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Abstract. The problemof threedimensonal potenia flow pastathin rigid screenis reducedto a hypesingular
bounday integral equaton. This equaton is then projecied onto a flat refeencescreen,which is taken to be a
circular disc. Solutions are obtained for screensthat are axisymmetic petturbaions from the disc, so that the
screensrippledconcenticaly. Theaddedmassis calculated for axisymmetic flow pastsuch screensgorrectto
secondorder.
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1. Introduction
Lamb's Hydrodynamics gives the addedmassof aflat circular discas[1, Section108]
Mo = $pd®, 1)

wherethedischasradiusa andis moving perpendiculato its planethroughaninconpressible
inviscid fluid of density po. Herein,we calculatecorrectionso My whenthe disc is perturbed
out of its planeinto a wrinkled surface 2. Specifically, we considerrippled discs, meaning
thatthe disc perturbationis axisymmetric.Thus, Q2 is given by

Qz=¢f(r), 0<r<l —nw<L0<m,

where (r, 0, z) arecylindrical polarcoordinatesf is agivensmoothfunctionof onevariable,
ande is asmal dimensionlessparaneter We supposethat the screenQ translateswith con-
stantspeedU alongthe z-axis, so that the resultingboundary-alue problemfor a velocity
potential ¢ is axisymmetric.(Equivalently, we canhold 2 fixed in a uniform flow in the
negative z-direction)

It turnsout thatthe addedmassis givenby

M = Mo+ &*Ma+-- -,

for any wrinkled disc 2 (not merely rippled discs)when 2 translatesalong the z-axis. (For
othertranslationdirections,this resultremainstrue for rippled discs,but, in general the cor-

rectionto My is first orderin ¢.) Consequentlywe have to work to secondorderif we want
to obtainanon-trivial correction.We shalldevelopamethodfor carryingout this calculation,
andpresentdetailedresultsfor quarticsurfacesgiven by

z=36r*(L—3er®), 0<r<l, -m<6<m,
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where ¢ is aparaneter For this two-paraneter family of surfaceswe find that
M = 8p{1+ 35623 — L + T}, )

with anerrorof O(g%). In particular whenc = 0, we recover aresultin agreemenwith the
exactsolutiondueto Collins [2] for asphericalcap. The generalizatiorof (2) for translations
in otherdirectionsis given in Section6.

There are other methodsin the literaturewith a similar generalaim. However, theseare
limited to first-ordercalculations(which are either trivial or canbe performedexplicitly for
ary f) or they are defectve in some way. To put theseremarksin contet, let us begin by
recalling that the classicalproblemof potentialflow pasta flat circular disc can be solved
exactly by the methodof separatiorof variablesin oblate spheroidalcoordinateq1] or by
recastinghe problemasa mixedboundary-@alue problemin a half-spacez > 0[3]. Attempts
have beenmade to adaptthe latter methodologyto problens for which 2 is a non-planar
perturbationof acirculardisc D.

Janssorj4] imagined2 to be a piece of aninfinite interface separatingwo half-spaces,
andthen perturbedthis transnission problemaboutthe flat interface. (This is analogousto
the theory of small-amplitudewater waves[5, Chapter2] andto the theory of scatteringby
slightly roughsurfaces[6, Chapter3].) However, the behaviour of the solution nearthe edge
of Q inducesspurioussingularitiesat the edgeof D.

BeomandEarmme[7] beganwith assumedepresentationfor ¢, namely

¢ = /oo As(§)Jo(r)eTide for +z>ef, @)
0

motivated by theuseof suchrepresentationfor flatdiscs[3, Chapter3]. However, we cansee
thattherewill be pointsnear<2 for which oneof (3) will diverge.

In a previous paper[8], we began bereducingthe exact boundary-alue problemto a
hypersingulaintegral equatiorfor [¢], thediscontinuityin the potentialacross2. We rewrote
this equationby projecting onto the unperturbed(reference)surface, which is the disc D.
This is an exactrefornmulation of the original boundary-alue problem Next, we introduced
perturbationexpansions)eadingto a sequencef hypersingulaboundaryintegral equations
of theform Hw, = b, where

[¢]=wo+8w1+82w2+~-

and H correspondso potentialflow pastarigid circular disc. We derived anexplicit closed-
form expressionfor thefirst-ordercorrectionw;. We dso derived explicit resultsfor wg, w;

andw, for two particulargeometriespamely an inclinedflat dlliptical screeranda spherical
cap.We calculatedthe addedmassfor theseflows, andfound agreenent with known exact
solutions.

