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Abstract

Exterior bounday-value problems for the Helmholtz equaton can be reduced to
bounday integral equatons. It is known that the simplest of thesefail to be uniquely
solvable at cettain ‘irregular frequences! For a single smooh scaterer, it is also knovn
that irregular frequences can be eliminated by using a modified fundamerdl solution,
one that has additional singularities inside the scatterer This approachis extendedto
treatthe threedimensonal exterior Neumannproblem for any finite numberof disoint
smoothscatterers,using a fundamentalsolution that has additional singularities inside
every scaterer.
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1. Introduction

Exterior boundary-alueproblemsfor the Helmholtz equaton,
(V2 +k%u =0,

canbereducedo boundaryintegral equatonsin variousways [2,8]. If the goal
is to obtaina Fredholmintegral equationof the secondkind, asis traditional,
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then there are two basc methods known as the indirect and direct methods
Both methodsuse afundamerl solution, usually taken asthefree-gpaceGreens
function;in threedimensons thisis

G(P, Q) =—exp(ikR)/ (2 R), 1)

whereR is the distarce betweerthe two pants, P and Q.

Condder the exterior Neumanrproblem, wherethe normalderivative of u is
pre<ribed on the boundaryS. Then,in the indirect method, one starts with an
assuned representation for u asa single-layer potenial,

u<P>=/u(q>G<P,q>dsq, @

S

andthenderivesa Fredhom integral equaton o the secondkind for the source
densty u(g), where g € S. In the direct mehod, one starts with the Helmholz
integral repregnttion (obtained by applying Greens theoremto u and G) and
then obtains a Fredhom integral equaton d the secondkind for the unknovn
boundaryaues ofu.

Now, thereisawell -known difficulty associatedwith the two methodssketched
above: they both leadto integral equatonsthatarenot uniguely solvable whenk?
coincideswith an eigervalue of the mrreponding interior Dirichlet problem—
theseare calledthe irregular valuesof k2, or the irregular frequencés.

The indirect and direct methods can be modified in various ways so asto
eliminate irregular frequencés. The main ideasare: modify the fundamerdl
solution; modify the integral repreentaton; combine two different integral
equatons or augmentneintegralequatonwith somecongraints For reviews of
suchmodificaions see[2, §3.6]or [14]. Here,we focusonthefirst of theeideas
where the free-gpace Greens function is replacedby a different fundamental
solution. Thisideawas developedby Ursel [18,19],Jones[7] andKleinmanand
Roach[9,10].

For multiple-scatteringproblemstheboundarys isnotconneced:physcally,
we may be interesed in the scatteringof waves by a collectionof N obgacles
The stardard theary assumes implicitly that N = 1, althoughmuch of it does
extendto multiple-scatteringproblemawithout difficulty. Oneexceptionto thisis
the use of modified fundamerdal solutionsfor such problems Nevertheless we
shall obtain a Fredhom integral equaton of the secondkind which we proveis
alwaysuniquely solvable: irregularfrequencésdo notoccur Thisisanextenson
to scatteimg by N three-dmensonal obgacles of some work by Jones Ursell,
KleinmanandRoach cited above. We use amodified fundamerdl solutionwhich
hasadditional singularitiesingde eachscatterer Our proof of uniquesolvability
makes essettial use of the addition theorems for outgoing and regular spherical
wavefunctions
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2. Formulation

Suppo® that we have N bounded,smply connectd scaterers B;, i =
1,2,..., N. Theboundaryof B; is S;, assumedto be smooth. We define

N N
B=|JB and s=[]Js.
i=1 im1

sothat B is the mllection of al theinteriors of the N scaterersands is all their
boundarés Theunboundeaonnecedexterior is denoedby Be.
We consderthe following boundary-alueproblem.

