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WAVES IN RECTANGULAR INLET WITH REFLECTING

OR ABSORBING WALLS

By Robert A. Dalrymple,1 Fellow, ASCE, P. A. Martin,2 and Li Li3

ABSTRACT: The behavior of water waves in the vicinity and within an inlet through an idealized barrier island
is studied. Two mathematical approaches are used: the first treats the waves in the ocean and bay with Fourier
transforms; and the second uses ‘‘buffer’’ domains, which permit the far-field waves to be treated by eigen-
function expansions. The first method is used to treat an inlet with reflective vertical sidewalls. In nature, inlets
lined with armor stone absorb wave motion; therefore, the second method is used with impedance boundary
conditions at the inlet sidewalls to reduce the wave energy propagating down the channel and into the bay.
Wave patterns in the inlet can vary significantly with the angle of incident wave and so can the direction of the
radiated wave field in the bay.

INTRODUCTION

Inlets situated on coastlines are subject to waves, which af-
fect their navigability and the tranquility of any attached har-
bors or bays. An inlet system consists of the ocean, a channel
through the coastline, and a bay, as shown schematically in
Fig. 1. Slots in man-made breakwaters or between large rec-
tangular caissons can also be treated as inlets, but often with
much different geometry relative to a wavelength. The math-
ematical modeling used here is applicable to both, however.

Dalrymple and Martin (1996) examined the interaction of
obliquely incident water waves with an infinitely long rectan-
gular inlet on a reflecting shoreline. They assumed that waves
in the inlet would be progressive, neglecting any wave motion
reflected back from the end of the inlet (at infinity). This is a
reasonable assumption for natural inlets, due to the absorption
of wave energy into the inlet side walls (Melo and Guza
1991a,b; Dalrymple 1992). The waves in the ocean were
treated with a Fourier transform method, and the waves in the
inlet were found by an eigenfunction expansion. Their study
provided information about the amplitudes of the progressive
wave modes within the inlet and showed the complex wave
patterns at the mouth of the inlet, including reflection and dif-
fraction.

Here, the inlet is considered to be of finite length, thus per-
mitting an interaction between the waves within the channel
and an infinitely large bay, which can lead to reflections back
into the channel. Two separate mathematical approaches are
taken to solve the problem: the first follows Dalrymple and
Martin (1996) with Fourier transforms in the bay and ocean
to describe the waves; and the second follows Momoi (1965a,b
1966, 1968), who developed the ‘‘buffer’’ method that intro-
duces radial domains at each end of the rectangular inlet. The
buffer domains permit expressing the ocean and bay wave
fields by polar eigenfunction expansions, thus removing the
need to compute difficult Fourier transforms (particularly for
the case of absorbing channel sidewalls). The cost is the added
complexity of determining the eigenfunction expansions in the
two additional buffer domains.

First, the Fourier transform method is used to examine
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purely reflective channel sidewalls. Oblique wave incidence is
handled by separating the problem into symmetric and anti-
symmetric problems. In the second half of the paper, the buffer
domain method is used (for normally incident waves), and an
impedance boundary condition at the sidewalls of the channel
is demonstrated.

For both problems, a semi-infinite ocean, x < 0, connected
to a semi-infinite bay, x > <, by a rectangular channel of length
< and width 2b, 2b < y < b, is considered. The shortlines, at
x = 0 and x = < for uyu > b, and the channel walls, uyu = b for
0 < x < <, are assumed to be vertical and perfectly reflecting.
A schematic is shown in Fig. 1. A plane wave in the ocean is
obliquely incident on the shore; the problem is to determine
the reflected waves and the waves that pass through the chan-
nel and radiate out into the bay.

For water of constant depth, the above problem reduces to
a series of boundary-value problems for the Helmholtz equa-
tion, one for each region: ocean, inlet, and bay. For the second
method (Momoi’s), two additional domains are introduced at
each end of the channel, to allow the use of polar coordinates
offshore and in the bay. The first approach here uses Fourier
transforms to express the ocean waves and bay waves, in the
second approach, Hankel expansions are used.

