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SUMMARY

The di�raction of tidal waves (Poincar�e waves) by islands and barriers on water of constant �nite
depth is governed by the two-dimensional Helmholtz equation. One e�ect of the Earth’s rotation is
to complicate the boundary condition on rigid boundaries: a linear combination of the normal and
tangential derivatives is prescribed. (This would be an oblique derivative if the coe�cients were real.)
Corresponding boundary-value problems are treated here using layer potentials, generalizing the usual
approach for the standard exterior boundary-value problems of acoustics. Singular integral equations are
obtained for islands (scatterers with non-empty interiors) whereas hypersingular integral equations are
obtained for thin barriers. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: Poincar�e problem; oblique-derivative problem; Kelvin waves; boundary integral
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1. INTRODUCTION

Ocean waves are governed by Laplace’s equation in three dimensions. Under linearization and
an assumption of constant depth, the governing equation becomes the Helmholtz equation in
the horizontal plane. This leads to a widely used model for the di�raction of ocean waves.
When the Earth’s rotation is taken into account, one still obtains the two-dimensional

Helmholtz equation (Section 2). However, the boundary condition on lateral boundaries is
more complicated: on a curve C, the boundary condition is

9�

9n
+ i�

9�

9s
=0 (1)

involving a linear combination of the normal and tangential derivatives of the unknown func-
tion; the parameter � vanishes when there is no rotation. It is the boundary condition (1) that
makes the problem interesting from a mathematical point of view.
A familiar method for solving exterior boundary-value problems for the Helmholtz equation

is to reduce them to boundary integral equations [1; 2]. For the standard boundary conditions,
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914 P. A. MARTIN

namely Neumann (�=0) and Dirichlet (�=0), and a scatterer with a non-empty interior
and a simple smooth boundary, it can be arranged that these boundary integral equations are
Fredholm integral equations of the second kind with continuous kernels (in two dimensions).
If the scatterer is thin (empty interior), the boundary-value problems can be reduced to a
hypersingular integral equation (Neumann condition) or a Fredholm integral equation of the
�rst kind with a logarithmically singular kernel (Dirichlet condition).
What is the e�ect of the boundary condition (1)? For Laplace’s equation, it is known

that complex-variable methods can be used to reduce the boundary-value problem to Cauchy-
singular integral equations when the scatterer has a non-empty interior. The same result is
obtained here. We show that the corresponding water-wave problem can be reduced to a
singular integral equation (in fact, two di�erent equations are given), using layer potentials.
Irregular frequencies are identi�ed.
For thin scatterers, we derive a hypersingular integral equation. It reduces to the known

equation for a thin sound-hard scatterer when �=0. Indeed, as � is often small, one can
construct a regular perturbation about the solution for �=0. Alternatively, the integral equa-
tion for � �=0 can be solved numerically, using an expansion-collocation method based on
Chebyshev polynomials of the second kind.

2. GOVERNING EQUATIONS

Consider an ocean of constant �nite depth h. The governing equations of motion for long
gravity waves, when rotation is taken into account are

9U

9t
− fV + g

9Z

9x
=0 (2)

9V

9t
+ fU + g

9Z

9y
=0 (3)

h
9U

9x
+ h

9V

9y
+
9Z

9t
=0 (4)

where x and y are horizontal Cartesian co-ordinates, U (x; y; t) and V (x; y; t) are the corre-
sponding horizontal velocity components, Z(x; y; t) is the surface elevation, g is the accel-
eration due to gravity and f is the Coriolis parameter. We have f=2
sin�0, where 

is the Earth’s angular speed and �0 is the reference angle of latitude. These equations are
given in, for example, References [3, Section 207; 4, Section 116; 5, p. 128]. For background
information, see Reference [6].
If we eliminate U and V from (2)–(4), we obtain

{

gh∇2 − f2 − 92

9t2

}

9Z

9t
=0 (5)

a single partial di�erential equation for Z(x; y; t). Here, ∇2 is the two-dimensional Laplacian.
For time-harmonic motions, we can write

U =Re{ue−i!t}; V =Re{ve−i!t}; Z =Re{�e−i!t}
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DIFFRACTION OF POINCAR�E WAVES 915

where ! is the circular frequency. Then, (5) becomes the two-dimensional Helmholtz equation.