Exterior Neumann Problem. Findafuncionu(P) for P € Be, Where

(V2+k»u=0 inBe, ()

u satisfieghe Sommerfeld radiation condtion at infinity (@)
and

du/on=f onS§. (5)

Here, f(¢) is a given function, defined for ¢ € S, and 9/dn denoes normal
differertiationin the direction from S towards Be.

A stardard argumernt [2, Thearem 3.13] using Rellich’s lemma shows that the
exterior Neumannproblem hasat mog one solution: f = 0 on S implies that
u=0Iin Be.

The exterior Dirichlet problemis formulatedin the sameway, except(5) is
replacedoy u = g on S, where g(¢) isagivenfunction, definedfor g € S.

In what follows, we limit ourseles to the ecterior Neumann problem
However, ouranalyss canbe adaptedo the exterior Dirichlet problem.

3. Integral equations: indirectmethod

Let us look for a solution o the exterior Neumannproblemin the form of a
single-layer potenial; thus we write u(P) as(2) for P € Be, where the dersity
wu isto be found. For any rea®nabk u, (3) and (4) are satisfied. It remans to
satisfy the boundarycondition(5). Imposng this, usng the jump conditionfor
the single-layer potenial, we obtain

d
w(p)+ / #@5—G(p.q)dsy = f(), peS. (6)
p
S

If we can solve this integral equaton for u, we will have sdved the exterior
Neumannproblemfor u.
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It turns out that (6) is uniquely sdvable for u, for any f, exceptwhenk? is
anirregular value. At these irregular frequences, the following boundary-alue
problemhasanon-tivial soluton.

Interior Dirichlet Problem. Findafunciony (P) for P € B, where

(V2+k®y =0 inB, and ¥ =0 onS§.

Let usdenoetheset of irregularvaluesby IV (S). It is clearthat

N
V() =[JIV (s, (7)

i=1
becauswe canobtainanon-trivial solutionof theinterior Dirichlet problemfor S
by taking v (P) to be aneigenfuncion d the interior Dirichlet problemfor S;,
saywith ¢ (P)=0for Pe B;,i=1,2,...,N,i +# j; see[3, ChaperVI, 8§1.3].

Thefact (7)isunfortunatebecaug it meanghat,in generalthereare N times
asmary irregular frequences as therearefor a single scaterer. Thus unless the
scatteers are identical, the integral equation will have many irregular values,a
countableset for eachscatterer

Note that the irregular values do not dependon the relaive locaion o
orientationof the scatterersmerelyon their shape.

The integral equaton (6) is an exampk of an indirect bounday integral
equaton, so calledbecaus the unknovn dengty functiondoesnot have a dear
physdcal interpretation.For multiple-scatteringproblems it has been used by
Isaac®n [6], Sorengn[17] andRadlinki [15].

4. Integral equations based on Greeristheorem: directmethod

For the exterior Neumannproblem,the integral repregntation obtainedfrom
anapplicationof Greenstheorems

)
2M(P)Z/{G(P,Q)f(CI)—M(Q)aTG(P,CI)}dsq, P € Be. (8)
q

Thisformulagivesu at P intemsof u(g), g € S. Tofindu(q),welet P — p € S,
andobtain

9
u(p)+/u(q)aTG(p,q)dsq=/G(p,q)f(q)dsq, peSs. 9
q
S S

This is anoher Fredhom integral equaton o the secondkind. As (9) is the
Hemitian adjoint of (6), it has the saneirregular values,namely 1V (S).
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Theunknovn u occurrngin (9) hasphyscal significance,andmay even be
thededred phydcal quantity For thisrea®n, integralequationdased onGreens
theoremare often known asdirectbounday integral equaions

For multiple-scattering problems direct boundaryintegral equationshave
beenused by several pegple, including Millar [13], Andreasern 1] and Seybert
etal.[16].

In what follows, we amncentate ontheindirectmehod.Similar reaults canbe
obtainedfor the directmetod.

