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Abstract

Exterior boundary-value problems for the Helmholtz equation can be reduced to
boundary integral equations. It is known that the simplest of thesefail to be uniquely
solvable at certain ‘ irregular frequencies.’ For a single smooth scatterer, it i s also known
that irregular frequencies can be eliminated by using a modified fundamental solution,
one that has additional singularities inside the scatterer. This approachis extendedto
treat the three-dimensional exterior Neumannproblem for any finite numberof disjoint
smoothscatterers,using a fundamentalsolution that has additional singularities inside
everyscatterer.
 2002Elsevier Science(USA). All rights reserved.
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1. Intr oduction

Exterior boundary-valueproblemsfor theHelmholtz equation,

(∇2 + k2)u = 0,

canbe reducedto boundaryintegral equationsin variousways [2,8]. If the goal
is to obtaina Fredholmintegral equationof the secondkind, as is traditional,
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then there are two basic methods, known as the indirect and direct methods.
Both methodsuse afundamental solution,usually taken asthefree-spaceGreen’s
function; in threedimensions, this is

G(P,Q) = −exp(ikR)/(2πR), (1)

whereR is thedistancebetweenthe two points,P andQ.
Consider the exterior Neumannproblem,wherethe normalderivative of u is

prescribed on the boundaryS. Then,in the indirect method,onestarts with an
assumed representation for u asasingle-layerpotential,

u(P ) =

∫

S

µ(q)G(P,q) dsq, (2)

andthenderivesa Fredholm integral equation of thesecondkind for thesource
density µ(q), where q ∈ S. In the direct method,onestarts with the Helmholtz
integral representation (obtainedby applying Green’s theoremto u andG) and
then obtains a Fredholm integral equation of the secondkind for the unknown
boundaryvalues ofu.

Now, thereisawell -knowndifficulty associatedwith thetwomethodssketched
above: they both leadto integralequationsthatarenot uniquely solvablewhenk2

coincideswith an eigenvalueof the corresponding interior Dirichlet problem—
thesearecalledthe irregular valuesof k2, or the irregular frequencies.

The indirect and direct methodscan be modified in various ways so as to
eliminate irregular frequencies. The main ideasare: modify the fundamental
solution; modify the integral representation; combine two different integral
equations; or augmentoneintegralequationwith someconstraints. For reviewsof
suchmodifications, see[2, §3.6]or [14]. Here,wefocusonthefirst of theseideas,
where the free-spaceGreen’s function is replacedby a different fundamental
solution.This ideawasdevelopedby Ursell [18,19],Jones[7] andKleinmanand
Roach[9,10].

For multiple-scatteringproblems, theboundaryS isnotconnected:physically,
we may be interested in the scatteringof waves by a collectionof N obstacles.
The standard theory assumes implicitly that N = 1, althoughmuch of it does
extendto multiple-scatteringproblemswithoutdifficulty. Oneexceptionto this is
the use of modified fundamental solutionsfor such problems. Nevertheless, we
shall obtain a Fredholm integral equation of the secondkind which we prove is
alwaysuniquely solvable: irregularfrequenciesdonotoccur. This isanextension
to scattering by N three-dimensional obstacles ofsome work by Jones, Ursell ,
KleinmanandRoach,cited above. Weuse amodified fundamentalsolutionwhich
hasadditionalsingularitiesinside eachscatterer. Our proof of uniquesolvability
makes essential useof the addition theorems for outgoing and regular spherical
wavefunctions.
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2. Formulation

Suppose that we have N bounded,simply connected scatterers, Bi , i =

1,2, . . . ,N . Theboundaryof Bi is Si , assumedto be smooth. We define

B =

N⋃

i=1

Bi and S =

N⋃

i=1

Si ,

sothat B is the collection of all the interiorsof theN scatterersandS is all their
boundaries. Theunboundedconnectedexterior isdenotedby Be.

We consider the followingboundary-valueproblem.

Exterior Neumann Problem. Finda functionu(P ) for P ∈ Be, where

(∇2 + k2)u = 0 in Be, (3)

u satisfiesthe Sommerfeld radiation condition at infinity (4)

and

∂u/∂n = f onS. (5)

Here, f (q) is a given function, defined for q ∈ S, and ∂/∂n denotes normal
differentiation in thedirection from S towardsBe.