The calculationdn [8] are basedn two-dimensionaintegral equationsand donotassune
ary symmetriesin the geometryor the ambientflow. However, the second-ordercalculations
aredifficult. In this paper we investigateaxisymmetricproblemswith similar methods,n or-
derto seewhetherthisrestrictedclassof problemsallows second-ordetalculationgo proceed
more readily The axial symmetry leadsto one-dimensionalhypersingulaiintegral equations
with kernelsinvolving completeelliptic integrals. Their analysisis quite differentfrom that
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describedn [8]; in particular we make essentialuseof certainintegral representationsf the
completeelliptic integrals.

A secondmotivation for this studyis asa model for other more complicated but more
important physical applications.Thus, the basic methodology(nanely, formulate an exact
boundaryintegral equation,project exactly onto a referencesurface and then introducea
regular perturbationexpansion)haswide applicability, and it will succeedvheneser onecan
solve the underlyingboundaryintegral equationfor the referencesurface.For example, we
cancite problens of Stokes flow [9, 10], wheresmall obstaclesareimmersedin a viscous
fluid (so that the Reynolds numberis gnall); a lengthyanalysisof sucha flow pasta per
turbedspheres given in [9, Section5-9]. For anotherexample,we cancite crackproblemsn
elasticitytheory;theseareimportantbecausehey arisein theoriesof crackstability andquasi-
static propagation Applicationsof the methodologydescribechereinto problens involving
perturbedpenry-shapedcracksare currently being made. In-plane perturbationsof circular
discsand cracksare analysedn [11, 12].

2. Formulation
Let Q2 beathin rigid screendefinedby
Qiz=F(x,y), (x,y) € D,

where (x, y, z) areCartesiancoordinates D is theunit disc in thexy-plane,and F is agiven
smoothfunction; later, we shallrestrict F to be afunctionof r = \/x2 + y2. The problemis
to solve Laplace$ equation

2 3% 9%
— L4+ =0,
ax2  9y2  9z?

in theunboundedegion exterior to 2, subjectto

@—F%:O on Q 4
on on

andg = O(R3%) asRz — oo, where R3 = r? + 72, ¢y is the velocity potentialof the given
ambient flow, and 3/dn denotesnormal differentiation.We also requirethat ¢ is bounded
everywherein the flow.

It is known that¢ canberepresenteds a distribution of normaldipoles

1 a
¢(P) = ym /[cb(q)]—G(P, q) dS,, (5)
T Jo Bnq

where G(P, q) = |r — q|™*, g € Q haspositionvectorg with respecto theorigin O, and P
haspositionvectorr. Furthermoredenotethe two sidesof Q by @t and2~, and define the
unit normal vectoron 2, n, to pointfrom Q* into thefluid. Then,we define the discontinuity
in ¢ acrosx2 by

[B@]= lim $(0)— lm ¢(0),
0—qt 0—q
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whereg € Q, g € QF andQ is apointin thefluid.
Applying the boundarycondition(4) to (5), we obtain

1 32 _ 9o
57{2 #@)g 5O, 0)ds, = —5 . peg, ®)

which is the governing hypersingularintegral equationfor [¢]. The integral in (6) must be
interpretedin the finite-part sense.Also, (6) must be solved subjectto [¢(g)] = O for all
g € 0L, the edgeof Q2. Moreinformation on (6) andits derivation, andon two-dimensional
finite-partintegrals canbefoundin [12] and[13].

Let usdefineanormal vectorto Q2 by

—oF —0F
N = ( ,—,1),
ax dy

whencer = N/|N| is aunit normal vector;this effectively specifies Q*. Supposehatp €
andg € Q areat (xo, yo, zo) and(x, y, z), respectiely. Let

[P(@)] = w(x, y).

