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Abstract. The propagatormatrix is one ingredient in exact theoriesof multiple scattering.
It occursin the addition theorem(or translationformula) for expandinga sphericaloutgoing
multipole, singular at one point, in terms of regular sphericalsolutionsabout anotherpoint.
It also occursin the two-centreexpansionof the free-spaceGreen’sfunction (or free-particle
propagator).Many methodshave beendevisedfor computingthepropagatormatrix, but oneof
the mostefficient, numerically,is basedon a formula obtainedin 1990 byRehrandAlbers and
by Fritzsche.A clearderivationof this formula is given. Theformula is alsosimplified, leading
to anexpansionin inversepowersof kb, wherek is thewavenumberandb is thespacing.This
leadsto consistentapproximations,which areasymptoticaskb → ∞.

1. Intr oduction

‘Multiple scattering’meansdifferent things to different scientists,but a generaldefinition
might be ‘the interactionof fields with two or more obstacles’. For example,a typical
multiple-scatteringproblem in classicalphysicsis the scatteringof soundwavesby two
rigid spheres.Furtherexamples,suchas the scatteringof sphericalelectronwavesby a
clusterof atoms,canbe found in condensed-matterphysics[9, 20].

The problemof acousticscatteringby two spherescanbe solvedexactlyby a method
thatgoesbackto Lord Rayleigh.Supposethat thespheresarecentredatO1 andO2. Write
the scatteredfield u as a superpositionof outgoingmultipolesψm

n (separatedsolutionsof
theHelmholtzequationin sphericalpolar coordinates),onesetsingularatO1 andtheother
setsingularatO2:

u =
∑

n,m

(amn ψ
m
n (r1)+ bmn ψ

m
n (r2)).

(Precisedefinitions will be given later.) Then, determinethe coefficients amn and bmn by
applying the boundarycondition on eachspherein turn: this requiresthe expansionof
ψm
n (r2) in termsof regularsphericalsolutionscentredonO1, ψ̂m

n (r1). Thus,we needthe
addition theorem

ψm
n (r2) =

∑

ν,µ

Smµnν (b)ψ̂
µ
ν (r1)

which is valid for r1 < b, wherer1 = |r1|, b = |b| andr2 = r1 + b.
The matrix S = (S

mµ
nν ) is called the separationmatrix or the translationmatrix or the

propagatormatrix. It alsoappearsin the two-centre expansionof the fundamentalsolution
(or ‘free-particlepropagator’).Thus,with R = a + b + c, we have[9,p 494]

eikR

kR
= 4π i

∑

n,m

∑

ν,µ

(−1)nSmµnν (b)ψ̂m
n (a)ψ̂

µ
ν (c) (1.1)
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whereR = |R| andtheoverbardenotescomplexconjugation;this formulais certainlyvalid
if a + c < b.

Exactexpressionsfor S have beenknownfor over40years;see,for example[4, 1]. The
standardexpressioninvolvesa sumof min(n, ν) terms,eachof which containsa multipole
ψ s
q(b) and a Gauntcoefficient. (Gauntcoefficients can be written as the productof two

Clebsch–Gordancoefficientsor astheproductto two Wigner3-j symbols,apartfrom trivial
factors.)

However,in numericalapplications,oneoftenwantsto computeSmµnν for manyvaluesof
n andν; thestandardexpressionis inefficient for this purpose.Consequently,manyauthors
havedevelopedvariousalgorithmsfor computingS. Someof theseprovideefficient ways
of evaluatingthe standardexpression,perhapsby recursivetechniques;see,for example,
thepapersby Chew[2], Kim [11] andXu [19]. However,it is knownthatsomerecurrence
relationsarenumericallyunstablein certaincircumstances[13].

Someauthorsbeginby obtainingnew expressionsfor S, or goodapproximationsto S.
Two suchapproachesareworthy of note. First, therearemethodsbasedon diagonalization.
Theseweredevelopedfor usein fastmultipolemethods, which provideefficient numerical
methodsfor solving the boundaryintegralequationsof acoustic-scatteringtheory. See,for
example,papersby Coifman et al [3], Rokhlin [17], Epton and Dembart[6] and Rahola
[15] for more information.