A standard argument [2, Theorem 3.13] using Rellich’s lemma shows that the
exterior Neumannproblem hasat most onesolution: f ≡ 0 on S implies that
u ≡ 0 in Be.

The exterior Dirichlet problem is formulatedin the sameway, except (5) is
replacedby u = g onS, whereg(q) is a givenfunction,definedfor q ∈ S.

In what follows, we limit ourselves to the exterior Neumann problem.
However, ouranalysis canbeadaptedto theexteriorDirichlet problem.

3. Integral equations: indirectmethod

Let us look for a solution of the exterior Neumannproblem in the form of a
single-layer potential; thus, we write u(P ) as(2) for P ∈ Be, where the density
µ is to be found.For any reasonable µ, (3) and(4) aresatisfied. It remains to
satisfy the boundarycondition(5). Imposing this, using the jump conditionfor
thesingle-layerpotential, weobtain

µ(p)+

∫

S

µ(q)
∂

∂np
G(p,q) dsq = f (p), p ∈ S. (6)

If we can solve this integral equation for µ, we will have solved the exterior
Neumannproblemfor u.
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It turns out that (6) is uniquely solvable for µ, for any f , exceptwhenk2 is
an irregular value. At these irregular frequencies, the following boundary-value
problemhasa non-trivial solution.

Interior Dirichlet Problem. Finda functionψ(P) for P ∈ B, where

(∇2 + k2)ψ = 0 in B, and ψ = 0 on S.

Let usdenote theset of irregularvaluesby IV(S). It is clearthat

IV(S) =

N⋃

i=1

IV(Si), (7)

becausewecanobtainanon-trivial solutionof theinteriorDirichletproblemfor S
by taking ψ(P) to be aneigenfunction of the interior Dirichlet problemfor Sj ,
say, with ψ(P) ≡ 0 for P ∈ Bi , i = 1,2, . . . ,N , i �= j ; see[3, ChapterVI, §1.3].

Thefact (7)isunfortunate,becauseit meansthat,in general,thereareN times
asmany irregular frequenciesas therearefor a single scatterer. Thus, unless the
scatterers are identical, the integral equation will have many irregular values,a
countableset for eachscatterer.

Note that the irregular values do not dependon the relative location or
orientationof thescatterers, merelyon their shape.

The integral equation (6) is an example of an indirect boundary integral
equation, so calledbecause theunknown density functiondoesnot have a clear
physical interpretation.For multiple-scatteringproblems, it has been used by
Isaacson [6], Sorensen[17] andRadlinski [15].

4. Integral equationsbasedon Green’s theorem: directmethod

For theexterior Neumannproblem,the integral representation obtainedfrom
anapplicationof Green’s theoremis

2u(P ) =

∫

S

{
G(P,q) f (q)− u(q)

∂

∂nq
G(P,q)

}
dsq , P ∈ Be. (8)

Thisformulagivesu atP in termsof u(q), q ∈ S. To findu(q), welet P → p ∈ S,
andobtain

u(p)+

∫

S

u(q)
∂

∂nq
G(p,q) dsq =

∫

S

G(p,q)f (q) dsq, p ∈ S. (9)

This is another Fredholm integral equation of the secondkind. As (9) is the
Hermitian adjoint of (6), it has thesame irregularvalues,namely IV(S).
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The unknown u occurring in (9) hasphysical significance,andmay even be
thedesiredphysical quantity. For this reason,integralequationsbased onGreen’s
theoremareoften known asdirectboundary integral equations.

For multiple-scattering problems, direct boundaryintegral equationshave
beenused by several people, including Millar [13], Andreasen[1] and Seybert
etal. [16].

In what follows, we concentrateon theindirectmethod.Similar resultscanbe
obtainedfor thedirectmethod.