Then,we canproject(6) onto D. Thus,usingz = F(x, y) andzg = F(xo, yo), we rewrite (6),
exactly, as an integral equationover D [8],

1
Ef Jc(x()v )’O;X, )’)w(x’ }’) dA = b(-x()’ )’O), (-x07 )’O) € Dv (7)
D

where dA = dx dy,

K = R°(N(p) - N(9)} — 3R *(N(p) - R))(N(q) - Ry), )
Ry = (x — x0.y — yo. F(x.,y) — F(x0. y0)). Ry = Ry, and

b(x,y) = —N - gradeo. (9)

Equation(7) is to be solved subjectto the edgeconditionw(x, y) = 0 for r = 1.
In the sequel,we take

¢o=—Uz whence b=U.

Wewill thencalculateanapproximatiorto w by solving (7). Theaddedmassitselfis given
exactly by [8]

M = —E/ w(x, y)dA; (20)
UJp

this formula comesby noting that, by definition, 7 = %MUZ, where T is the kinetic enegy
of thefluid motion [1, Section44]. Exactsolutionsfor M are known when € is aflatcircular
disc,aflat dliptical screeranda sphericalcap;see[8] for references.
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3. Axisymmetric problems: rippled discs

Assumehat? is given by

Qz=F(r), 0<r<l —-=m<6<m.

Thus <2 is circularly symmetric- it is rippled. As ¢g = —Uz, the solutionw is independent
of 0
w(x,y) = w(r).

Then, thetwo-dimensionalintegral Equation(7) becones
1 1
—f L@ro,)w(ryrdr=U, 0<rg<1l (12)
47 0

This is a one-dimensionalhypersingulaintegral equationfor w(r); it is to be solved subject
tow(1) = 0. Theintegral in (11) is a Hadanmardfinite-partintegral. The kernelis givenby

b2

L(ro,r) = [ K (xo, yo; x, y) 09, (12)
7T
wherex = r cos6, y = r sin6, xo = rg Cosy andyg = rg Sin .

It is well known that the standardboundaryintegral equationsof axisymmetricpotential
theory can be reducedto one-dimensionalntegral equationsin which the kernels involve
completeelliptic integrals[14, 15]. The presentsituationis no exception,aswe shall see.

In the Appendix,it is shovn that

L = 3i3(rro) 3219 — F'FYI3) — 3c®(rrg) YA — BIE + CI2), (13)

where F = F(r), Fo = F(ro), F' = F'(r), Fj = F'(ro),

T/2 cos2n6 do
I"=1"(k) = , 14
m =) /0 (1 — k2 sir? g)m/2 )

A = (F — Fo)* + (F — Fo)(Fyro — F'r) — 3F'Frro, (15)

B = (F — Fo)(F'ro — Fgr) + F Fy(r? + 1), (16)

C = —1F'Fjrro (17)
and

4rr,

Sl Ty (9

notethat
2 4rrg 4rrg

= <
s (r+ro)? (r—ro)?+4drrg



426 PA. Martin

with k2 = 1 only whenr = ro.

Theintegrals I7: canbe expressedn termsof completeelliptic integralswhenm is anodd

integer[16, Section2.58]
19(k) = K 2E(k),
13(k) = k'72(1 — 2k ) E (k) + 2k 2K (k),

(k) = 3k~*(2 - kKA E (k) — 3k’ 2K (k),

Ig(k) = —=2(kk*)2(1 — k> + KN E (k) + §(kk') 22— k) K (k),
15(k) = —5(kk') (8 — 12k* 4 2k* + k®)E (k) + 3(k*k")"%(16 — 16k* — k*)K (k),

where k2 = 1 — k? andthe completeelliptic integrals E and K aredefinedby

/2 /2
E(k) = / (1—k?si? )Y?d9 and K(k) = / (1— k2 sir? 6)"Y2dg,
0 0

respectiely.

3.1. THE FLAT DISC

If Qis flat and lies parallelto the xy-plane,F = Fy. Hence,F' = F; =0, A=8=C =0

andx = k, where

2 4rrg
(r +ro)?

Thusthekernel L simplifiesto

4  Ek)

Lo(ro,7) = %kg(rm)_(3/2)139(k) T+ ro (r — rg)?

andtheintegral equation(11) reducego

1 flrE(k) w(r) dr

T

=U, 0<ro<l],
o r+ro(r—rp)? S0

with w(1) = 0; here,we have used

(r — ro)?

K?=1-k*= :
(r +ro)?