Second,therearemethodsbasedon separation. Theseusea formula of the form

Smµnν (b) = eikb

ikb

∑

N,M

S
mM
nN (b)S̃

µM

νN (b) (1.2)

wherethe dependenceon (n,m) and (ν, µ) is separated.Sucha formula wasobtainedby
RehrandAlbers [16] andby Fritzsche[7], andis the focusof this paper.

It is known thatmanypublishedapproximationsto S canbeobtainedby truncatingthe
seriesin (1.2); see[7, 16]. Numerically,oneoftenretainsonly a few terms,but this canlead
to seriouserrors,especiallyif kb is not large [8]. Nevertheless,it hasbeendemonstrated
by Sébilleau [18] that, when properly truncated,(1.2) gives a very efficient and accurate
algorithmfor computingS. Moreover,hehasalsoderivedrecursionrelationsfor calculating
the termsin (1.2).

With this asbackground,we havere-examined(1.2) andits derivation.First, we show
in section3 that one of the summationsin (1.2) can be evaluatedanalytically. This leads
to anexplicit formula for S in inversepowersof kb: consistentasymptoticapproximations
of S canthenbe obtainedby truncatingthis expansion.

Second,in section4, we give a clearderivationof (1.2). We do this mainly becausethe
existingderivationsaredefectiveor sketchy.Giventheefficacyof (1.2),andits widespread
usein condensed-matterphysics,it seemsworthwhile to give sucha derivation.Moreover,
we hopeto bring themethodto theattentionof thoseworking on relatedmultiple-scattering
problemsin otherbranchesof physics.

2. The Rehr–Albers–Fritzscheformula

Let (r, θ, φ) be sphericalpolar coordinatesat O2. Suppose,for simplicity, that b = bẑ,
whereb is the position vector of O1 with respectto O2 and ẑ is a unit vector along the
z-axis (so that O1 is at r = b, θ = 0). (The generalsituation, in which O1 is not on
the z-axis can be handledby introducing rotation matrices;this was doneby Danosand
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Maximon [4].) It follows that

Smµnν (bẑ) = (−1)nSmnν(kb) δmµ (2.1)

whereδij is the Kroneckerdelta; the coefficientsSmnν(b) arecalledz-axispropagators. The
introductionof the factor (−1)n on the right-handsideensuresthat we havethe symmetry
property,

Smnν(kb) = Smνn(kb).

Moreover,the coefficientsSmnν do not dependon the sign of m, so that,henceforth,we can
assumethatm > 0.

Beforegiving anexplicit formulafor Smnν(kb), let usfix our notationandnormalizations.
We definenormalizedsphericalharmonicsby

Ymn (r̂) = Ymn (θ, φ) = (4π)−1/2Amn P
m
n (cosθ)eimφ

for n = 0, 1, 2, . . . andm = 0,±1,±2, . . . ,±n, whereAmn is anormalizationfactor,defined
by

Amn = (−1)m
√

2n+ 1

√

(n−m)!

(n+m)!
(2.2)

andPmn is an associatedLegendrefunction,definedby

Pmn (t) = (1 − t2)m/2

2nn!

dm+n

dtm+n (t
2 − 1)n.

Then,we definethe outgoingsphericalwavefunctionsby

ψm
n (r) = h(1)n (kr)Y

m
n (r̂)

whereh(1)n is a sphericalHankel function,andthe regularsphericalwavefunctionsby

ψ̂m
n (r) = jn(kr)Y

m
n (r̂)

wherejn is a sphericalBesselfunction.
We can now state the formula publishedin 1990 by Rehr and Albers [16] and by

Fritzsche[7]. It is

Smnν(kb) = (−1)min+νAmnA
−m
ν

eikb

ikb

∑

ℓ

w2ℓ+m

ℓ!(ℓ+m)!
dℓν (w)d

ℓ+m
n (w) (2.3)

for m > 0, where

w = i

2kb
and

dℓn(w) =
∑

s

(n+ s)!ws−ℓ

(n− s)!(s − ℓ)!
. (2.4)