5. Modified fundamental solut ions: onescatterer

We have describedthestandardindirectmethod in Section 3, using the free-
spaceGreen’s functionG. However, thereisnoneedto useG; onemayuse

G1(P ;Q) = G(P,Q) +H(P ;Q),

whereH hasthe following properties: for every P ∈ Be, H(P ;Q) satisfiesthe
Helmholtz equation for all Q ∈ Be, andtheradiation condition with respecttoQ;
H(P ;Q) must havesomesingularitiesat P = Q for someQ ∈ B. (If a functionv
satisfies theHelmholtz equationeverywherein spaceandtheradiationcondition,
onecanprovethatv must vanish everywhere;for a proof, see[4, p. 317].)

So, let us modify the fundamental solution with specific choicesfor H . We
do this first for onethree-dimensionalscatterer (N = 1), so as to review what is
known.

ChoosetheoriginO atapoint inB ≡ B1, theinterior ofS ≡ S1. Let Bρ denote
a ball of radiusρ, centredatO , with Bρ ⊂ B. Let rP andrQ denote theposition
vectorsof P andQ, respectively, with respect to O . Then,we replacethe free-
spaceGreen’s functionG(P,Q) ≡ G(rP , rQ) by

G1(P,Q) = G(rP , rQ)− 2ik
∞∑

ℓ=0

ℓ∑

m=−ℓ

(−1)maℓmψ
m
ℓ (rP )ψ

−m
ℓ (rQ), (10)

whereψm
ℓ isaradiatingsphericalwavefunction,definedby(A.1);notethatψm

ℓ (r)

is singular at r = 0. Thefactors{−2ik(−1)m} areinserted for later convenience
andalso renderthecoefficientsaℓm dimensionless. These coefficientswill becho-
sen later; for now, we merely imposetheconditionsthat the infiniteseriesin (10)
beuniformly convergentfor P andQ outsideBρ , andthatit canbedifferentiated
twice, term by term.

So, we look for a solution of theexterior Neumannproblemin the form

u(P ) =

∫

S

µ(q)G1(P, q) dsq (11)
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whenceµ(q) satisfies

µ(p)+

∫

S

µ(q)
∂

∂np
G1(p, q) dsq = f (p), p ∈ S. (12)

The solvability of this integral equation is governed by the solvability of the
correspondinghomogeneousequation,namely

µ(p)+

∫

S

µ(q)
∂

∂np
G1(p, q) dsq = 0, p ∈ S. (13)

Theorem 5.1. Suppose that the homogeneousintegral equation (13) hasa non-
trivial solution µ(q). Then,the interior wavefunction

U(P) =

∫

S

µ(q)G1(P, q) dsq , P ∈ B, (14)

vanishesonS.

Proof [18,pp.120,123]. DefineU(P) for P ∈ Be by (14);∂U/∂n vanishesonS

by (13).Theuniqueness theoremfor the exterior Neumannproblemthenasserts
that U ≡ 0 in Be. The result follows by noting that U is continuousacross the
sourcedistribution onS [2, Theorem2.12]. �

If we canshow thatU ≡ 0 in B, it will follow that (13) hasonly the trivial
solution (becauseµ is proportionalto thediscontinuity in ∂U/∂n across S) and
hencethattheinhomogeneousequation(12) isuniquely solvable for any f . This
canbeachieved with somerestrictionson thecoefficientsaℓm.

Theorem 5.2. Supposethat
∣∣∣∣aℓm +

1

2

∣∣∣∣ >
1

2
for ℓ = 0,1,2, . . . andm = −ℓ, . . . , ℓ, (15)

or ∣∣∣∣aℓm +
1

2

∣∣∣∣ <
1

2
for ℓ = 0,1,2, . . . andm = −ℓ, . . . , ℓ. (16)

Then,every solution of thehomogeneousintegral equation (13) is a solution of

µ(p)+

∫

S

µ(q)
∂

∂np
G(p,q) dsq = 0, p ∈ S, (17)

which alsosatisfies

Aℓm ≡ −2ik(−1)m
∫

S

µ(q)ψ−m
ℓ (rq) dsq = 0, (18)
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for ℓ = 0,1,2, . . . andm = −ℓ, . . . , ℓ.