5. Modified fundamental sdutions: one scatterer

We have degribedthe standardindirectmethodin Secton 3 using the free-
spaceGreensfunction G. However, thereis noneedto use G; onemayuse

G1(P; Q) =G(P, Q)+ H(P; Q),

where H hasthe following propertes: for every P € Be, H(P; Q) satisfiesthe
Helmhdltz equationfor all Q € Be, andthe radation condtion with respectto Q;
H(P; Q) mug havesomesingularitiesat P = Q forsomeQ < B. (If afuncionv
satisfies the Helmholtz equaton everywherein spaceandtheradiation condition,
onecanprove that v mug vanish everywhere;for a proof, see[4, p. 317].)

So, let us modify the fundamerdl solution with specific choicesfor H. We
dothis first for onethree-dmensonalscaterer (N = 1), so asto review what is
known.

Choostheorigin O atapointin B = By, theinterior of S = S1. Let B, denoe
aball of radiusp, centredat O, with B, C B. Let r p andr  denote the position
vectorsof P and Q, reectiely, with repectto O. Then,we replacethe free-
spaceGreensfunctionG(P, Q) = G(rp,ro) by

14

G1(P.Q)=G(rp.ro) —2ik Y > (=) "amyy (rp)v; ™ (rg). (10)

{=0m=—¢

whereyr;" isaradiatingsphericalwavefunction,definedby (A.1); notethaty;" (r)
is dngularatr = 0. Thefacbrs{—2ik(—1)"} areinserted for later convenience
andalso renderthecoeficientsay,, dimensonless. Thes wefficienswill becho-
sen later; for now, we merel impo<e the condtionsthatthe infinite seriesin (10)
beuniformly corvergentfor P andQ outside B,,, andthatit canbedifferentiated
twice, term by tem.

So, we look for asolution o the exterior Neumannproblemin the form

u(P) =/u(q)G1(P,q)dsq (11)
S
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whenceu(q) satisfies

9
n(p) +/u(q)aTG1(p, q)dsg=f(p), peSs. (12)
P
S

The solvahility of this integral equation is governed by the solvability of the
correpondng homogeneousquaton, namey

9

u(p) +/u(q)aTG1(p, q)dsg =0, peS. (13)
P

S

Theorem 5.1. Suppos that the honpgeneousintegral equaton (13) hasa non-
trivial solution w(g). Then,theinterior wavefincion

U(P)=/M(q)G1(P,q)dsq, PeB, (14)
S
vanisheson S.

Proof[18,pp.120,123]. Define U (P) for P € Be by (14);0U /dn vanisheson S
by (13). The uniquenes theoremfor the exterior Neumanrproblemthen asserts
that U = 0 in Be. The resut follows by nating that U is coninuousacros the
sourcedistribution onS [2, Theorem2.12]. O

If we canshow thatU =0 in B, it will follow that (13) hasonly the trivia
solution (because . is proportonalto the discontinuity in 9U /on acros S) and
hencethattheinhomogeneousquaton (12) is uniquely solvable for any f. This
canbeachieved with someredrictionson the coefiicientsay,, .

Theorem 5.2. Supposthat

1
>§ fort=0,1,2,...andm=—¢,...,¢, (15)

1
alm“ré

or

1 1
agm+§ <§ fore=0,1,2,...andm=—¢,..., ¢ (16)

Then,every soluion o thehonbgeneousntegral equaton (13)is a solution of

9
w(p) +/M(Q)WG(P,6])dsq =0, peSs, (17)
P
S

which also satisfies

Apm = —2ik(~1)" / W@V (rg) dsy =0, (18)
S
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for=0,1,2,...andm=—¢, ..., ¢.