Let us make somepreliminary commentson (2.3). First of all, it is exact. Second,
all summationsare finite; to be precise, the summation in (2.3) is from ℓ = 0 to
ℓ = min(ν, n − m) whereasthe summationin (2.4) is from s = ℓ to s = n. Thus, to
evaluate(2.3), a single sum must be calculatedwhereineachterm consistsof the product
of two sums. In fact, we will show (see(3.1) below) that part of this calculationcan be
carriedout analytically, leaving a doublesum. Nevertheless,the most importantproperty
of (2.3),numerically,is that thedependenceon n andν is separated.Finally, (2.3) givesan
expressionfor Smnν as an exponentialmultiplied by termsinvolving inversepowersof kb;
this leadsnaturally to variousapproximationsif kb ≫ 1.
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3. Reduction to a double sum

Considerthe summationin (2.3). Explicitly, we have

∑

ℓ

w2ℓ+mdℓνd
ℓ+m
n

ℓ!(ℓ+m)!
=

∑

ℓ,s,t

ws+t

ℓ!(ℓ+m)!

(ν + s)!

(ν − s)!(s − ℓ)!

(n+ t)!

(n− t)!(t − ℓ−m)!

where,in accordancewith Pauli’s ‘law of sloppiness’[14,p 126], we do not worry unduly
aboutthesummationlimits. Introducinga newsummationvariablej = s+t , theright-hand
sidebecomes

∑

j

wj
∑

s

(ν + s)!

(ν − s)!

(n+ j − s)!

(n− j + s)!

∑

ℓ

1

ℓ!(s − ℓ)!(ℓ+m)!(j − s −m− ℓ)!

whereinthe ℓ-sumcanbe written in termsof binomial coefficientsas

1

s!(j − s)!

∑

ℓ

(

s

ℓ

) (

j − s

j − s −m− ℓ

)

= 1

s!(j − s)!

(

j

j − s −m

)

.

Hence,

∑

ℓ

w2ℓ+mdℓνd
ℓ+m
n

ℓ!(ℓ+m)!
=

∑

j

wjj !
∑

s

(ν + s)!

(m+ s)!s!(ν − s)!

(n+ j − s)!

(j − s −m)!(j − s)!(n− j + s)!
.

Thus,apartfrom thesummationlimits (which will beobtainedlater),we havethefollowing
result.

Theorem1.

Smnν(kb) = (−1)min+ν
eikb

ikb

n+ν
∑

j=|m|
j !

(

i

2kb

)j s1
∑

s=s0
As(ν, |m|)Aj−s(n,−|m|) (3.1)

for all kb > 0, wheres0 = max(0, j − n), s1 = min(ν, j − |m|) and

As(ν,m) = (−1)mA−m
ν

(ν + s)!

(m+ s)!s!(ν − s)!

=
√

2ν + 1

√

(ν +m)!

(ν −m)!

(ν + s)!

(m+ s)!s!(ν − s)!
. (3.2)

It is interestingto compare(3.1) with the Rehr–Albers–Fritzscheformula (2.3). Thus,
the dependenceon n and ν is separatedin both, but (2.3) involves the functions dℓn(w)
whereas(3.1) involvesthe coefficientsAs(n,m). Formula(3.1) canalsobe usedto obtain
consistentapproximationsfor large kb. Thus,for the leading-orderapproximation(j = 0),
we must takem = 0 whences0 = s1 = 0 giving

Smnν(kb) ∼ δm0
eikb

ikb
in+ν

√
2n+ 1

√
2ν + 1 as kb → ∞ (3.3)

which is known as the plane-waveapproximation [12]. If we includetermsof O((kb)−2),
we obtain

Smnν(kb) ∼ δm0S
PWA
nν {1 + w[n(n+ 1)+ ν(ν + 1)]} − wδ|m|1S

PWA
nν

√

n(n+ 1)
√

ν(ν + 1)

askb → ∞, whereδm0S
PWA
nν is the right-handsideof (3.3) andw = i/(2kb).
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4. The Rehr–Albers–Fritzscheformula: a proof

Thepublishedderivationsof (2.3) areunsatisfactoryfor severalreasons,asdiscussedbelow
in section4.1. As (2.3) is souseful,both for numericalwork andfor generatingasymptotic
approximations,it seemsworthwhile to give a moretransparentderivation.We beginwith
an integral representationfor eikR/R.