(∇2 + k2)�=0 (6)

where

k2=(!2 − f2)=(gh)

we have assumed that !2¿f2. It will be convenient to introduce

�=f=!

a real, dimensionless parameter; we assume that |�|¡1.
If �(x; y) is known, the velocity components can be obtained from (2) and (3):

u(x; y) =
−!

hk2

{

i
9�

9x
− �

9�

9y

}

v(x; y) =
−!

hk2

{

i
9�

9y
+ �

9�

9x

}

In terms of a vector u=(u; v; 0), we can write these formulas concisely as

u(x; y)= −!(hk2)−1{i grad �− � curl(�z)}

where z is a unit vector in the vertical direction. Moreover, (6) implies that curl u=f(�=h)z.
Observe that u and v also satisfy (6). Thus, it is easy to write down some solutions for the

velocity components. However, in general, the main di�culty in solving a scattering problem
comes from applying the boundary condition on rigid, vertical lateral boundaries. If C is such
a boundary, we have

u · n=0 on C (7)

where n is a unit normal vector to C. Thus, unless C is parallel to the x- or y-axes (7) will
involve both u and v.
Two elementary problems are solved next. These are plane-wave re
ection by a straight

coastline and plane-wave scattering by a circular island.

2.1. Straight coastline

For a straight coastline of in�nite length, given by y= x tan � (where the water occupies
y¿x tan �), and an incident plane wave

�inc(x; y)= exp{ik(x cos �i − y sin �i)} (8)

where �i is the angle of incidence (with −�¡�i¡� − �), we �nd that the re
ected wave is
given by

�ref (x; y)=R exp{ik(x cos �r + y sin �r)}

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925



916 P. A. MARTIN

The boundary condition on C (7) becomes u sin �= v cos � on y= x tan �, where �= �inc+�ref .
It follows that �r = �i + 2� and

R=(sin � + i� cos�)=(sin �− i� cos�)

where �= �i + �= �r − �. Note that the complex re
ection coe�cient R satis�es |R|=1 so
that R=ei�. Thus, in general, the wave su�ers a phase change upon re
ection; �=0 when
�=0.

2.2. Circular island

For a circular island, we use plane polar co-ordinates, r and �, with x= r cos � and y= r sin �.
Then C is r= a, say, and (7) becomes

i
9�

9r
− �

r

9�

9�
=0 on r= a (9)

Take the incident wave (8) as before, whence

�inc=
∞
∑

n=−∞

inJn(kr)e
in(�+�i)

where Jn is a Bessel function. Then, the (outgoing) scattered wave can be written as

�sc=
∞
∑

n=−∞

in�nHn(kr)e
in(�+�i)

where Hn ≡H
(1)
n is a Hankel function and the coe�cients �n are found by imposing the

boundary condition (9):

�n = − kaJ ′

n (ka)− n�Jn(ka)

kaH ′
n (ka)− n�Hn(ka)

In the absence of rotation (�=0), this reduces to the well-known solution for acoustic scatter-
ing by a sound-hard circular cylinder. Analogous interior problems (for r¡a with � �=0) are
considered in Reference [3; Section 210]. Chambers [7] has discussed standing-wave solutions
(for r¿a with � �=0). Despite its title, paper [8] is limited to �=0.

3. TRAPPING AND UNIQUENESS

A straight coastline can support a trapped wave known as a Kelvin wave [4, Section 133; 5,
Section 24]. With the notation of Section 2.1, the Kelvin wave is given by

�= exp{i�(x cos �+ y sin �)} exp{��(x sin �− y cos �)}

where �=!=
√

gh. This expression for � satis�es (6) and u ·n=0 on y= x tan �. It represents
a wave travelling along the coastline in the direction of increasing x and y, but � decays ex-
ponentially away from the coastline. When �=0; � reduces to a grazing plane-wave travelling
along the coast (without decay).

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925



DIFFRACTION OF POINCAR�E WAVES 917

Can trapped waves exist around islands with vertical coastlines? No. To see this, we modify
a standard argument used to prove uniqueness for the exterior boundary-value problems of
acoustics [1].
Let C be a simple closed curve representing the island’s coastline. Speci�cally, let us de�ne

C in terms of a parametrization,

C= {(x; y): x= x(�); y=y(�); 06�61}
where x(0)= x(1) and y(0)=y(1). Then

s(�)= (x′(�); y′(�))=�

with �(�)= [(x′)2 + (y′)2]1=2, is a unit tangent vector to C and

n(�)= (y′(�);−x′(�))=�

is a unit normal vector to C. If C is traversed anti-clockwise as � increases, n will point into
the water. It follows that the boundary condition (7) can be written as

9�

9n
+ i�

9�

9s
=0 on C (10)

where
9�

9n
= n · grad � and

9�

9s
= s · grad �

are the normal and tangential derivatives, respectively, of � on C.
Solving (6) together with (10) and a radiation condition at in�nity is called the Poincar�e

problem or the oblique-derivative problem: strictly speaking, the Poincar�e problem allows an
additional term proportional to � on the left-hand side of (10), whereas the oblique-derivative
problem has real coe�cients on the left-hand side of (10) so that it can be written as the
directional derivative of � in a certain direction.
Let us formulate a boundary-value problem.