REFLECTING SIDEWALLS AND FOURIER
TRANSFORM METHOD

Theoretical Considerations

The problem has been described above (see the schematic
layout in Fig. 1). One solves it by separating the water into
three regions, namely, the ocean, channel, and bay. It was
solved here using Fourier integrals in the ocean and in the bay,
combined with a modal expansion in the channel; the un-
known coefficients are determined by imposing matching con-
ditions at the two ends of the channel and solving a matrix
equation. This method has been used previously by Mendez
et al. (1983) in the context of 2D electromagnetics (scattering
of a TE-wave by a slit in a thick perfectly conducting screen).
Park et al. (1994) extended the method, so that the wave num-
ber in the channel differs from that in the ocean and bay (cor-
responding to water of different constant depths). The work in
the present study differs in three respects. First, efficient for-
mulas are used for the computation of the matrix entries (they
are all reduced to finite integrals). Second, effective asymptotic
approximations are obtained for long waves (short waves are
more appropriate for electromagnetic applications). Third, the
present study concentrates on calculating the wave pattern in
the vicinity of the channel rather than the waves in the far
field.

In the ocean, x < 0, the velocity potential governing the
wave motion can be written as follows:
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FIG. 1. Schematic Diagram of Inlet in Infinitely Large Barrier

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e1 1H Jcosh kh

where the wave number k and the angular frequency v are
related to the water depth h by the usual (frequency) dispersion
relationship, which involves the gravitational acceleration g.

2v = gk tanh kh

Here, z is the vertical coordinate, with the mean free surface
at z = 0 and the rigid bottom at z = 2h. Here, f1 is decom-
posed as

s af = f 1 f 1 f 1 f1 inc ref 1 1

where

ik( y sin u1x cos u)f = peinc

gives the incident wave potential propagating at an angle u to
the x-axis, where p is a dimensional constant. The correspond-
ing wave height H is 2ivp/g, and the free surface elevation is

iv
2ivth = 2 Re(f e )1

g

The reflected wave is

ik( y sin u2x cos u)f = peref

and 1 gives the wave radiating out to the ocean froms af f1 1

the channel due to the interaction of the incident waves and
the channel. Rearranging finc 1 fref yields

f 1 f = 2p cos(ky sin u)cos(kx cos u)inc ref

1 2ip sin(ky sin u)cos(kx cos u) (1)

which is the sum of two standing-wave patterns, one sym-
metric and the other antisymmetric about the x-axis. The so-
lution procedure is therefore split into two parts, one associ-
ated with the symmetric problem (superscript s) and one
associated with the antisymmetric problem (superscript a). The
following Fourier integrals are associated with these two prob-
lems, respectively (Sneddon 1995):

`

1s s 2ib(l)xf = A (l)e cos ly dl (2)1 E
p 0

`

1a a 2ib(l)xf = A (l)e sin ly dl (3)1 E
p 0

for x < 0, where

2 2k 2 l , 0 # l # kÏ
b(l) = (4)H 2 2i l 2 k , l > kÏ

The magnitudes of As(l) and Aa(l) are to be determined by
matching to the wave solution in the channel.

Within the channel of width 2b and length <, the wave po-
tential is

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e2 2H Jcosh kh

where f2 = s af 1 f2 2

`

s ss s ib(l )x s 2ib(l )(x2<) sn n¯f = (j e 1 j e )cos l y (5)2 2,n 2,n nO
n=0

`

a aa a ib(l )x a 2ib(l )(x2<) an n¯f = (j e 1 j e )sin l y (6)2 2,n 2,n nO
n=0

for 0 # x # <, 2b < y < b

1s al = np/b; l = n 1 p/bn n S D2

The boundary condition at the vertical sidewalls is specified
as

­f
= igf at uyu = b (7)

­y

When g = 0, this is a no-flow boundary condition. When g ≠
0, it is an impedance boundary condition, which is used later
in the third section to absorb wave energy (Dalrymple 1992).