Proof. For P € B with P # O, we have
4

U(P)= / (@) G(P.q)dsg+ Y Y aimAwm¥y' (rp),

S L=0m=—t
wherep is asolution of (13). If werestict P tolie in B,, we canuse the addition
thearem (bilin earexpansion),
4

Grp,ro)==2iky Y (=1™jy rp)¥; " (ro), (19)

{=0m=—t
whichisvalid for rp < rg, to give
¢

o
Urp)=Y_ > {Am¥" (rp) + aimAwm vy (rp)}.
L=0m=—¢
PeB, P#0. (20)
Here,t/}g” is aregular sphercal wavefunction, defined by (A.1). Note that if we
canshaw (18),thenwe caninfer from (20)thatU = 0 in B, andthen,by anajtic
confinuaton,in B.
Next, following Ursell [19] and Colton and Kress [2, Theorem3.35], we
consdertheintegral

‘/ UaU UBU J
= — —U—)ds,
on on

where £2,, denoesthe sphercal boundaryof the ball B, C B andthe overbar
denoescompkx conjugaion. Using Greens theoremand Theoremb.1, we see

that
U —dU
/( on 8n> y
S

We canalso evaluate!l directly using the following lemma.

Lemma 5.3.SupposthatU(rp), P € B,, hasanexpanson
¢

Urp)=Y_ > {Am¥}"(rp) + Bem¥{" (rp)}.

{=0m=—¢
Then

. 00 4

U  —oU 2i —
(0505 )as =55 2 3 (Bl el AwBin)).

2, =0m=—¢



P.A. Martin / J. Math. Anal. Appl. 275 (2002)642-656 649

Proof. Let

sothat I = [U, U]. Substituting for U gives

[Ua U]:ZZ{AZW:AL—M[&Z”"&Q/I] +Bz;nfm[l//£"ﬂ//£/]]}

t,m L.M

+20 MY > Ap B[] v,

tm LM

Asboth /" andy M areregularwavefunciionsin B,, [y, 1= 0. Next,

(97 v = ko Lictkp) B o) — i) i) [ 1777 a2
2
= —i(kp) eLmum,
usng the orthogonalityof the spherical harmonicsY;” over the unit sphere
2, (A.2), and the Wronskian for sphercal Bessl funcions j,(w)y,(w) —
Jn )y, (w) = w2, Similarly
[ v = —2i(kp) 8eL8mm.

and then theresut follows. 0O

Thus returningto the proof of Theoremb.2, we find that

2i &
0=I=-—>">" |Awml*{Relan) + lam|?}, (21)
kp
{=0m=—¢
using Lenma5.3 with By, = agm Aem. SiNCeay, satisfieghe inequalities (15) or
(16), it follows that (21) canonly be satisfied if A, =0 for ¢=0,1,2,... and
m=—L,..., L. Also, substituting (10) in (13) showsthat u satisfieq17). O

This compktes our review of scatering byasingle obgacle.

6. Modified fundamental sdutions: several scatterers

Condder the exterior Neumannproblemfor N three-dmensonal scaterers
Choo® an origin O" € By, theinterior of S,, and let r, dencte the position
vecbr of apoint P with respectto O". Let B; denog abal of radius p, centred
at0"; we choo= p sufficientlysmall sothat B C B, forn=1,2,..., N. Let
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Gu(P, Q):G("PJ'Q)

—ZlkZZ Z( D", i (r) vy (1), (22)

n=1(=0m=—¢

whereay,, arecondants Thisfundameral solutionis sngularateveryorigin 0",
n=12,...,N (recallthaty;" (r';) is Sngularat 0"). Notethatit is essetial that
our fundameral solution hasthis propery; if we choe afundamerdl solution
that was notsingularinside B;, say, thenwe oould not eliminate those irregular
frequenciessociatedwith S;.

We look for a solution o our problemin the form (11), whencethe source
densty u(q) satisfies the integral equaton (12). Moreover, the sameargumensg
asbeforeshow that Theoremb.1listrue(in thecurrentnotation).