Proof. For P ∈ B with P �= O , we have

U(P) =

∫

S

µ(q)G(P,q) dsq +

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓmAℓmψ
m
ℓ (rP ),

whereµ is asolution of (13). If werestrict P to lie in Bρ , wecanusetheaddition
theorem (bilinearexpansion),

G(rP , rQ) = −2ik
∞∑

ℓ=0

ℓ∑

m=−ℓ

(−1)mψ̂m
ℓ (rP )ψ

−m
ℓ (rQ), (19)

which is valid for rP < rQ, to give

U(rP ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

{
Aℓmψ̂

m
ℓ (rP )+ aℓmAℓmψ

m
ℓ (rP )

}
,

P ∈ Bρ, P �= O. (20)

Here,ψ̂m
ℓ is a regular spherical wavefunction, definedby (A.1). Note that if we

canshow (18),thenwecaninfer from (20)thatU ≡ 0 inBρ andthen,by analytic
continuation,in B.

Next, following Ursell [19] and Colton and Kress [2, Theorem3.35], we
consider the integral

I ≡

∫

Ωρ

(
U

∂U

∂n
−U

∂U

∂n

)
ds,

whereΩρ denotes the spherical boundaryof the ball Bρ ⊂ B and the overbar
denotescomplex conjugation. Using Green’s theoremand Theorem5.1, we see
that

I =

∫

S

(
U

∂U

∂n
−U

∂U

∂n

)
ds = 0.

We canalso evaluateI directlyusing the following lemma.

Lemma 5.3.SupposethatU(rP ), P ∈ Bρ , hasanexpansion

U(rP ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

{
Aℓmψ̂

m
ℓ (rP )+Bℓmψ

m
ℓ (rP )

}
.

Then
∫

Ωρ

(
U

∂U

∂n
−U

∂U

∂n

)
ds = −

2i

kρ

∞∑

ℓ=0

ℓ∑

m=−ℓ

(
|Bℓm|2 + Re

{
AℓmBℓm

})
.
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Proof. Let

[u,v] =

∫

Ωρ

(
u
∂v̄

∂n
− v

∂u

∂n

)
ds

sothat I = [U,U ]. Substituting for U gives

[U,U ] =
∑

ℓ,m

∑

L,M

{
AℓmALM

[
ψ̂m
ℓ , ψ̂M

L

]
+BℓmBLM

[
ψm
ℓ ,ψM

L

]}

+ 2i Im
∑

ℓ,m

∑

L,M

AℓmBLM

[
ψ̂m
ℓ ,ψM

L

]
.

Asboth ψ̂m
ℓ andψ̂M

L areregularwavefunctionsin Bρ , [ψ̂m
ℓ , ψ̂M

L ] = 0. Next,

[
ψ̂m
ℓ ,ψM

L

]
= kρ

{
jℓ(kρ)h

′
L(kρ)− j ′

ℓ(kρ)hL(kρ)
}∫

Ω

Ym
ℓ YM

L dΩ

= −i(kρ)−1δℓLδmM ,

using the orthogonalityof the spherical harmonicsYm
ℓ over the unit sphere

Ω , (A.2), and the Wronskian for spherical Bessel functions, jn(w)y ′
n(w) −

j ′
n(w)yn(w) = w−2. Similarly

[
ψm
ℓ ,ψM

L

]
= −2i(kρ)−1δℓLδmM ,

and then the result follows. �

Thus, returning to theproof of Theorem5.2,we find that

0= I = −
2i

kρ

∞∑

ℓ=0

ℓ∑

m=−ℓ

|Aℓm|2
{
Re(aℓm) + |aℓm|2

}
, (21)

using Lemma5.3 with Bℓm = aℓmAℓm. Sinceaℓm satisfiesthe inequalities (15) or
(16), it follows that (21) canonly be satisfied if Aℓm = 0 for ℓ = 0,1,2, . . . and
m = −ℓ, . . . , ℓ. Also, substituting (10) in (13) shows that µ satisfies(17). �

Thiscompletesour review of scattering byasingle obstacle.