The first terms in the summation for represent wavessf2

propagating down the straight channel; the second terms are
waves that are reflected back from the bay end of the channel.
For n = 0, the waves propagate directly down the centerline,
and the remaining waves propagate down the channel
obliquely, reflecting from the vertical sidewalls. For values of
n, such that > k, these waves decay in the propagationsln

direction. A similar interpretation of can be made.af2

In the bay, x > <, the wave field is again represented by a
Fourier integral

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e3 3H Jcosh kh

where, again, the total solution is decomposed into symmetric
and antisymmetric parts, f3 = 1

s af f3 3

`

1s s ib(l)(x2<)f = B (l)e cos ly dl (8)3 E
p 0

`

1a a ib(l)(x2<)f = B (l)e sin ly dl (9)3 E
p 0

To determine the forms of Aa(l), Ba(l), and for aa a¯j , j2,n 2,n

= s, a, four matching conditions are used. The first two are
satisfied at the mouth of the channel (x = 0); the second pair
is applied at the entrance to the bay (x = <).

The first matching condition requires that the vehicles in the
x-direction be the same in the ocean and the channel

­f ­f2 1= at x = 0, uyu < b (10)
­x ­x

The second requirement is that the pressure be continuous
across the channel mouth, which can be expressed as

f = f at x = 0, uyu < b2 1
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At the other end of the channel, there are similar relations
between f2 and f3

­f ­f2 3= at x = <, uyu < b (11)
­x ­x

f = f at x = <, uyu < b (12)2 3

Finally, there are the reflecting shoreline conditions

­f1 = 0 at x = 0, uyu > b
­x

­f3 = 0 at x = <, uyu > b
­x

From now on, it is sufficient to examine only y $ 0.

Symmetric Problem

This portion of the problem involves all of the symmetric
parts of and The first matching condition [(10)]s s sf , f , f .1 2 3

leads to

`

s s s s s¯ib(l )(j 2 j g )cos l y,n 2,n 2,n n nO`
n=0i s

2 A (l)b(l) cos ly dl =E for 0 # y # bp H0

0, for y > b

(13)

where
s sg = exp(ib(l )<)n n

which is not to be confused with g in the impedance boundary
condition.

Inverting the Fourier cosine transform, one obtains
` sb(l )ns s s s s¯A (l) = 2 (j 2 j g ) + (l) (14)2,n 2,n n nO

b(l)n=0

where
b

n2(21) l sin lbs s
+ (l) = 2 cos l y cos ly dy = (15)n nE 2 s 2l 2 (l )n0

and is well defined for all l, including l =s s
+ (l) l .n n

The second matching condition, including the definition of
As(l), leads to

`

s s s s¯(j 1 j g )cos l y = 2p cos(ky sin u)2,n 2,n n nO
n=0

` ` s1 + (l)ns s s s¯2 (j 2 j g )b(l ) cos ly dl2,n 2,n n nE O
p b(l)n=00

for 0 # y < b. Using the orthogonality of {cos oversb(l )y}n

the range 0 # y # b removes the y dependency in this equation
and provides an equation for ands sa bm m

s s s sb(a 1 b g ) = ε p+ (k sin u)m m m m m

`

1 s s s s s¯2 ε (j 2 j g )b(l )D , m = 1, 2, 3, . . .m 2,n 2,n n n mnO2 0 (16)

where ε0 = 1, εm = 2 for m > 0, and
`

1 dls s s sD = D = + (l)+ (l) (17)mn nm m nE
p b(l)0

Now, there are two similar matching conditions at x = <.
Requiring that the velocities in the bay match those in the
channel or the shoreline, one obtains

`

s s s s s¯ib(l )(j g 2 j )cos l y,n 2,n n 2,n nO`
n=0i sB (l)b(l)cos ly dl =E for 0 # y # bp H0

0, for y > b

A Fourier cousine transform in y yields
` sb(l )ns s s s s¯B (l) = (j g 2 j ) + (l) (18)2,n n 2,n nO

b(l)n=0

Substituting Bs(l) into (8) gives
` ` s1 b(l )ns s s s s ib(l)(x2<)¯f (x, y) = (j g 2 j ) + (l)e cos ly dl3 2,n n 2,n nE O

p b(l)n=00

(19)

The last matching condition is (12). Applying it, using the
orthogonality of {cos again, givessl y}n