Let us now investigatethe sdvabhlity of the integral equation (12) and look
for an analogue of Theorem5.2. Suppo® that w(g) is ary solution of the
homogeneoumtegral equaton (13). Condder the interior wavefuncion U (P),
definedby (14),for P € B/ andsome j. Werestict P to lie in B{, C Bj, andfind
that

N
)= ALY (D) + YD al, AL (), (23)

L,m n=1¢m

for P € B[{, where

Ar :—Zik(—l)’"/u(q)w_’"( rp)ds,. (24)
S
In orderto useLemmab5.3,we needthe expanson o U to bein terms of functions
centredon O/, that is we needthe aldition theorem for outgoing spherical
wavefunctions (A.5). Thisgivesthe expanson

v () Z Z StM BVl (rh),
L=0M=

wherer’, =bV + r . This expansonis valid for |rP| < |b"V|, whichis always

true in our appllcat_mn. Note that b is the position vecta of 0/ with respect
to 0", whenceb’”’ = —b’". The separaton matrix SZ’LM is defined by (A.6).
Hence(23) becomes

N
=zw<r¢>{Azm+zzazMA S )
£,m :;;} L.M

+Y Yy (r 2al Al . Pe B. (25)

l,m
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Using Greens theorem,Lemma5.3 (for B})') and the fact that U(r{D) vanishes
on S;, we obtain

0= Z A7, |° +Re{ag, } 47, [°)

+ Rez ‘Aim Z Z ‘AleSl/E/Ilm (bnj)’ (26)
n=1 L M
n#j
where A}, =ay, A}, . Eq.(26)holdsfor j =1,2,.

By comparsonwith the proof of Theorenb.2, we e<pectto beableto deduce

from (26) thatAZm = 0. To dothis, we sum over j andobtain
0= 3 Y Rela, )|+ K. (27)
j=1¢,m
where
N
M +ReZZAMZZA Mm pni)
j=14¢,m j=14¢,m Z¢} L.M
N .
Z pT Tk
j=14¢,m

+ % Z S AL SIS A sEr @+ SEM ). (28)

j=1l¢tm n=1L.M
n#j

But, from the definition of S, (A.6), we canshow that
Y@ + SEM (—b) = 281" (B,
whereSMm defined by (A.4), is the separation matrix that occus in the aldition

theorerr%r regular sphercal wavefunctions
00 L )
=2 > SHMeig(ry). (29)
L=0M=-L

Thus (28) becomes

L ) SIS 9 e 3L

i=14,m =14¢,m
J Jj= n#/

=3 a4 S+ )

1¢,m
/ n#—/
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where
Cot =" ALSHM B, n
LM

andwe have notedthat K y is real.Now, for complex quantities A andC, we have

AC+AC=|A+C]?—|AP=|C? (30)
sothat
Al 2 1 al i 2 i 2
K=Y S A2 = 5 Sk P+ e | + K
j=1¢m n=1
n#j
where

ZZZ\A +Conl” >
] =14,m Z¢}

Furthersimplifications can be madebecaus the separationmatrix S is a
unitary matrix; explicitly, we have

00 A
> Z 1 (b)SpY (b) = SLeSam.
A=0v=

(Thiscanbeproved by using (29) twice.)It followsthat

> leal? —Z\A . on#],
l,m
whence
N
KN:(Z_N)ZZ’ Zm’ +KN

j=14¢m

Thus (27)becomes
J J J
0= ZZ |AZm| {Re(aém) — (N - 2)|alm| } + K;V'
j=1¢m
Hence,we candeducethatAém = 0 providedall the meﬁicienSaZm aresuchthat
, ;2
Re(a,) — (N =2}, >0
Alternatively, if we use the idertity
AC+AC=—|A—CPP+|AP+|C?



P.A. Martin / J. Math. Anal. Appl. 275 (2002)642-656 653

insteadof (30), we obtain

N
- . -
0= > |A,"{Rela},,) + Nlaf, |} + KF.
j=14¢,m

whereK, < 0. Hence,we deduce:hatAim = 0 providedthat
Re(af,,) + Nlaj, |* <O

Summarsing, we have proved thefollowing reault.