6. Modified fundamental solut ions: several scatterers

Consider the exterior Neumannproblem for N three-dimensionalscatterers.
Choose an origin On ∈ Bn, the interior of Sn, and let r

n
P denote the position

vector of a point P with respectto On. Let Bn
ρ denote aball of radiusρ, centred

atOn; we chooseρ sufficientlysmall so thatBn
ρ ⊂ Bn for n = 1,2, . . . ,N . Let
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G1(P,Q) = G(rP , rQ)

− 2ik
N∑

n=1

∞∑

ℓ=0

ℓ∑

m=−ℓ

(−1)manℓmψ
m
ℓ

(
r
n
P

)
ψ−m
ℓ

(
r
n
Q

)
, (22)

whereanℓm areconstants. Thisfundamentalsolutionis singularateveryoriginOn,
n = 1,2, . . . ,N (recallthatψm

ℓ (rnP ) is singularatOn). Notethatit is essential that
our fundamental solution hasthis property; if we chose afundamental solution
that was not singular insideBj , say, thenwe could not eliminate those irregular
frequenciesassociatedwith Sj .

We look for a solution of our problem in the form (11), whencethe source
density µ(q) satisfies the integral equation (12). Moreover, the samearguments
asbeforeshow that Theorem5.1 is true(in thecurrentnotation).

Let us now investigatethe solvability of the integral equation (12) and look
for an analogue of Theorem5.2. Suppose that µ(q) is any solution of the
homogeneousintegral equation (13). Consider the interior wavefunction U(P),
definedby (14),forP ∈ Bj andsomej . Werestrict P to lie in B

j
ρ ⊂ Bj , andfind

that

U
(
r
j
P

)
=

∑

ℓ,m

A
j
ℓmψ̂

m
ℓ

(
r
j
P

)
+

N∑

n=1

∑

ℓ,m

anℓmA
n
ℓmψ

m
ℓ

(
r
n
P

)
, (23)

for P ∈ B
j
ρ , where

An
ℓm = −2ik(−1)m

∫

S

µ(q)ψ−m
ℓ

(
r
n
q

)
dsq . (24)

In orderto useLemma5.3,weneedthe expansion of U to bein termsof functions
centredon Oj , that is we need the addition theorem for outgoing spherical
wavefunctions, (A.5). Thisgivesthe expansion

ψm
ℓ

(
r
n
P

)
=

∞∑

L=0

L∑

M=−L

SmM
ℓL (bnj )ψ̂L

M

(
r
j
P

)
,

wherer
n
P = b

nj + r
j
P . This expansion is valid for |r

j
P | < |bnj |, which is always

true in our application. Note that b
nj is the position vector of Oj with respect

to On, whenceb
nj = −b

jn. The separation matrix SmM
ℓL is defined by (A.6).

Hence,(23)becomes

U
(
r
j
P

)
=

∑

ℓ,m

ψ̂m
ℓ

(
r
j
P

)
{
A

j
ℓm +

N∑

n=1
n�=j

∑

L,M

anLMAn
LMSMm

Lℓ (bnj )

}

+
∑

ℓ,m

ψm
ℓ

(
r
j
P

)
a
j

ℓmA
j

ℓm, P ∈ Bj
ρ . (25)
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Using Green’s theorem,Lemma5.3 (for B
j
ρ ) and the fact that U(r

j
P ) vanishes

onSj , we obtain

0=
∑

ℓ,m

(∣∣Aj

ℓm

∣∣2 + Re
{
a
j

ℓm

}∣∣Aj

ℓm

∣∣2)

+ Re
∑

ℓ,m

A
j
ℓm

N∑

n=1
n�=j

∑

L,M

An
LMSMm

Lℓ (bnj ), (26)

whereAn
ℓm = anℓmA

n
ℓm. Eq. (26)holdsfor j = 1,2, . . . ,N .

By comparisonwith theproof of Theorem5.2,we expectto beable to deduce
from (26) thatAn

ℓm = 0. To dothis, we sum over j andobtain

0=

N∑

j=1

∑

ℓ,m

Re
(
a
j
ℓm

)∣∣Aj
ℓm

∣∣2 +KN , (27)

where

KN =

N∑

j=1

∑

ℓ,m

∣∣Aj
ℓm

∣∣2 + Re
N∑

j=1

∑

ℓ,m

A
j
ℓm

N∑

n=1
n�=j

∑

L,M

An
LMSMm

Lℓ (bnj )

=

N∑

j=1

∑

ℓ,m

∣∣Aj
ℓm

∣∣2

+
1

2

N∑

j=1

∑

ℓ,m

A
j

ℓm

N∑

n=1
n�=j

∑

L,M

A
n
LM

{
SMm
Lℓ (bnj )+ SmM

ℓL (bjn)
}
. (28)