`

1s s s s s s s s¯b(a g 1 b ) = ε b(l )(j g 2 j )D , m = 0, 1, 2, . . .m m m m n 2,n n 2,n mnO2 n=0

(20)

To obtain solutions, one truncates the series representation
of at n = N and then takes (16) and (20) from m = 0 to N.sf2

This gives the following (2N 1 2) 3 (2N 1 2) set of equations
for and m = 0, 1, . . . , N:s sa b ,m m

N

s 1 s s 2 s¯{j G 1 j g G } = 2pε + (k sin u)2,n mn 2,n n mn m mO
n=0

for m = 0, 1, 2, . . . , N (21)

N

s s 2 s 1¯{j g G 1 j G } = 0 for m = 0, 1, 2, . . . , N (22)2,n n mn 2,n mnO
n=0

where
6 s sG = 2bd 6 ε b(l )Dmn mn m n mn

Here dmn = 1 for m = n and is zero otherwise.

Antisymmetric Problem

The antisymmetric problem is treated in the same manner
as the symmetric problem. The terms Aa(l) and are givena

+n

by
` ab(l )na a a a a¯A (l) = 2 (j 2 j g ) + (l) (23)2,n 2,n n nO

b(l)n=0

b
n112(21) l cos lba a

+ (l) = 2 sin l y sin ly dy = (24)n nE 2 a 2l 2 (l )n0

where
a ag = exp{ib(l )<}n n

From the two matching conditions at the ocean end of the
channel, one obtains

`

a a a a a a a a a¯b(a 1 b g ) = 2pi+ (k sin u) 2 (j 2 j g )b(l )D ,m m m m 2,n 2,n n n mnO
n=0

m = 1, 2, . . . (25)

where
`

1 dla a a aD = D = + (l)+ (l) (26)mn nm m nE
p b(l)0

The coefficients are provided in more convenienta sD and Dmn mn

form in Appendix I.
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FIG. 2. Wave Train Normally Incident to Inlet; kb 5 6, k< 5 30

FIG. 3. Nondimensional Wave Envelope for Wave Train Nor-
mally Incident to Inlet; kb 5 6, k< = 30 [Solid Line = Centerline
( y 5 0)]

The conditions at the bay end of the channel give

`

a a a a a a a a¯b(a g 1 b ) = b(l )(j g 2 j )D , m = 0, 1, 2, . . .m m m n 2,n n 2,n mnO
n=0

(27)

Again, truncating and the above systems [(25) and (27)]af2

gives the following (2N 1 2) 3 (2N 1 2) matrix equation for
the antisymmetric solution:

N

a 1 a a 2 a¯{j D 1 j g D } = 2pi+ (k sin u)2,n mn 2,n n mn mO
n=0

for m = 0, 1, 2, . . . , N (28)

N

a a 2 a 1¯{j g D 1 j D } = 0 for m = 0, 1, 2, . . . , N (29)2,n n mn 2,n mnO
n=0

where

6 a aD = bd 6 b(l )Dmn mn n mn

Results

The solution procedure involves inverting the complex ma-
trices [(21) and (22)] and [(28) and (29)]. The coefficients

and are determined as shown in Appendix A of Dal-s aD Dnm nm

rymple and Martin (1996) using a 150-point Gauss quadrature.
The matrices are inverted using the subroutine LEQT1C of the
IMSL (a FORTRAN mathematical and statistics library). The
coefficient and are very stable for N $ 15, 2

s a sj j (ij u2,n 2,n 2,0N11

< 0.00015 and 2 < 6.1026.s s a a auj i)/uj u (ij u uj i)/uj u2,0 2,0 2,0 2,0 2,0N N N11 N N

For all cases, N = 15.
Fig. 2 shows the instantaneous water surface for a wave

train normally incident on a channel. The dimensionless width
of the channel is kb = 6, and the length of the channel k< =
30. In terms of relative dimensions, all distances have been
nondimensionalized by k. On the ocean side of the channel
(left side of Fig. 2), the reflective ocean shoreline leads to a
standing-wave system, except in front of the channel, where

the waves are partially standing due to the weak reflection
from the channel mouth. Within the channel the waves prop-
agate straight through the channel to the bay. On the bay side,
there is a focusing of the waves just after the channel exit, and
then diffraction spreads the wave energy within the bay. The
focusing of the waves within the bay is due to the diffraction
from each corner of the channel.