(19)

(20)

(21)

The hypersingularintegral equation(21) for axisymmetricpotentialflow pasta rigid flat
circular disc seens to be new, athoughit canbe extractedfrom [15, Equation(6)]. (It also

yieldsthe crack-openingdisplacenent w for a pressurizegbenry-shapectrack)

Asr — rg, k —> 1l and E(1) = 1, sothatr Lo(rg, ) exhibits the basichypersingularityin

onedimension,namely (r — ro) 2.
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The flat-discintegral equation(21) canbe solved exactly, using several differentmethods.
Thus,if we replacethe constantU on theright-handside by a given functionb(rg), we heve

i) = _4/ ﬁ/jmsfds

for aderiation of thisresult,see for example,[17] or [18]. In particulat whenb(r) = U, we

obtainw(r) = —(4/m)U1—r2.

3.2. THE SINGULARITY OF THE KERNEL

(22)

We areinterestedn the singularity of the kernel L(rg, ) as|r — ro| — 0, for any F(r). Let
usdefine

R=r—rg and AZ(F—F())/R,
sothat A is boundedor all R. In particulay A — Fjasr — rg. It follows that

P12 R%(1+ A?)
N (r +r0)2 + R2A%’

whencex’ — 0 as R — 0. In this limit, the completedlliptic integral K is singular: K (x) ~
log(4/«’) ask’ — 0.

A cursoryglanceat L suggests very strongsingularity dueto the termscontainingx’—*
in IZ (k). However, variouscancellationsoccur To seethis, all quantitiesmust be expanded
for small R. Expandingaboutro, we heve k2 ~ 3 Borg °R? asR — 0, wherefy = 1+ F2.
Forthefirsttermin (13), we have

%Kg(rro)—(3/2)(1§) _ F/F(/)Igl) ~ %ro_3130/(/—2
~ (2/r)R"? asR— 0, @3

thus,thistermreducedo theflat-disckernelfor small R, as senin (20).
Forthesecondermin (13), we have

A~ —=3D + RoroFjA,
B ~ —2D + R’roF}B,
C~ —3D + R*oFiC
asR — 0,where
D = roF4{roFy + R(Fy+ roFy)},
A= —SF) = roFy.
B = 3F) +roFy,

o 1 "
C=-35F —3 oFo ,
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Fy = F"(ro) and Fy’ = F"(ro); thus,®, whichis commonto A, 8 andC, containsall the
termsin R andR®. Then

AIQ — BIE+ CIZ ~ DOy + R*roFy(AIY — BI + CI2)

= D Q1+ RProF{(F§ Q2+ 3roF§ 01),

where
01 = ~318 - 21 - 412
= A+ kP E®) — 2+ kDK (),
Q2 = ~319 - 31— 112

= 2(k%") ?(4+ % — 6kNE (k) — 34+ 3K (i),
whenceQ; ~ 4logx’ andQ, ~ —%K"Z ask’ — 0. It followsthatthesecondtermin (13) has

alogarithmicsingularity, so that L hasa dominantsingularity given by (23), with additional
(wealer) logarithmicterms.

4. Slightly rippled discs
The hypersingulatintegral equation(11) is exact. It is valid for axisymmetricflow pastany

rippled disc,and it could be solved numerically. Here,we supposédhatthe ripplesaresmall,
andwrite

F(r)y=¢f(r),
where ¢ is a small dimensionlessparaneterand f is independenbf ¢. Thenwe look for
approximnate solutionsof (11), valid for small ¢.

It turnsout that

L=Lo+&’L,+ 0(s* ase— 0, (24)

where L is the flat-disckernel given by (20) and L, is given by (25) below. To obtain(24),
we startby setting

A =¢A with A= and R=r—rp.

f(r) = f(ro)
R

Next, write L = LD + L@ where
LY =330 1)(k) and L@ =L LY.
Forsmall ¢, we have

k=k—¢e’8+0(@h with §=3k3(f — fo)?/(rro),
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where f = f(r), fo = f(ro), « is defined by (18) andk is defined by (19). L® is quadratic
in F(r) and F'(r), whenceits contritution to L, will come by replacingF by f and« by k.
For L™, we musttake accountof the differencebetweenx andk; this gives

20 ¢ £N215
LO(ro, r) = Lo(ro, r) — ot —JO K { 2 2~ DE®K) - K(k)} .