Theorem 6.1. Supposthat
Re(a], ) — (N =2)al >0 fore>0, jm|<tandj=12,...,N
or
Re(a], )+ Nl|al, |7 <0 fore>0, jm|<eandj=12,...,N,
where N is the number of disjoint scatterers. Then, every solution of the
honmogeneousntegral equaton (13)is a solution of (17)which also satisfies
Al =0 fore >0, Im|<fandj=1,2,...,N,

tm

where A/ isdefinecby (24).

If the cnnditionsonajm are satisfied this thearem implies unique sdvalhility of
theintegral equaton (12),for all wavenumberg andforary f. Thisisan elegant
theareticalresut, becawseit yields sdvahlity of the exterior Neumam problem
withoutintroducing non-compacbperaors.

It is noteworthy that Theorem6.1 reducesformaly to Theorem5.2 when
N=1.

When N = 2, we obtain uniquenes when Re(agm) > 0. This resut was
obtained previoudy by Martin [11] in two dimensons The reallts for more
scaterers N > 2, are new; note thatthe condtionsin Theorem6.1 do depend
onN.

7. Discussin

Theoremg. 1 is corvenientanalytically becaug it shows how to eliminateall
irregular frequences. In acual compugtions of cours, the infinite summaion
in (22) would have to be truncated. For a single scaterer (N = 1), Jones|[7]
showed that one could eliminate afinite numberof irregular frequenocés with
a truncaed seriesin (10). It would be nice to have such a reault for N > 1.
However, our anaysis doesnotextendreadly to these cases Previoudy [11], we
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examinedthe two-dimensonal cae with N = 2, andfoundthat we could prove
a partial gereralization of Jones’s resut: we used a finite number of additional
singularitiesingde onescatterebut aninfinite numberngde theother Examples
weregiven [11] to show thatit may bedifficult to oktain acompletegeneralization
(noinfinite seriesin (22)), evenwhen N = 2. As far as we know, this situation
hasnotchanged.

Appendix A. Sphericd wavefunctions

Let (r, 6, ¢) be spherical polar coordinatesof a point with position vecta r.
Let 7 = (sind cosg, sind sing, cosd) sothat r = rr. Define

YN (r) = hy (kr)Y™(#) and P (r) = ju(kr) Y (P, (A1)

where j, is a sphercal Bes=l funcion and &, = hf,l) is a spherical Hankel
functon.Y," isasphercal harmonc, defined by
Y™ (#) = A™ P (cosf)e™?,

where P isanassociatedLegendrefuncionandthe normalzationcondants A}
arechoenso thatwe have the orthogonalityrelation

/ Y7 Y A2 = 808y (A.2)
2
here, $2 is the surfaceof the unit sphere,r = 1. y(r) is a regular spheiical
wavefunctiony) (r) is anoutgongspheiical wavetincion; itis sngularatr =0

and satisfiesthe Sommerfeld radiation condtion.
Letro=r1+b. Then

U=y > SH bl (ra). (A.3)

v=0pu=—v
This is the addtion theoremfor regular sphercal wavefunctions The entiesin
the separatiormatrix are given by
St () =dmi® " (=DM Y P B)G (i v, s q), (A4)
q
whereg is a Gauntcoeficient, definedby

g(n,m;v,M;Q)Z/Y,;" YEY) T ds.
2
Thesummaton owr ¢ is finite.
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For the outgong spherical wavefunctions we have

Yrra) =Y Y Spb)l(ry) (A.5)

v=0pu=—v
forry < b, and

Yrra) =Y Y Spb)yylr)
v=0pu=—v
for r1 > b, where
Spt(b) = Ami¥ " (= DR Y ity (B)G (. mi v, — s q). (A.6)
q

Thes aldition theoremswere obtainedin the 1950%. For referencesand
furtherinformaton, see[5] and[12]. Note thatthe expanson (19) for G is the
specialcagen =0 of (A.5).
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