The envelope of wave heights H(x)/H0 along the centerline
of the channel, y = 0, is shown in Fig. 3. The partial standing
wave on the ocean side of the channel is clearly shown. Within
the channel, the wave envelope is oscillatory due to a partial
standing-wave system, due to reflections from the two transi-
tions: inlet-to-bay and inlet-to-ocean.

Fig. 4 shows a wave train incident on the same channel at
22.87 angle of incidence, which satisfies the geometric con-
dition u = tan21(2b/<), leading to the wave train exiting the
channel at an angle opposite to the incident angle. Within the
ocean, the obliquely reflected waves from the shoreline lead
to a short-crested sea state, except in the vicinity of the channel
mouth, where the reflection is weak, resulting in longer crested
waves. The envelope of wave heights H(x)/H0 along the cen-
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FIG. 4. Wave Train Incident at 22.88 to Inlet; kb 5 6, k< 5 30 [Note Intensification of Wave at ky 5 6 due to Sidewall Reflection]

FIG. 5. Nondimensional Wave Envelope for Wave Train Inci-
dent at 22.88 to Inlet; kb 5 6, k< 5 30 [Solid Line Is Wave Ampli-
tude at Centerline ( y 5 0), Dashed Line Is Envelope at y 5 b]

terline of the channel, y = 0, is shown in Fig. 5 as the solid
line. There is a rapid decrease in wave amplitude within the
channel as the waves are directed into the channel wall at y =
1b, leaving the centerline in the geometric shadow zone as
the waves diffract from the channel mouth (x = 0, y = 2b in
Fig. 1). The dashed line in the figure shows the wave ampli-
tude along the wall at y = 1b. The rapid decay within the bay
is also shown for both locations.

Fig. 6 shows the instantaneous water surface for a wave
train incident on the same channel at 457. The reflected waves
from the shoreline diffract into the reflection shadow zone
from the inlet, so that far upwave of the inlet the waves are
once again short-crested. Within the channel, the reflection
from the sidewalls and the diffraction from the upwave side
of the channel mouth are also clear. Finally, the wave train,
after undergoing reflections within the channel, exits the chan-
nel in about the same direction as the incident wave train in
the ocean, although waves radiate in other directions as well.
For a fixed angle of wave incidence, the principal direction of
the radiated waves in the bay is directly due to the channel

length and the number of reflections that take place within the
channel.

Fig. 7 shows the normalized wave amplitude along the x-
axis, beginning from offshore, down the centerline of the chan-
nel, and into the bay. The standing-wave system in front of
the channel is clearly seen on the left in Fig. 7 and the wave
heights within the channel are roughly the same amplitude,
with an oscillation due to the reflections of the waves from
the transitions. There is a rapid decrease in centerline wave
height within the bay, as the waves are radiating in a different
direction than the x-axis.

The amount of wave energy entering the bay is an important
quantity for design. This quantity 7E is defined here as the
wave flux leaving the channel at x = < divided by the energy
flux contained in a crest length of 2b of the incident wave
train. The f part of the wave energy flux across a line of width
2b is defined as follows (Stoker 1957):

b
­f

r Im f* dyHE J
­n

2b

where r = fluid density; and n = normal direction across the
line. Due to the orthogonality of the eigenfunctions across the
channel, 7E can be separated into symmetric and antisym-
metric parts,

s a
7 = 7 1 7 (30)E E E

where

1s 2 2 s s 2 s 2 s 2¯ ¯7 = uj u 2 uε u 1 (Re{b(l )}(uj u ug u 2 uj u )E 2,0 2,0 n 2,n n 2,nO2k n=1

s s* s s¯1 2 Im{b(l )}Im{j j g })n 2,n 2,n n

1a a a 2 s 2 a 2¯7 = (Re{b(l )}(uj u ug u 2 uj u )E n 2,n n 2,nO2k n=0

a a* a a¯1 2 Im{b(l )}Im{j j g })n 2,n 2,n n (31)