Theorem2.

eikR

R
= 1

4π2

∫

C

ξ2

ξ2 − k2

∫

�

exp(iξ r̂ · R) d�(r̂) dξ (4.1)

whereR = |R| > 0 and r̂ ∈ �, the unit sphere. The contourC goesfrom ξ = −∞ to
ξ = +∞, passingabovethe simplepole at ξ = −k andbelow the simplepole at ξ = +k.

Proof. Direct calculationshowsthat the inner integral is 4πj0(ξR), whencethe right-hand
sideof (4.1) is

1

2π iR

∫

C

ξ

ξ2 − k2
(eiξR − e−iξR) dξ = I+ − I−

say,where

I± = 1

2π iR

∫

C

ξ

ξ2 − k2
e±iξR dξ.

Theseintegralscanbe evaluatedusingCauchy’sresiduetheorem.Thus, for I+, closethe
contour using a large semicircle in the upper half of the complex ξ -plane. There is no
contributionfrom this semicircleas it recedesto infinity, by Jordan’slemma. The contour
enclosesthe simple pole at ξ = +k (but not the pole at ξ = −k). Hence,evaluatingthe
residue,we seethat

I+ = 1
2eikR/R.

Similarly, for I−, close the contour in the lower half of the complex ξ -plane. Taking
accountof the direction of traversalaroundthe contour,and evaluatingthe residueof the
pole at ξ = −k, we find that I− = −I+, andthe result follows. �

In the aboveproof, we split the ξ -integral into two, I+ and I−, and then evaluated
eachseparately,oneby closingthe contourin the upperhalf-planeand oneby closingthe
contourin the lower half-plane. This is a standardtechnique.However,careis neededto
ensurethatI+ andI− exist separately:the splitting is not unique,andsomesplittingsmay
introduceadditionalsingularitiesat ξ = 0. For example,a commonmistakeis to split using

2jn(ξR) = h(1)n (ξR)+ h(2)n (ξR); (4.2)

eachof the sphericalHankel functionsis O(ξ−n−1) asξ → 0.
The representation(4.1) is a variant of well known formulaeusing volume integrals;

for example,DeSanto[5,p 64] showsthat

eikR

R
= 1

2π2
lim
ε→0+

∫ ∫ ∫

exp(iξ · R)

|ξ|2 − (k + iε)2
dξ. (4.3)

However, (4.1) is preferablefor at least two reasons:it doesnot involve addinga small
imaginarypart to the wavenumber;and it usesan integrationalong the entire real ξ -axis,
so that contour-integralmethodsarereadily available.
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Note that, in (4.1) (and (4.3)), one cannot interchangethe order of integration: the
resultingξ -integraldiverges.

We aregoing to combinetheorem2 with the two-centreexpansionof eikR/R, (1.1), so
as to obtainan alternativeexpressionfor Smµnν (bẑ). Thus,write R = a + b + c, and then
usethe standardexpansionof a planewave[9,p 373] twice, oncein the form

exp(iξ r̂ · a) = 4π
∑

n,m

injn(ξa)Ymn (â)Y
m
n (r̂)

andoncein the form

exp(iξ r̂ · c) = 4π
∑

ν,µ

iνjν(ξc)Y
µ
ν (ĉ)Y

µ
ν (r̂)

where
∑

n,m

≡
∞

∑

n=−∞

n
∑

m=−n
.

Substitutingin (4.1), the inner integralbecomes

(4π)2
∑

n,m

∑

ν,µ

in+νjn(ξa)jν(ξc)Ymn (â)Y
µ
ν (ĉ)I (4.4)

where

I =
∫

�

exp(iξ r̂ · b)Ymn (r̂)Y
µ
ν (r̂) d�(r̂).

Now, assumethat b = bẑ, whencer̂ · b = b cosθ and

I = 2πδmµ

∫ π

0
eiξb cosθYmn (r̂)Y

m
ν (r̂) sinθ dθ

= 1
2δmµ

∫ 1

−1
eiξbtGm(t; n, ν)dt (4.5)

where

Gm(t; n, ν) = AmnA
m
ν P

m
n (t)P

m
ν (t) (4.6)

andAmn is definedby (2.2). Gm hasthe following properties:

Gm(t; n, ν) is a polynomialof degreen+ ν (4.7)

G−m(t; n, ν) = Gm(t; n, ν) (4.8)

Gm(−t; n, ν) = (−1)n+νGm(t; n, ν) (4.9)

Gm(t; n, ν) ≡ 0 for |m| > min(n, ν).