Poincar�e problem: Find �sc(x; y), where �sc solves the Helmholtz equation (6) in the un-
bounded region exterior to C; B, together with the boundary condition (10) on C, where
�= �inc + �sc and the incident wave �inc is given by (8). In addition, the scattered wave �sc
must satisfy the Sommerfeld radiation condition at in�nity,

lim
r→∞

√
r

(

9�sc
9r

− ik�sc

)

=0 (11)

where r=
√

x2 + y2.
To prove that trapped waves cannot exist, we suppose that �0 solves the unforced Poincar�e

problem. Thus, �0 satis�es (6), (10) and (11). Then, we apply Green’s �rst theorem to �0
and �0, the complex conjugate of �0, in the region Br ⊂B, bounded internally by C and
externally by a large circle Cr of radius r. This gives

∫

Br

{|grad �0|2 − k2|�0|2} dV =

∫

Cr

�0

(

9�0
9r

− ik�0

)

ds

+ ik

∫

Cr

|�0|2 ds−
∫

C

�0
9�0
9n

ds

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925



918 P. A. MARTIN

The left-hand side is real. The radiation condition ensures that the �rst integral on the right-
hand side vanishes as r→∞. Hence, taking the imaginary part, we obtain

−k lim
r→∞

∫

Cr

|�0|2 ds=−Im
∫

C

�0
9�0
9n

ds=
i

2

∫

C

(

�0
9�0
9n

− �0
9�0
9n

)

ds

=
�

2

∫

C

(

�0
9�0
9s

+ �0
9�0
9s

)

ds=
�

2

∫

C

9

9s
|�0|2 ds

=
�

2

∫ 1

0

d

d�
|�0|2 d�=0

Rellich’s lemma [1; Lemma 3:11] then implies that �0 ≡ 0, as required.
Note that Longuet-Higgins [9] has shown that trapped waves do exist for circular is-

lands when �2¿1 (!2¡f2); in this case, (6) should be replaced by the modi�ed Helmholtz
equation.
It is well known that the Poincar�e problem for Laplace’s equation can be reduced to a

singular integral equation on C; see, for example References [10, Section 74, 11, p. 185].
Extensions to other elliptic partial di�erential equations, including the Helmholtz equation,
can be made [10; Section 76]. See also the recent book by Paneah [12]. The problem with
an open C (several thin rigid barriers) has been discussed recently by Krutitskii [13]. Exact
solutions for a thin, straight semi-in�nite barrier have been given by Crease [14], Chambers
[15], Kapoulitsas [16] and Haines [17], using the Wiener-Hopf technique.

4. POTENTIAL THEORY

Introduce a fundamental solution, G, de�ned by G(P;Q)=− 1
2
iH

(1)
0 (kR), where R is the

distance between the two points P and Q. Using G, we de�ne single- and double-layer
potentials by

(S�)(P)=

∫

C

�(q)G(P; q) dsq

and

(D�)(P)=

∫

C

�(q)
9

9nq

G(P; q) dsq

respectively, where P =∈C. (S�)(P) is continuous in P as P crosses C, whereas both D� and
the normal derivative of S� exhibit jumps given by

D�=(∓I + K)�

and

9

9np
S�=(±I + K ′)� (12)
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DIFFRACTION OF POINCAR�E WAVES 919

respectively, where, in each case, the upper (lower) sign corresponds to P→p∈C from the
exterior (interior) of C. (Recall that n points into the exterior B.) Here, K and K ′ are boundary
integral operators de�ned by

K�=

∫

C

�(q)
9

9nq

G(p; q) dsq

K ′�=

∫

C

�(q)
9

9np
G(p; q) dsq

and p∈C. All these formulas hold if C is twice-di�erentiable and the densities, � and �, are
continuous. Moreover, for such curves C, the kernels of K and K ′ are continuous.
The boundary condition in the Poincar�e problem (10) suggests that we will require the

normal derivative of D� and tangential derivatives of S� and D�. Su�cient conditions for
these to exist are that � is H�older continuous and that � has a H�older-continuous tangential
derivative on C. Then