But, from thedefinition of SMn
Lℓ , (A.6), we canshow that

SMm
Lℓ (bnj )+ SmM

ℓL (−b
nj ) = 2 ŜMm

Lℓ (bnj ),

whereŜMm
Lℓ , defined by (A.4), is the separation matrix that occurs in the addition

theoremfor regularsphericalwavefunctions:

ψ̂m
ℓ

(
r
n
P

)
=

∞∑

L=0

L∑

M=−L

ŜmM
ℓL (bnj )ψ̂L

M

(
r
j

P

)
. (29)

Thus, (28)becomes

KN =

N∑

j=1

∑

ℓ,m

∣∣Aj
ℓm

∣∣2 +

N∑

j=1

∑

ℓ,m

A
j
ℓm

N∑

n=1
n�=j

C
nj
ℓm

=

N∑

j=1

∑

ℓ,m

{
∣∣Aj

ℓm

∣∣2 +
1

2

N∑

n=1
n�=j

(
A

j
ℓmC

nj
ℓm +A

j
ℓmC

nj
ℓm

)}
,
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where

C
nj

ℓm =
∑

L,M

An
LM ŜMm

Lℓ (bnj ), n �= j,

andwehavenotedthatKN is real.Now, for complex quantitiesA andC, we have

AC +AC = |A+C|2 − |A|2 − |C|2 (30)

sothat

KN =

N∑

j=1

∑

ℓ,m

{
∣∣Aj

ℓm

∣∣2 −
1

2

N∑

n=1
n�=j

(∣∣Aj
ℓm

∣∣2 +
∣∣Cnj

ℓm

∣∣2)
}

+K ′
N ,

where

K ′
N =

1

2

N∑

j=1

∑

ℓ,m

N∑

n=1
n�=j

∣∣Aj

ℓm + C
nj

ℓm

∣∣2 � 0.

Furthersimplificationscanbe madebecause the separationmatrix ŜMm
Lℓ is a

unitary matrix; explicitly , wehave

∞∑

λ=0

λ∑

ν=−λ

ŜMν
Lλ (b)Ŝmν

ℓλ (b) = δLℓδMm.

(Thiscanbeproved by using (29) twice.)It followsthat
∑

ℓ,m

∣∣Cnj

ℓm

∣∣2 =
∑

ℓ,m

∣∣An
ℓm

∣∣2, n �= j,

whence

KN = (2−N)

N∑

j=1

∑

ℓ,m

∣∣Aj

ℓm

∣∣2 +K ′
N .

Thus, (27)becomes

0 =

N∑

j=1

∑

ℓ,m

∣∣Aj

ℓm

∣∣2{Re
(
a
j

ℓm

)
− (N − 2)

∣∣ajℓm
∣∣2} +K ′

N .

Hence,wecandeducethatAj

ℓm = 0 providedall the coefficientsajℓm aresuchthat

Re
(
a
j
ℓm

)
− (N − 2)

∣∣ajℓm
∣∣2 > 0.

Alternatively, if weuse the identity

AC +AC = −|A−C|2 + |A|2 + |C|2
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insteadof (30),we obtain

0=

N∑

j=1

∑

ℓ,m

∣∣Aj
ℓm

∣∣2{Re
(
a
j
ℓm

)
+N

∣∣ajℓm
∣∣2} +K ′′

N ,

whereK ′′
N � 0. Hence,we deducethatAj

ℓm = 0 providedthat

Re
(
a
j

ℓm

)
+N

∣∣ajℓm
∣∣2 < 0.

Summarising,we haveproved thefollowingresult.

Theorem 6.1. Supposethat

Re
(
a
j
ℓm

)
− (N − 2)

∣∣ajℓm
∣∣2 > 0 for ℓ � 0, |m| � ℓ andj = 1,2, . . . ,N

or

Re
(
a
j

ℓm

)
+N

∣∣ajℓm
∣∣2 < 0 for ℓ � 0, |m| � ℓ andj = 1,2, . . . ,N,

where N is the number of disjoint scatterers. Then, every solution of the
homogeneousintegral equation (13) is a solution of (17)which alsosatisfies

A
j
ℓm = 0 for ℓ � 0, |m| � ℓ andj = 1,2, . . . ,N,

whereA
j
ℓm is definedby (24).