Finally, smplificationgives

2
LZ(FO’ r) = {

25
r+ro ( )

SIE()  SE() SsK(k) }
(r—ro)®2  (r+r9? (r+r?)’

where
r2 + rg

Sy = 6A2 —AA(f + f§) +
rro

f'for

S2 = 612 — 44 (r + o) ( — f°>,

r —ro

I for

/ / 2
S3= —3A2 4 A(r + ro) (fr°+ for) R
rro rro

f = f'(r) and f§ = f'(ro). Note that the apparenthypersingularityin (25) is removable
becauses; = O(R?) asR — O.
Having expandedhekernel for small ¢, we next expandw as

w(r) = wo+£w1+82w2+---.
Then, (11) gives

Lwg=U, Lwy =0, and Lwy=by,
where £, defined by

1

! 1
(Lw)(ro) = %fo Lo(ro, w(r)rdr = ;]{) rEk) w(r)dr

r+ro (r —ro)?’

is the basichypersingulaioperatorfor axisymmetricpotentialflow pastarigid circular disc

1
b = —Lowg and (Low)(rg) = %/ Lo(rg, r)w(r)r dr.
0

It follows immediatelythat
4
wo(r)=——)UV1—-r2 and w;=0.
T
Forw,, we canforeseghatthe mostdifficult partof thecalculationwill involve theevaluation

of b, = —Lowp. In the net section,we describethis calculationfor a certainquartic sur
facef.
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Finally, we cancalculatethe second-orderorrectionto the addedmassfrom (10)

2 1
M, = e wa(r)r dr. (26)
U Jo

But the solutionof Lw, = b, is given by (22) as

-4 1 1 " bo(s)s ds
wo(r) = 7/,- W2_r2/0 N dr. (27)

Substitutingthis expressiorin (26), and interchangingheorderof integrationtwice, we obtain

1
M, = 87'0 / sv 1 — 52by(s) ds, (28)
0

which avoids an explicit calculationof ws.

5. Arippled quartic surface
Considera quarticsurfacegiven by
z=c¢f(r) with f@)=221-3cr®), 0<r<l -n<0<m, (29)
where ¢ is aparaneter Thus f' = r — cr3,
A= %(r +ro){l— %c(r2 + )},
S1=0— ro)z{% + %c(r2 + drro + rg) — %cz(r2 + rg)(5r2 + 12rg + 5rg)},
So = (r +r0)*{(—% + 3c¢(3r% + drro + 3r) — £c2(r® + rd) (5r? + 8rro + 5rd)},
Ss = (r +r0)*{=3 + 2c(r? +rd) + 20" — 1% + 1)),
whence
La(ro,r) = —4c{l— 2c(r® + r§)}(r + ro) E(k)
+(E = e+ 1) — 1At — 1422+ 1)} (r +ro) K ().

The next step isto evaluate b,; we have

U 1
ba(ro) = —(L2wo) (ro) = ;/ La(ro, r)y1—r2rdr.
0
The difficulty is that » occursthroughk (defined by (19)) in the agument of the conplete
elliptic integrals.We proceedndirectly by usingcertainintegral representationgl9, p. 249]

K (k)
r+ro

o0
=1in / Jo(rt) Jo(rot) dr,
0
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(r+ro)E(k) = (r* + rg)% — 7rrg /O Ja(rt) J1(rot) df,

where J, (x) is aBesselfunction. Thesegive

o0
Ly, = w(awr + a2r3) / Ji(rt) Ji(rot) df + (a3 + a4r2 + a5r4)
0

o0
X /0 Jo(rt) Jo(rot) dt,
where
oy = 4derg(l — gcrg), oy = —gczro,
az = (12— 44cr2 +19%8),  as= 2(—22 + 2742)

andes = 2¢2. So, if we define

1
g0 = [ aeorVi= e,
0
we seethat

U (o]
botro) = = fo J(ron) (@12 + aagly o

v | " Jotron (@sd + s + asgS) .
Theintegrals ! arestandard[20, Equation(114.10)]
Jo=1"®), g5 =1 =320,

6 =17 ) — 6172 jo(0) + 1572 j3(1),
Fi=1"00),  gi=1""00) = 3720,
where j,(x) = (%n/x)JnH/z(x) is asphericalBesselfunction.Hence
ba = U (1 War + v2Wo + vsWes + vaWin + vs Wia),

where y; = a3 + a4 + as, Yo = —3(as + 2a5), y3 = 155, y4 = a1 + a2, ys = —3az and
1 o0
Wy, (r0) = = / t7 T (rot) ju() dt,  0<rg < 1.
T Jo

Ww! is aWeberSchafheitlinintegral [20, Equation11.4.34]; it canbe expressedn terms

of a hypegeometricfunction. In all the caseof interestto us, the hypegeometricfunction
reducedo apolynomial

Wor = §(2— 15,
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Wgz = ﬁ(8 — 8r§ + SrS‘),

Wi = 1oe(16 — 24r5 + 1875 — 5r),

Wiy, = Sro(4— 3r2),
Wis = 5eero(8 — 1278 + 5r).