The first of theseimplies that

G(j)
m (t; n, ν) ≡ 0 for j > n+ ν

whereG(j)
m = (dj/dtj )Gm. Hence,repeatedintegrationby partsgives

∫ 1

−1
eiXtGm(t) dt =

n+ν
∑

j=0

[

eiXt

iX

(−1

iX

)j

G(j)
m (t)

]1

−1

wherewe havewrittenGm(t) for Gm(t; n, ν). But, from (4.9),

G(j)
m (−t; n, ν) = (−1)n+ν+jG(j)

m (t; n, ν)
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whence
∫ 1

−1
eiXtGm(t) dt =

n+ν
∑

j=0

G(j)
m (1)

(−1)j

(iX)j+1
{eiX − (−1)n+ν+je−iX}. (4.10)

We will evaluateG(j)
m (1) later (lemma4); it turnsout thatG(j)

m (1) = 0 for j < |m|, so that
the lower limit in (4.10)canbe replacedby j = |m|.

Having evaluatedI, we next considerthe outer integral; it is of the form
∫

C

ξ2

ξ2 − k2
jn(ξa)jν(ξc)

∫ 1

−1
eiξbtGm(t; n, ν)dt dξ = L (4.11)

say. From (4.10), we see that the inner integral is O(ξ−n−ν) as ξ → 0. However,
jn(ξa)jν(ξc) = O(ξn+ν) asξ → 0, whencethe integrandin the outerintegralis analyticat
ξ = 0. So,

L =
n+ν
∑

j=|m|
G(j)
m (1)

(−1)j

(ib)j+1
{L+ − (−1)n+ν+jL−}

where

L± =
∫

C

ξ−j+1

ξ2 − k2
jn(ξa)jν(ξc)e

±iξb dξ.

Assumingthat b > (a + c), we can close the contour for L± as for I± in the proof of
theorem2, giving

L+ = π ik−jjn(ka)jν(kc)e
ikb

andL− = (−1)n+ν+j+1L+, whence

L = 2π ikeikbjn(ka)jν(kc)

n+ν
∑

j=|m|
G(j)
m (1)

(−1)j

(ikb)j+1
.

Combiningthis formula with (4.1), (4.4) and(4.5), we obtain

eikR

kR
= 4π ieikb

∑

n,m,ν

in+νψ̂m
n (a)ψ̂

m
ν (c)

n+ν
∑

j=|m|
G(j)
m (1)

(−1)j

(ikb)j+1

for b > (a+ c). Finally, comparisonwith the two-centreexpansion(1.1) andthe definition
(2.1) givesthe following result.

Theorem3.

Smnν(kb) = eikb

ikb
in+ν

n+ν
∑

j=|m|
G(j)
m (1; n, ν)

(

i

kb

)j

for all kb > 0, whereGm(t; n, ν) is definedby (4.6).

Note that althoughthe argumentabovegivesthe result for b > (a + c), Smnν(kb) itself does
not dependon a andc, andso analyticcontinuationshowsthat the resultmusthold for all
b > 0.

The coefficientsG(j)
m (1; n, ν) in theorem3 aregiven by the next lemma.

Lemma4. For 0 6 |m| 6 min(n, ν) and |m| 6 j 6 n+ ν,

G(j)
m (1; n, ν) = (−1)m

j !

2j

k1
∑

k=k0

Ak(ν, |m|)Aj−k(n,−|m|) (4.12)

wherek0 = max(0, j − n), k1 = min(ν, j − |m|) andAk(ν,m) is definedby (3.2). For all
othervaluesof j , m, n andν, G(j)

m (1; n, ν) = 0.
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Proof. From (4.8), it is enoughto takem > 0. From [10,equation8.751(1)],we have

Pmn (t) = (n+m)!

(n−m)!