N�=
9

9np
(D�) and L′�=

9

9sp
(S�) (13)

are well de�ned (no jumps). The operator N is hypersingular; it may be represented as an
integral operator involving a �nite-part integral [18]. The operator L′ is a singular integral
operator; it can be written as

(L′�)(p) = −
∫

C

�(q)
9

9sq
G(p; q) dsq (14)

where the integral must be interpreted as a Cauchy principal-value integral; see References [1,
Theorem 2:17, 19, Theorem 7:27] for the analogous results for the two-dimensional Laplace
equation and the three-dimensional Helmholtz equation, respectively. It is also natural to
introduce an operator L de�ned by

(L�)(p) =−
∫

C

�(q)
9

9sq
G(p; q) dsq

=−
∫

C

�′(q)G(p; q) dsq =−(S�′)

after an integration by parts, where �′(q) is the tangential derivative of �(q) at q∈C.
For the gradient of D�, we follow Kress [19; Section 7:5] and deduce that

grad(D�)= k2
∫

C

G(P; q)�(q)n(q) dsq +

(

−9W
9y

;
9W

9x

)

where P is at (x; y) and

W (P)=

∫

C

�(q)
9

9sq
G(P; q) dsq =−(S�′)(P)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925



920 P. A. MARTIN

Hence, making use of (12) and the relation between s=(s1; s2) and n=(s2;−s1), we obtain

9

9sp
(D�) =

9W

9np
+ k2s · (S{�n})

= (∓I − K ′)�′ + k2s · (S{�n}) (15)

for p∈C. Similarly, we use (14) and obtain

9

9np
(D�) =−9W

9sp
+ k2n · (S{�n})

= L′�′ + k2n · (S{�n}) (16)

explicitly, we have Maue’s formula [18; p: 343],

9

9np

∫

C

�(q)
9

9nq

G(p; q) dsq =− 9

9sp

∫

C

�(q)
9

9sp
G(p; q) dsq

+ k2
∫

C

�(q){n(p) · n(q)}G(p; q) dsq

We shall also make use of representations based on Green’s theorem. Thus, if we apply
Green’s theorem in B to �sc and G, we obtain

2�sc(P)=

∫

C

{

G(P; q)
9�sc
9nq

− �sc(q)
9

9nq

G(P; q)

}

dsq; P ∈B (17)

Similarly, applying Green’s theorem in the bounded interior of C; Bi, to �inc and G, and adding
the result to (17), we obtain

2�sc(P)=

∫

C

{

G(P; q)
9�

9nq

− �(q)
9

9nq

G(P; q)

}

dsq; P ∈B (18)

where �= �inc + �sc is the total �eld.
Apart from this last formula, all of the results in this section are valid when C is a simple

smooth open arc, provided p is not taken at an end point, and provided �(q)=0 when q is at
an end point (otherwise the use of integration by parts will generate end-point contributions).

5. DIFFRACTION BY AN ISLAND

Here, we suppose that C is a simple smooth closed curve with a non-empty interior Bi. Then,
we can use (18) to represent the scattered �eld �sc. Making use of the boundary condition
(10), we obtain

2�sc(P) =

∫

C

{

G(P; q)

(

−i� 9�
9sq

)

− �(q)
9

9nq

G(P; q)

}

dsq

=

∫

C

{

i�
9�

9sq
G(P; q)− 9

9nq

G(P; q)

}

�(q) dsq (19)
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DIFFRACTION OF POINCAR�E WAVES 921

for P ∈B, which is a formula for �sc(P) in terms of the boundary values of �. Hence, letting
P→p∈C, we obtain

(I − i�L+ K)�=2�inc (20)

which is a singular integral equation for �(q).
As an alternative, we may seek a solution in the form of a single-layer potential,

�sc(P) =

∫

C

�(q)G(P; q) dsq; P ∈B (21)

where the density � is to be found. We apply the boundary condition (10), using (12) and
(13)2, giving

(I + K ′ + i�L′)�=−finc (22)

where

finc(p)=

(

9

9np
+ i�

9

9sp

)

�inc (23)

is known. Equation (22) is another singular boundary integral equation.
Equations (20) and (22) are so-called quasi-Fredholm integral equations [10], provided

�2 �=1. (Recall that we assumed that �2¡1.) They have an index of zero, which means that
the usual Fredholm structure is obtained. In particular, existence follows from uniqueness.
Also, (20) and (22) are Hermitian adjoints with respect to the L2 inner product, and so we
can limit our analysis to (22).

