83
450c + 1215

11025c
2,

W3 = − 103
1960c

2.

6. Discussion

In thispaper, wehavepresentedaperturbationmethodfor calculatingaxisymmetricpotential
flow pastarippleddisc.Themethodis generalandtakesproperaccountof theedgebehaviour.
At eachperturbationorder, onehasto solve aone-dimensionalhypersingularintegral equa-
tion, Lwn = bn; theoperatorL correspondsto theunperturbed(flat) disc.Thebasicsolution
(w0) is thesolutionfor flow pastaflat disc.Thefirst-ordercorrection(w1) is identicallyzero.
For thesecond-ordercorrection(w2), the main difficulty is in calculatingb2; this, in turn, is
centredon thecalculationof

λ =
f (r) − f (r0)

r − r0
.

This canbedonefor polynomial f ; our explicit calculationsarefor quarticf . It seems that,
althoughthesecalculationsaretedious,they could be mechanisedusinga computeralgebra
package,andthen onecouldobtainresultsfor high-orderpolynomial approximationsto quite
generalsmoothrippledsurfaces.

Finally, let us make afew remarkson non-axisymmetric flow pasta rippled disc. Thus,
supposethat

φ0(x, y, z) = U(x sin β − z cosβ)

sothatβ = 0 givestheaxisymmetricproblem.Hence

b(x, y) = U cosβ + εU sin βf ′(r) cosθ.

The first term givesan axisymmetriccontribution to M. Thesecondterm gives a first-order
correctionto w, namely εw1(r) cosθ where [8]

w1(r) = −4

π
Ur sin β

∫ 1

r

9(t) dt

t
√

t2 − r2

and

9(t) =
1

t

∫ t

0

r2f ′(r) dr
√

t2 − r2
.

This doesnot give afirst-ordercorrectionto M, but it doesgive asecond-ordercorrection
[8]

M̃2 = −
(πρ

U

)

sin β

∫ 1

0
w1(r)f

′(r)r dr

= 4ρ sin2 β

∫ 1

0
{9(t)}2 dt,
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wherewehavesubstitutedfor w1 andinterchangedtheorderof integration.For thequarticf ,
given by (29),wehave

9(t) = 2
3t

2(1 − 4
5ct

2)

and

M̃2 = 16
45ρ sin2 β(1 − 8

7c + 16
45c

2).

Hence,correctto secondorderin ε, we find that

M = Ma cosβ + ε2M̃2,

whereMa is theaxisymmetricresultgiven by (2).

Appendix. The kernel L(r0, r)

Thekernel L is definedby (12) in termsof K which is itself defined by (8). Wehave

N(q) = (−F ′ cosθ,−F ′ sin θ, 1) and N(p) = (−F ′
0 cosθ0,−F ′

0 sin θ0, 1),

in terms of Cartesiancomponents,whereF ′ ≡ F ′(r) andF ′
0 ≡ F ′(r0). Hence

N(p) · N(q) = 1 + F ′F ′
0 cos(θ − θ0),

N(q) · R1 = F − F0 − F ′{r − r0 cos(θ − θ0)},

N(p) · R1 = F − F0 + F ′
0{r0 − r cos(θ − θ0)}

and

(N(q) · R1)(N(p) · R1) = A + B cos(θ − θ0) + C cos2(θ − θ0),

whereA,B andC aredefinedby (15), (16) and(17), respectively. Thus

L = Ĩ 0
3 + F ′F ′

0Ĩ
1
3 − 3{AĨ 0

5 + B Ĩ 1
5 + C Ĩ 2

5 },

where

Ĩ n
m =

∫ π

−π

R−m
1 cosn(θ − θ0) dθ

= 2
∫ π

0

cosnϕ dϕ

{r2 + r2
0 + (F − F0)2 − 2rr0 cosϕ}m/2

.

In thedenominator, replacecosϕ by 2 cos2 1
2ϕ − 1, andthenchangetheintegrationvariable

usingϕ = π − 2θ . Theresultis

Ĩ n
m = 22−mκm(−1)n(rr0)

−m/2I n
m(κ),

whereκ is definedby (18) andI n
m(κ) is definedby (14),whence(13) follows.
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