The first terms in each of the summations are nonzero for
the progressive wave modes. The evanescent modes are ac-
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FIG. 6. Wave Train Incident at 458 to Inlet; kb 5 6, k< 5 30

FIG. 7. Centerline Wave Envelope for Wave Train Incident at
458 to Inlet; kb 5 6, k< 5 30

FIG. 8. 7E (Dashed Line) and Cosine u (Solid Line) as Function
of Angle of Wave Incidence to Shoreline

counted for by the second set of terms in the summations. For
long channels, these terms decay and do not contribute.

For the plane wave approximation, given in (49)

s 24P(+ (k sin u))0
7 =E 2 4 2 2 4b ((1 1 P) 2 2(1 2 P ) (1 1 P ) cos 2k< 1 (1 2 P ) )

(32)

For the two examples, shown in Figs. 4 and 6, 7E is equal
to 0.909 and 0.689, respectively. The major reason for a re-
duction of 7E from unity is that the projection of a section of
obliquely incident wave crest onto the shoreline illuminates a
longer section of coast than the crest length, except at normal
incidence. For a crest length of 2b approaching at an angle u,
the illuminated shoreline is 2b/cos u from a simple geometric
argument. An inlet of width 2b only intercepts 2b cos u of the
wave crest. For example, a wave approaching at 907 would
not illuminate the inlet at all (except by diffraction). A simple
approximation to 7E is cos u. For the two examples above,
cos u is 0.922 and 0.707, respectively. Clearly, reflection of
wave energy offshore by reflection at the channel and bay
mouths, accounts for very little. In Fig. 8, 7E is compared to
cos u, showing that only at large angles is there a difference
due to diffraction of the oblique waves into the inlet.

ABSORBING SIDEWALLS AND MOMOI’S METHOD

Theory

Another way to solve the ocean-channel-bay problem is
based on Momoi’s buffer domain method (Momoi 1965a,b,
1966, 1968), which does not use Fourier transforms and hence
does not result in complicated integrals. For this reason, with
energy absorbing sidewalls, it becomes more convenient to use
it rather than the eigenfunction expansion approach.

Now, let the whole domain be separated into five parts as
shown in Fig. 9; namely, the ocean; the ocean buffer domain,
which is a semicircular domain on the horizontal plane; the
channel; the bay buffer domain; and the bay of infinite size.
In the ocean, (x < 0, r > b, 0 < uO < p), b is the half-channel
width, as before, uO = tan21(uxu/y), r = and the ve-2 2x 1 y ,Ï
locity potential governing the wave motion in the ocean can
be written as before [(1)].

The dimensionless potential f1 is decomposed as

f = f 1 f 1 f (33)1 inc ref 1r
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FIG. 9. Schematic Diagram of Inlet, with Two Semicircular
Buffer Domains at Channel Entrance and Exit

where as before finc = incident wave train [(1)]; and fref =
wave train reflected from the shoreline [(1)]. The third term,
f1r, gives the wave radiating from the channel, which will be
expressed in a Hankel expansion

`

2n 1f = j cos(2nu )H (kr)1r 1 o 2nO
n=0

For normally incident waves, the only ones treated here are

f 1 f = 2p cos(kx)inc ref

Using the Bessel expansion of the cosine, one has

`

f 1 f = 2p ε cos(2nu )J (kr)inc ref n O 2nO
n=0

where ε0 = 1 and εn = 2 (n $ 1).
The forms of are to be determined by matching to the2nj1

wave solution in the buffer domain.
In the buffer domain of the ocean (x < 0, 0 < r < b, 0 < uO

< p), the velocity potential governing the wave motion can be
written as follows:

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e4 4H Jcosh(kh)

where

`

2n 2n11¯f = {j cos(2nu )J (kr) 1 ε sin((2n 1 1)u )J (kr)}4 4 O 2n 4 O 2n11O
n=0

(34)

Within the channel of width 2b and length <, the velocity
potential is

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e2 2H Jcosh(kh)

where

`

ib(l )x 2ib(l )(x2<)n n¯f = (j e 1 j e ) cos l y (35)2 2,n 2,n nO
n=0

for 0 # x # <, 2b # y # b

2 2b(l ) = k 2 (l )Ïn n

where

2l tan(l b) = ign n

and g = damping factor describing the effects of the sidewall.