Hence, we find that b, is a sextic polynomal givenby

ba(ro) = U(po + pira + parg + pard),

where
po=3— Het &2
p1= —3% - g—ic + %‘62,
P2 = 58—1326 + %91662,
pP3= —51—195262-

We cannow use(28)to calculatethe second-ordecorrectionto theaddedmass.Theresult

My = $p(po+ Ep1+ P2 + 7p3)
= p(¢ — Rc+ FcA. (30)

which gives(2); here,we have used

1 'T'(3/2)
m+l 1 2ds = " .
o S = 1 5/2)

Whenc = 0, the result (30) agreeswith the known exact resultfor a sphericalcap[2]
whenthe capis shallov; see[8] for more details. Anotherinterestingcaseis ¢ = 2, sothat
f(0) = f(1) = 0;thenM, = 32p. Also, when ¢ = T/, M, takes its minimum value of
—%935 ~ —0.-05. Note alsothat M, vanishesfor two positive valuesof ¢, approximetely 0-8
and1.6; atthesevalues, thecorrectionto the addedmassis fourth orderin ¢

Finally, we cancompute the second-ordecorrection w,. By substitutingb, in (27), and

evaluatingtheintegrals,we find that

wa(r) = —(U/m)V 1= r2(Wo + War? + War® + War®), (31)

where

_ 2 211, 140112
Wo = 5 — 325¢ + 221005

_ 1.4 9337 2
Wi=—5 — 75¢ + 2040
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Wa = gge + Tionc”

__103.2
W3 = —{560¢"

6. Discussion

In this paper we have presented perturbatiormethodfor calculatingaxisymmetricpotential
flow pastarippleddisc. Themethodis generabndtakes properaccounbof theedgebehaiour.

At eachperturbationorder, onehasto solve aone-dinensionalhypersingularintegral equa-
tion, Lw, = b,; theoperator.L correspondso the unperturbedflat) disc. The basicsolution
(wo) isthesolutionfor flow pastaflat disc. The first-ordercorrection(ws) isidentically zero.
For the second-ordecorrection(w,), the main difficulty is in calculatingb,; this, in turn, is
centredon the calculationof

f) = fro)

r —ro

A=

This canbe donefor polynomial f; our explicit calculationsarefor quartic f. It seens that,
althoughthesecalculationsaretedious,they could be mechanisedisinga conputeralgebra
packageandthen onecould obtainresultsfor high-orderpolynormial approximetionsto quite
generakmoothrippled surfaces.

Finally, let us malke afew remarkson non-axisymmetric flow pasta rippled disc. Thus,
supposehat

¢o(x,v,2) =U(x sin B —z cosp)
sothat 8 = 0 givesthe axisymmetricproblem.Hence
b(x,y) = U cosB + eU sin Bf'(r) coso.

The first term gives an axisymmetriccontritution to M. The secondterm gives a first-order
correctionto w, namely ew,(r) cosé where 8]

_ 1
wy(r) = —4Ur sin ,3/ 7\1}(;) o
T ro 12 —r?
and
t .2 ¢/
v = L[ L0d
tJo V12—r2

This doesnot give afirst-ordercorrectionto M, but it doesgive asecond-ordecorrection

(8]

M,

1
—(37) sin ,3/0 wi(r) £ (ryr dr

1
4p sir? ﬂ/ {(W(0))?dr,
0
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wherewe have substitutedfor w, andinterchangedhe orderof integration. Forthe quartic £,
given by (29), we have

W(t) = 221 — gct?)
and

M, = i—gp sir? B(1— %c + i—gcz).
Hence,correctto secondorderin e, we find that

M = M, cosp + M,

where M, is the axisymmetricresultgiven by (2).