If the conditionsonajℓm aresatisfied, this theoremimpliesuniquesolvability of
theintegral equation(12),for all wavenumbersk andfor any f . This isan elegant
theoretical result, becauseit yields solvability of the exterior Neumann problem
withoutintroducingnon-compactoperators.

It is noteworthy that Theorem6.1 reducesformally to Theorem5.2 when
N = 1.

When N = 2, we obtain uniqueness when Re(ajℓm) > 0. This result was
obtained previously by Martin [11] in two dimensions. The results for more
scatterers, N > 2, arenew; note that the conditionsin Theorem6.1 do depend
onN .

7. Discussion

Theorem6.1 is convenientanalytically, because it shows how to eliminateall
irregular frequencies. In actual computations, of course, the infinite summation
in (22) would have to be truncated. For a single scatterer (N = 1), Jones[7]
showed that one could eliminate a finite numberof irregular frequencies with
a truncated series in (10). It would be nice to have such a result for N > 1.
However, ouranalysisdoesnotextendreadily to thesecases. Previously [11], we
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examinedthe two-dimensionalcase with N = 2, andfoundthat we could prove
a partial generalization of Jones’s result: we used a finite number of additional
singularitiesinsideonescattererbut aninfinite numberinsidetheother. Examples
weregiven [11] to show thatit may bedifficult to obtainacompletegeneralization
(no infinite seriesin (22)), even whenN = 2. As far as we know, this situation
hasnotchanged.

Appendix A. Spherical wavefunctions

Let (r, θ,φ) be spherical polar coordinatesof a point with position vector r .
Let r̂ = (sinθ cosφ,sinθ sinφ,cosθ) sothat r = r r̂ . Define

ψm
n (r) = hn(kr)Y

m
n (r̂) and ψ̂m

n (r) = jn(kr)Y
m
n (r̂), (A.1)

where jn is a spherical Bessel function and hn ≡ h
(1)
n is a spherical Hankel

function.Ym
n is asphericalharmonic,definedby

Ym
n (r̂) = Am

n P
m
n (cosθ)eimφ,

wherePm
n isanassociatedLegendrefunctionandthenormalizationconstantsAm

n

arechosenso thatwe havetheorthogonalityrelation
∫

Ω

Ym
n Y

µ
ν dΩ = δnνδmµ; (A.2)

here,Ω is the surfaceof the unit sphere,r = 1. ψ̂m
n (r) is a regular spherical

wavefunction.ψm
n (r) is anoutgoingsphericalwavefunction; it is singularatr = 0

and satisfiestheSommerfeld radiation condition.
Let r2 = r1 + b. Then

ψ̂m
n (r2) =

∞∑

ν=0

ν∑

µ=−ν

Ŝmµ
nν (b)ψ̂µ

ν (r1). (A.3)

This is the addition theoremfor regular spherical wavefunctions. The entries in
theseparationmatrix are given by

Ŝmµ
nν (b) = 4πiν−n(−1)µ

∑

q

iqψ̂m−µ
q (b)G(n,m; ν,−µ;q), (A.4)

whereG is a Gauntcoefficient,definedby

G(n,m; ν,µ;q)=

∫

Ω

Ym
n Yµ

ν Y
m+µ
q dΩ.

Thesummation over q is finite.
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For theoutgoingsphericalwavefunctions, we have

ψm
n (r2) =

∞∑

ν=0

ν∑

µ=−ν

Smµ
nν (b)ψ̂µ

ν (r1) (A.5)

for r1 < b, and

ψm
n (r2) =

∞∑

ν=0

ν∑

µ=−ν

Ŝmµ
nν (b)ψµ

ν (r1)

for r1 > b, where

Smµ
nν (b) = 4πiν−n(−1)µ

∑

q

iqψm−µ
q (b)G(n,m; ν,−µ;q). (A.6)

These addition theoremswere obtainedin the 1950’s. For referencesand
further information, see[5] and[12]. Note that the expansion (19) for G is the
specialcasen = 0 of (A.5).
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