(1 − t2)m/2

2mm!
F(m− n,m+ n+ 1;m+ 1; 1

2(1 − t))

whereF is a hypergeometricfunction. Hence,

Gm(t) = A−m
n A−m

ν (2mm!)−2(1 − t2)mFnFν

where

Fn ≡ F(m− n,m+ n+ 1;m+ 1; 1
2(1 − t))

andwe haveused

[(n+m)!/(n−m)!]Amn = A−m
n .

(This expressionfor Gm(t) can be usedto show (4.7).) Now, put z = 1
2(1 − t) whence

1 − t2 = 4z(1 − z). Then,use[10,equation9.131(1)]

(1 − z)α+β−γF(α, β; γ ; z) = F(γ − α, γ − β; γ ; z)
with α = m− ν, β = m+ ν + 1 andγ = m+ 1 to give

(1 − z)mFν = F(−ν, ν + 1;m+ 1; z).
Explicitly, we have

F(−ν, ν + 1;m+ 1; z) =
ν

∑

k=0

ak(ν,m)z
k

and

F(m− n,m+ n+ 1;m+ 1; z) =
n−m
∑

k=0

bk(n,m)z
k

where

ak(ν,m) = (−1)km!(ν + k)!

(m+ k)!k!(ν − k)!

and

bk(n,m) = (−1)km!(n+m+ k)!(n−m)!

(m+ k)!k!(n−m− k)!(n+m)!
.

Hence,after rearrangingthe doublesummation,we find that

Gm(t; n, ν) = zm
n+ν−m
∑

s=0

Csz
s (4.13)

where

Cs = A−m
n A−m

ν

s
∑

k=0

ak(ν,m)

m!

bs−k(n,m)

m!
for 0 6 s 6 n+ ν −m.

In fact, as ak = 0 for k > ν and bk = 0 for k > n − m, the summationis actually from
k = max(0, s − n+m) to k = min(s, ν). Simplifying further gives

Cs = (−1)s
∑

k

Ak(ν,m)As+m−k(n,−m)

whereAk(ν,m) is definedby (3.2).
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Finally, let us comparethe expansion(4.13) with the Taylor seriesfor Gm(t) about
t = 1, which is

Gm(t) =
n+ν
∑

j=0

(−2)j

j !
G(j)
m (1)z

j .

This showsthatG(j)
m (1) = 0 for j < m, andgivesthe desiredformula (4.12). �

Whentheorem3 is combinedwith lemma4, theorem1 is obtained,andthis latter result
is equivalentto the formula of Rehr,Albers andFritzsche.

4.1. Remarks

Here,we makesomeremarksconcerningthepapers[7, 16]. Both Fritzsche[7,equation(6)]
andRehrandAlbers [16,equation(7)] beginwith a volume-integralrepresentationfor Smµnν .
The derivationof this formula by Fritzsche[7] is flawedbecauseof the useof (4.2).

Fritzscheproceedsby obtaining a formula for Smnν(kb) (his equation(10)), involving
the integral I, definedby (4.5). He statesthat I ‘can be calculatedstraightforwardly’
[7, p 1415] but doesnot give any details.

Rehr and Albers proceeddifferently. Apart from inessentialfactors,they arrive at an
integral similar to L, definedby (4.11). Next, they interchangethe order of integration:
the resulting ξ -integral is divergent. Despitethis, it is claimed that ‘the integral over ξ
can be doneby contour integration(closing in the upperhalf-planefor t > 0 and in the
lower half-planefor t < 0)’ [16,p 8147]. But, with t > 0 for example,this argument
would only give theclaimedresultif bt > (a+ c), whereasthe remainingt-integralis over
−1 6 t 6 1. Finally, Rehr and Albers usea very interestingformula for (a variant of)
the Laplacetransformof the productof two functions[16,appendixB]. Their derivationof
this formula is also incomplete,althoughtheir final formula can be shownto be correct.
However,we haveshownabovethatthis formulais not neededin orderto obtaintheorem1.

5. Conclusions

TheRehr–Albers–Fritzscheformulacanbeusedasthebasisfor a very efficient andaccurate
algorithmfor computingthepropagatormatrix S. Here,we haveclarified thederivationof
this formula,andshownhow it canbe simplified further. This simplificationleadsdirectly
to asymptoticapproximationsfor largekb. We hopethat thesewill find applicationin other
areasof scienceandengineering, wheremultiple-scatteringcomputationsarewidespread.
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