To justify these claims, we write (22) as

(A0 + A1)�=−finc

where A0 is the dominant part of the operator on the left-hand side of (22), and A1 is less
singular. Approximating the kernel of L′ for small R shows that

A0= I + �A

where we have noted that G(P;Q) ∼ �−1 logR as R→ 0 and

(A’)(z)=
1

�i

∫

C

’(w)

w − z
dw

is the Cauchy integral operator. Explicitly, we �nd that the dominant part of (L′�)(p) is

1

�

∫ 1

0

�(q(�))

� − �
d� ≃ 1

�

∫ 1

0

�(q(w))

z − w
dw

where p is at z= x(�)+ iy(�); q is at w= x(�)+ iy(�) and we have used the parametrization
described in Section 3. As A2= I , we deduce that A−1= I − �A, provided that �2 �=1. The
remaining arguments are standard; see, for example, References [10; 11 or 19, Chapter 7].
To proceed, we suppose that �0 is a non-trivial solution of the homogeneous form of (22),

(I + K ′ + i�L′)�0=0 (24)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925



922 P. A. MARTIN

Construct

�0(P) =

∫

C

�0(q)G(P; q) dsq

For P ∈B, we see that �0 solves the homogeneous Poincar�e problem, whence �0 ≡ 0 in B. In
particular, �0=0 on C. Then, as (S�0)(P) is continuous across C, we see that �0(P) solves
the interior Dirichlet problem for Bi. So, if k2 is not an eigenvalue of this problem, we obtain
�0 ≡ 0 in Bi. In particular, 9�0=9n+i�9�0=9s=0 when computed from the interior, which gives

(−I + K ′ + i�L′)�0=0

When this is combined with (24), we deduce that �0 ≡ 0.
Conversely, suppose that k2 is an eigenvalue of the interior Dirichlet problem. Hence, there

exists an interior �eld �1(P) �≡ 0, with �1=0 on C. An application of Green’s theorem in Bi

to �1 and G gives (cf. (17))

−2�1(P)=
∫

C

G(P; q)
9�1
9nq

dsq; P ∈Bi

Hence, setting �0= 9�1=9nq, we deduce that

S�0=0; L′�0=0 and (I + K ′)�0=0

It follows that �0 also solves (24).
Summarising, unless k2 is an eigenvalue of the interior Dirichlet problem, the Poincar�e

problem can be solved using the single-layer representation (21) where the density � solves
the singular integral equation (22). Alternatively, one can use the representation based on
Green’s theorem, (19), together with the singular integral equation (20). Moreover, one can
remove the irregular values of k2 by modifying the fundamental solution in a standard manner;
see, for example Reference [1; Section 3:6].

6. DIFFRACTION BY A THIN BARRIER

Let V be a thin barrier, with two sides, V+ and V−. We suppose that the given incident wave
�inc is scattered by V. Then, the scattered �eld �sc solves the Poincar�e problem; we require,
in addition, that �sc is bounded in the water B, including at the two ends of V.
If we surround V by a closed curve C which we then allow to shrink onto V, we obtain

an integral representation from (17), namely

2�sc(P) =

∫

V+∪V−

{

G(P; q)
9�sc
9nq

− �sc(q)
9

9nq

G(P; q)

}

dsq; P ∈B (25)

We have
∫

V+∪V−

�sc(q)
9

9nq

G(P; q) dsq =

∫

V

[�sc(q)]
9

9nq

G(P; q) dsq (26)

where

[�sc(q)]= lim
Q→q+

�sc(Q)− lim
Q→q−

�sc(Q)

Copyright ? 2001 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2001; 24:913–925
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and q+ and q− are corresponding points on V+ and V−, respectively: thus, square brackets
denote the discontinuity in a quantity across V. Also, we de�ne n(q) for q∈V to be the unit
normal vector to V+; n(q+).
Next, write (10) explicitly as

9�sc
9n

+ i�
9�sc
9s

=−9�inc
9n

− i�
9�inc
9s

(27)

We have n(q+)=−n(q−) and s(q+) = −s(q−). As �inc is continuous across V, we obtain

0 =
9�sc
9nq

(q+) + i�
9�sc
9sq

(q+) +
9�sc
9nq

(q−) + i�
9�sc
9sq

(q−)