This expression comes from the impedance boundary condi-
tion as before [(7)]. The complex constant g, which is the
wave number times the specific admittance of the sidewalls,
in one field experiment was found to be on the order of 0.005
to 0.05 (real), from Dalrymple (1992).

The first terms of f2, with amplitudes j2,m, represent waves
propagating down the straight channel (in the 1x-direction);
the second set of terms (proportional to are waves thatj̄ )2,m

are reflected back from the end of the channel.
In the buffer domain of the bay (x > l, 0 < r1 < b, 0 < uB

< p), where r1 = the wave field has the same2 2(x 2 <) 1 y ,Ï
form as in the ocean buffer domain

`

2n 2n11¯ ¯f = {j cos(2nu )J (kr ) 1 j sin((2n 1 1)u )J (kr )}5 5 B 2n 1 5 B 2n11 1O
n=0

(36)

In the bay (x > <, r1 > b, 0 < uB < p), the wave field is
again represented by a Hankel expansion

cosh k(h 1 z)
2ivtF (x, y, z, t) = Re f (x, y) e3 3H Jcosh(kh)

where

`

2n 1f = j cos(2nu )H (kr ) (37)3 3 B 2n 1O
n=0

To determine the eight sets of unknowns, ja and for a =j̄b

1, 2, 3, 4, 5 and b = 2, 4, 5, eight matching conditions are
used. The first two are to be satisfied at the boundary between
the ocean and ocean buffer (r = b, 0 < uO < p); the second
pair is satisfied at the mouth of the channel (x = 0) between
the buffer solution and that of the channel; the third pair is
applied at the entrance to the bay (x = <); and the last pair is
applied at the boundary between bay buffer domain and the
bay.

The first matching condition requires that the velocities in
the radial direction be the same in the ocean and buffer domain
at r = b

­f ­f1 4= at r = b, 0 < u < p (38)O
­r ­r

The second requirement is that the pressure be continuous
between the buffer and the ocean, which can be expressed as

f = f at r = b, 0 < u < p (39)1 4 O

At the mouth of the channel, there are similar relations be-
tween f4 and f2 (i.e., the velocities in the x-direction are the
same and the water surface is continuous across the channel
mouth)

­f ­f4 2= at x = 0, uyu < b (40)
­x ­x

f = f at x = 0, uyu < b (41)4 2

At the other end of channel, there are similar relations

­f ­f2 5= at x = <, uyu < b (42)
­x ­x

f = f at x = <, uyu < b (43)2 5

­f ­f5 3= at r = b, 0 < u < p (44)B
­r ­r

f = f at r = b, 0 < u < p (45)5 3 B

The following reductions are used to perform the matching
condition:
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FIG. 12. Decay of Wave Height along Channel Centerline [Sold Line Is Numerical Results; Dashed Line Corresponds to Exponential
Decay Predicted by Dalrymple (1992)]; g 5 1 m21, kb 5 7.32, k< 5 73.2

FIG. 11. Absolute Value of Water Surface Elevation; Contours Intervals Are 0.21

FIG. 10. Plane View of Instantaneous Water Surface Elevation in Rectangular Channel; Ocean at Left, Bay at Right

­ ­
= for u = 0, i = O, Bi

­x r­u

­ ­
= 2 for u = p, i = O, Bi

­x r­u

Grouping all of the matching conditions together results in
eight equations for the eight sets of unknowns. Using the or-
thogonality of the trigonometric functions, a set of linear equa-
tions for all of the unknowns can be determined.

