
ZAMM · Z. Angew. Math. Mech. 83, No. 2, 129 – 136 (2003) / DOI 10.1002/zamm.200310012

Short Communication

On the scattering of point-generated electromagnetic waves by a perfectly

conducting sphere, and related near-field inverse problems

C. Athanasiadis1, P. A. Martin2,∗, and I. G. Stratis3,∗∗

1 Department of Mathematics, University of Athens, Panepistimiopolis, GR 157 84 Athens, Greece
2 Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO 80401-1887, USA
3 Department of Mathematics, University of Athens, Panepistimiopolis, GR 157 84 Athens, Greece

Received 10 October 2001, revised 8 February 2002, accepted 5 March 2002

Published online 27 January 2003

Key words Point sources, inverse problems, Maxwell’s equations

MSC (2000) 78A45, 78A46

A spherical electromagnetic wave is scattered by a bounded perfectly conducting obstacle. A generalization of the plane-wave

optical theorem is established. For a spherical scatterer, low frequency results are obtained by approximating the known exact

solution (separation of variables). In particular, a closed-form approximation of the scattered wavefield at the source of the

incident spherical wave is obtained. This leads to the solution of a near-field inverse problem, where both the source and

coincident receiver are located at several points in the vicinity of a small sphere. The same inverse problem is also treated

from the knowledge of the leading order term in the low-frequency asymptotic expansion of the scattering cross-section.

1 Introduction

A basic electromagnetic inverse problem is the following: determine the shape of a perfectly conducting object from a

knowledge of the scattered field for several incident fields. The standard version of this problem uses incident plane waves

and measurements in the far field; for an excellent survey of what is known about this problem, see the book by Colton and

Kress [2]. Several methods for solving this problem make essential use of point sources; for a review, see the recent book by

Potthast [8].

However, in practice, one cannot realise an actual plane wave and one may not be able to take measurements in the far

field. For these reasons, there has been some interest in the use of point-generated incident spherical waves, and in near-field

measurements.

In the acoustics case, Dassios and his co-workers (see, for example, [3] and [4]) and the present authors [1] have studied

incident waves generated by a point source in the vicinity of the scatterer. Such incident wavefields introduce an extra parameter

(the distance of the source from the scatterer) which may be and is exploited in all the above works for the study of inverse

problems. Dassios et al. developed a low-frequency theory for arbitrary smooth scatterers (for a number of different boundary

conditions), which they then specialized to small spherical scatterers. In [1], we noted that if spheres are of primary interest,

then these low-frequency results can be extracted more easily by first solving the boundary-value problem for the Helmholtz

equation exactly. In the present paper, we generalise these results to electromagnetic scattering by a perfectly conducting

sphere; the classical results for a sphere can be found in [9].

Two kinds of inverse problem, with point-source generated incident fields, can be considered. The first involves far-field

measurements, and is discussed in Section 6.1. The second involves near-field measurements: specifically, one can measure the

scattered field at the location of the point source. This problem was first studied in [1], where it was shown how to recover the

location and radius of a small spherical scatterer, using acoustic waves. We consider the analogous problem for electromagnetic

waves in Section 6.2.

We begin with the direct problem. For the scattering of a time-harmonic spherical electromagnetic wave by a bounded

three-dimensional perfectly conducting body, located in the vicinity of the point source generating the incident wavefield, we

derive a new general result. Thus, we establish an optical theorem for point-source excitation, relating the scattering cross-

section due to a point source at a given point to the scattered field at this point, and a Herglotz wave function with Herglotz
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kernel depending on the electric far-field pattern. We recover the standard optical theorem for plane-wave incidence when we

let the point source recede to infinity.

Next, we study the case in which the scatterer is spherical. After expanding the spherical incident field in terms of spherical

wave functions, we obtain an exact solution of the boundary-value problem under consideration, as well as an expansion for

the electric far-field pattern. This point-source solution can be regarded as the exact Green’s function for the problem. Under

the low-frequency assumption (ka ≪ 1), we calculate the electric far-field pattern with an error of fourth order in ka (where

k is the free-space wave number and a is the radius of the spherical scatterer), and the scattering cross-section with an error of

sixth order in ka. Again, the classical results for plane incident waves are recovered as the point source recedes to infinity.

Finally, we consider the two inverse problems mentioned above. For the far-field experiments, we measure the scattering

cross-section for various point-source locations. We use this data to recover the location and radius of the small perfectly

conducting spherical scatterer. We then obtain similar results using near-field experiments, in which the scattered field is

measured at the source, for various point-source locations.

2 Formulation

Consider a bounded three-dimensional perfectly conducting body B with a smooth closed boundary S, surrounded by an

infinite dielectric medium. We consider a time harmonic spherical electromagnetic wave due to a point source at P0 with

position vector r0 with respect to an origin O in the vicinity of B. This incident wave Einc
r0

, H inc
r0

has the form

Einc
r0

(r; b̂) = Ainc ∇ ×
(

ei k |r−r0|

|r − r0|
r̂0 × b̂

)
, H inc

r0
(r; b̂) = −ik−1 ∇ × Einc

r0
(r; b̂), (1)

where b̂ is a constant unit vector with r̂0 · b̂ = 0, and k > 0 is the free-space wave number. Physically, (1) represents the

electromagnetic field generated by a magnetic dipole with dipole moment r̂0 × b̂; see, for example, [2, p. 163] or [5, p. 23]. The

constant Ainc is evaluated so that as the location of the point source goes to infinity along the ray in the direction r̂0, the point

source field degenerates into a plane electromagnetic wave propagating in the direction from P0 towards O. Furthermore, the

normal electric energy flux at the origin due to the spherical electric incident field must be equal to the normal electric energy

flux of the plane electric wave that the point source field assumes as r0 = |r0| → ∞. The spherical electric wave that satisfies

these demands is given by (1) with Ainc = −i(r0/k) e−ikr0 . It is convenient to write the incident spherical field as

Einc
r0

(r; b̂) =
1

ik
∇ ×

(
h(kR)

h(kr0)
r̂0 × b̂

)
, (2)

where R = |r − r0| and h(x) ≡ h
(1)
0 (x) = eix/(ix) is the zeroth-order spherical Hankel function of the first kind. When

r0 → ∞, Einc
r0

(r; b̂) reduces to the plane electric wave

Einc(r;−r̂0, b̂) = b̂ e−ikr̂0·r,

with direction of propagation −r̂0 and polarization b̂.