=
9�sc
9nq

(q+) +
9�sc
9nq

(q−) + i�
9

9sq
[�sc(q)]

where we de�ne s(q) for q∈V to be the unit tangent vector to V+; s(q+). Hence

∫

V+∪V−

G(P; q)
9�sc
9nq

dsq = − i�

∫

V

G(P; q)
9

9sq
[�sc(q)] dsq:

If we integrate by parts, noting that [�sc]= 0 at the two ends of V, and combine with (26),
we see that (25) becomes

2�sc(P)=−
∫

V

{

9

9nq

G(P; q)− i�
9

9sq
G(P; q)

}

[�(q)] dsq; P ∈B (28)

here, we have used [�sc]= [�]. Observe that (28) is similar to (19).
Equation (28) shows that the waves scattered by a thin rigid barrier can be represented

in terms of [�]; the integrand is composed of a certain linear combination of normal and
tangential dipoles. In the absence of rotation (�=0), (28) reduces to the well-known fact
that normal dipoles su�ce [18; Equation (1:5)].
To determine [�], we apply the boundary condition on V+. Write (28) as

2�sc(P)=−(D�)(P)− i�(S�′)(P)

where � ≡ [�]. Then, (13)1 and (12) give

2
9

9np
�sc= − N�− i�(I + K ′)�′

Similarly, (15) and (13)2 give

2
9

9sp
�sc=(I + K ′)�′ − k2s · (S{�n})− i�L′�′

But (16) gives L′�′=N�− k2n · (S{�n}), whence

2

{

9

9np
+ i�

9

9sp

}

�sc ≡ −(1− �2)N�− i�k2{s+ i�n} · (S{�n})
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Hence, the boundary condition (27) gives

(1− �2)N�+ i�k2{s+ i�n} · (S{�n})=2finc (29)

where finc is de�ned by (23).
Equation (29) is a hypersingular integral equation for �(q) ≡ [�(q)], the discontinuity in �

across V. It is to be solved subject to �=0 at the two ends of V. When �=0, (29) reduces
to

N�=2(9=9n)�inc (30)

which is a well-studied integral equation. Very e�ective numerical methods for its solution
have been developed, in which V is parametrized and the strong singularity in N is extracted,
leading to an integral equation of the form

×
∫ 1

−1

�(t)

(x − t)2
dt +

∫ 1

−1

�(t)K(x; t) dt=f(x); −1¡x¡1

Here, the �rst integral is a �nite-part integral andK is a known kernel with a weak singularity.
Then, an approximation

�(t)≃
√

1− t2
N
∑

n= 0

anUn(t)

can be sought in terms of Chebyshev polynomials of the second kind, Un, de�ned by
Un(cos �)= {sin(n+1)�}=sin �. The coe�cients an are determined by collocation. The method
is e�ective because the known square-root zeros of �(t) at the two end-points are incorporated,
and because the �nite-part integral can be evaluated explicitly:

×
∫ 1

−1

√
1− t2

(x − t)2
Un(t) dt=−�(n+ 1)Un(x)

For more information on this method, see, for example, References [18] or [20].
The e�ect of rotation is merely to alter the weakly singular kernel K; the dominant part

of the integral equation is the operator N , and this is treated e�ectively by the expansion-
collocation method using Chebyshev polynomials.

Moreover, if � is small (recall that |�|¡1), a simple perturbation method can be developed.
Thus, put

�= �0 + i��1 + · · ·
Then, (29) gives

N�0=2(9=9n)�inc (31)

N�1=2(9=9s)�inc − k2s · (S{�0n}) (32)

and so on. Equation (31) gives the leading-order term �0; it is the same as (30) and must be
solved subject to �0=0 at the two ends of V. The �rst correction for small �; �1, is obtained
by solving (32), which is the same hypersingular integral equation as (31), but with a di�erent
right-hand side.
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7. DISCUSSION

It is interesting to compare our method with that described by Krutitskii [13] for thin barriers.
He uses a combination of single-layer and ‘angular’ potentials, the latter being de�ned by

∫

V

�(q)V (P; q) dsq

where

V (P; q′)=

∫ q′

q0

9

9nq

G(P; q) dsq

and q0 is one end of V. This approach leads to a singular integral equation on V. The integral
equation involves a constant that has to be determined using a side condition. Its presence
is not surprising, because transforming from a hypersingular to a singular integral equation
requires one integration. In fact, Krutitskii considers n barriers and so he must determine n
constants; our formulation does not change if the number of barriers is increased.
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