Results of Momoi’s Method

Fig. 10 shows an example of the instantaneous wave field
of a wave train normally incident on a channel with the fol-

lowing characteristics: the dimensionless width of the channel
is kb = 7.32; the length of the channel k< = 73.2; and damping
factor is taken as real, g = 1 m21. Numerous interesting re-
flective and diffractive effects are shown in this narrow slice
of the ocean/bay system. On the ocean side of the channel, the
reflective shoreline leads to a standing wave offshore, except
for the area in front of the channel, where the waves are prop-
agating, due to the absence of strong reflection. Within the
channel, the curvature of the wave crests is clear with the
waves turning into the channel sideways by diffraction caused
by the damping at the sidewalls [as identified by Melo and
Guza (1991a)]. Finally, the wave train, after undergoing re-
flections within the channel, exits the channel, and the curved
wave crests due to diffraction are clear within the bay.
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The absolute value of the water surface is contoured in Fig.
11, with the contours spaced by 0.12. The initial condition of
normally incident waves with unit amplitude leads to a forced
phasing of all of the modes that comprise the wave field [(33)],
such that there is an amplification of the waves at the ocean
side in front of the channel mouth. This amplification differs
from the unrealistic amplification exhibited in Dalrymple
(1992), where he used a wavemaker condition at the mouth
of the channel, leading to a wave focusing just inside the chan-
nel.

There is also an amplification of wave energy within the
bay due to the diffraction from each corner of the inlet. The
diffraction pattern for one side of the inlet is the mirror image
of the pattern for the other, and they reinforce down the cen-
terline (The largest contour line shown in the bay corresponds
to 1.47, and the smallest is 0.21.)

Fig. 12 shows the decay of the absolute value of the water
surface down the central line for this example, and the expo-
nential decay H = given by Dalrymple (1992) is also2gxH e0

shown (dashed line is the analytical solution, and solid line is
the numerical solution). The two solutions compare very well.
Fig. 12 also shows the amplification along the centerline
within the bay due to the diffractive effects of the inlet ends.

CONCLUSIONS

Two different mathematical treatments in the ocean and bay
were used to solve for the wave field in and around an ide-
alized inlet, including reflective and absorbing inlet sidewalls.
The first method, used with oblique incidence and reflective
sidewalls, leads to a matrix equation that is readily solved for
the amplitudes of all wave modes. The extension of this
method to more general boundary conditions at the inlet side-
walls leads to intractable Fourier integrals. Therefore, Mo-
moi’s buffer domain method, which introduces two additional
semicircular domains, permits the ocean and bay wave fields
to be expressed in terms of eigenfunction expansions in polar
coordinates. More realistic decay down the inlet is shown.

Computed results show that the wave patterns in the channel
can vary significantly with angle of incidence and so can the
direction of the radiated wave field in the bay. Total energy
flux into the bay, however, is almost the same as the amount
of energy that illuminates the mouth of the inlet.

APPENDIX I

Dalrymple and Martin (1996) showed that plane wave ap-
proximation is good for most values of kb. For a normal in-
cident wave, there is a slight difference between full solution
and plane wave approximation for 1 < kb < 2.5. For the plane
wave approximation, the oblique waves in the channel will be
neglected; f2 is now expressed as the leading symmetric wave
solution

s ikx s 2ik(x2<)¯f (x, y) = j e 1 j e (46)2 2,0 2,0

From (21), one has

1 2 sin(kb sin u)s s ik< s¯j (1 1 P ) 1 j e (1 2 P ) = + (k sin u) =2,0 2,0 0
b kb sin u

(47)

where

1 sP = kD /b002

The equation obtained at the bay mouth [(22)] yields

s ik< s¯j e (1 2 P ) 1 j (1 1 P ) = 0 (48)2,0 2,0

Solving these two equations yields
s(1 1 P )+ (k sin u)/b0sj = (49a)2,0 2 2 2ik<(1 1 P ) 2 (1 2 P ) e

ik< s(1 2 P )e + (k sin u)/b0sj̄ = 2 (49b)2,0 2 2 2ik<(1 1 P ) 2 (1 2 P ) e

The long-wave approximation can be found as follows. In
replace the Hankel function by its small-argument ap-sD ,00

proximation. In this case, P = kb(1 1 2i(g 1 log kb 2 3/2)/
p).

The angular dependency of and is very weak, as,s s¯j j2,0 2,0

for small kb, the sin u terms cancel in sin u) [see (47)].s
+ (k0
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