Appendix. Thekernel L(ro, r)

Thekernd L is definedby (12) in termsof K which is itself defined by (8). We have
N(g) = (=F' cosf,—F'sind,1) and N(p) = (—F; cosby, —F} sin 6, 1),
in terms of Cartesianconponentswhere F’ = F'(r) and Fy = F'(rp). Hence
N(p)-N(q) =1+ F'Fjcod6 — 6p),
N(gq)-R1=F — Fo — F'{r —ro cos(6 — 6p)},
N(p)- Ry =F — Fy+ F{{ro —r co6 — o)}
and
(N(g) - R)(N(p) - Ry) = A+ B cog6 — 6p) + C cos2(6 — 6p),
where A4, 8 andC aredefinedby (15), (16) and(17), respectiely. Thus
L =19+ FFI} — 3{AIL + BI + CIZ),
where

T
" = / R{™ cosn(6 — 6p) do

m
¥4

f” cosng dp
2 . .
o {r2+r§+ (F— Fy)? — 2rrg cos¢}™/?

In the denoninator, replacecosg by 2 cos® %w — 1, andthenchangethe integration variable
usingg = m — 26. Theresultis

I, = 227" (= 1" (rro) "2 1} (),

where k is definedby (18) and I («) is defined by (14), whence(13) follows.



On the added mass of rippled discs 435

References

=

No ok~

© ©

10.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.

H. Lamb, Hydrodynamics, 6th edn.Cambridge:University Press(1932)738 pp.

W.D. Collins,Onthesolution of someaxisymmetricboundaryalue problemsby meansof integral equations
II. Furtherproblemsfor a drcular disc and aspheiical cap.Mathematika 6 (1959)120-133.

I.N. Sneddon,Mixed Boundary Value Problems in Potential Theory. Amstrdam: North-Holland (1966)283
pp.

P-A. JanssonAcousic scatering from aroughcircular disk. J. Acoust. Soc. Amer. 99 (1996)672—681.
J.J.Stoker, Water Waves. New York: Interscience(1957)567 pp.

J.A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces. Bristol: AdamHilger (1991)277 pp.
H.G.BeomandY.Y. Earmme,Axisymmetic crackwith a slightly non-flat surface.Int. J. Fract. 58 (1992)
115-136.

P.A. Martin, On potenial flow pastwrinkleddiscs.Proc. R. Soc. LondonA, to appear

J. Happeland H. Brenner Low Reynolds Number Hydrodynamics, 2nd edn. The Hague:Martinus Nijhoff
(1973)553pp.

C. Pazrikidis, Boundary Integral and Sngularity Methods for Linearized Viscous Flow. Cambidge:
University Press(1992)259 pp.

P.A. Martin, Mapping flat cracksonto penry-shapedcracks:shearoadings. J. Mech. and Phys. of Solids 43
(1995)275-294.

PA. Martin, Mapping flat cracksonto penry-shapedcracks,with appicaion to somevhat circular tensle
cracks.Quart. Appl. Math. 54 (1996)663—-675.

G. KrishnasamyL.W. Schmer, T.J. Rudolphi and F.J. Rizzo, Hypersingular bounday integral equatons:
same gplications in acoustic and elastic wave scattering. J. Appl. Mech. 57 (1990)404—-414.

JL. Hess,Cdlculation d potenia flow aboutbodies of revolution having axes pempendcular to the free-
streamdirecion. J. Aerospace ci. 29 (1962)726—-742.

JL. Blue,Boundaryintegral solutionsof Laplaces equaton. Bell System Tech. J. 57 (1978)2797-2822.
|.S. Gradsheyn andl.M. Ryzhik, Table of Integrals, Series and Products. New York: Academc Press(1980)
1160pp.

J.T. Guidera and R.W. Lardner Penny-shapedtracks.J. Elast. 5 (1975)59-73.

C. Nasim and |.N. Sneddon,A generl procedue for deiiving solutionsof dualintegral equatons.J. Eng.
Math. 12 (1978)115-128.

PF. Byrd ard M.D. Friedman Handbook of Elliptic Integrals for Engineers and Scientists 2ndrevisededn.
Berlin: Springer(1971)358pp.

M. Abramowitz andl.A. Stegun(ed.), Handbook of Mathematical Functions. New York: Dover (1965)1046
pp.