We want to calculate the scattered electric field Esc
r0

, where Esc
r0

satisfies

∇ × ∇ × Esc
r0

= k2Esc
r0

, (3)

everywhere in the exterior of B, the Silver–Müller radiation condition

lim
r→∞

(r × ∇ × Esc
r0

+ ikrEsc
r0

) = 0, (4)

where r = |r|, and the boundary condition

n̂ × Esc
r0

= −n̂ × Einc
r0

on S, (5)

where n̂ is the outward unit normal vector to S.

The behaviour of the scattered wave in the far field is given by

Esc
r0

(r; b̂) ∼ F sc
r0

(r̂; b̂) h(kr) as r → ∞, (6)

where F sc
r0

is the far-field pattern.

The total exterior electric field Er0
(r; b̂) is given by

Er0
= Einc

r0
+ Esc

r0
, (7)
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and satisfies (3) for r �= r0 and the boundary condition

n̂ × Er0
= 0 on S. (8)

Let us note that Einc
r0

, Esc
r0

, and Er0
are required to be divergence-free.

In concluding this section let us make some comments on plane versus spherical excitation. For plane incident waves the

energy is infinite, the energy density is uniformly distributed, the considered radiation condition is not satisfied, the number of

parameters on which the incident wave depends is 5 (the wave number, the two spherical angles of the direction of propagation,

and the two spherical angles of the direction of polarization), while the number of parameters on which the far–field pattern

depends is 7 (the wave number, the two spherical angles of the direction of propagation, the two spherical angles of the direction

of polarization, and the two spherical angles of the direction of observation). On the other hand, for spherical incident waves

the energy is finite, there is geometrical attenuation of the energy density, the considered radiation condition is satisfied, the

number of parameters on which the incident wave depends is 6 (the wave number, the two spherical angles of the direction of

polarization of the corresponding plane wave, and the three components of the source point), while the number of parameters

on which the far–field pattern depends is 8 (the wave number, the two spherical angles of the direction of polarization of

the corresponding plane wave, the three components of the source point, and the two spherical angles of the direction of

observation).

3 An optical theorem for point-source excitation

Consider the incident field (2) and fix P0. Then

Einc
r0

(r; b̂) ∼ F inc
r0

(r̂; b̂) h(kr), as r → ∞,

where

F inc
r0

(r̂; b̂) =
e−ikr̂·r0

h(kr0)
r̂ × (r̂0 × b̂)

is the far-field pattern of the point-source incident field. Thus Einc
r0

satisfies the radiation condition (4) at infinity (with respect

to r). Let us note that

r̂ · F inc
r0

(r̂; b̂) = 0. (9)

From F sc
r0

given by (6) we can calculate the scattering cross-section σr0
, defined by

σr0
=

1

k2

∫

S2

|F sc
r0

(r̂; b̂)|2 ds(r̂), (10)

where S2 is the unit-sphere.

Consider a volume Br bounded internally by S and externally by a large sphere Sr centred at the origin with radius r large

enough to include the scatterer B in its interior. We also exclude a small ball centred on the source point P0; the boundary of

this ball is a sphere Sε of radius ε. Let

{U ,V }S :=

∫

S

[(n̂ × U) · (∇ × V ) − (n̂ × V ) · (∇ × U)] ds.

Apply the vector Green’s theorem in Br to Er0
and Er0

, where the overbar denotes complex conjugation. As Er0
and Er0

both satisfy (3) in Br, and they both satisfy (8) on S, we obtain

{Er0
,Er0

}Sr
+ {Er0

, Er0
}Sε

= 0.

As

Er0
(r; b̂) ∼ F r0

(r̂; b̂) h(kr), r → ∞,

where F r0
:= F inc

r0
+ F sc

r0
, and since in view of (9) and the fact that r̂ · F sc

r0
= 0 [2, Theorem 6.8], F r0

satisfies r̂ · F r0
= 0,

we find that

{Er0
,Er0

}S∞
=

2

ik

∫

S2

|r̂ × F r0
(r̂; b̂)|2 ds(r̂)

=
2

ik

[∫

S2

|F sc
r0

|2 ds +

∫

S2

|F inc
r0

|2 ds + 2ℜ
∫

S2

F sc
r0

· F inc
r0

ds

]

=
2

ik

[
k2 σr0

+ 4πk2r2
0 + 2 kr0 ℑ

(
ei kr0

∫

S2

ei kr̂·r0F sc
r0

(r̂; b̂) ·
(
r̂ × (r̂0 × b̂)

)
ds(r̂)

)]
,
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where {U ,V }S∞
denotes limr→∞{U ,V }Sr

.

Next, consider {Er0
,Er0

}Sε
. In view of the bilinearity of {·, ·}S and using (7), we have

{Er0
,Er0

}Sε
= {Einc

r0
,Einc

r0
}Sε

+ {Einc
r0

,Esc
r0

}Sε
+ {Esc

r0
,Einc

r0
}Sε

+ {Esc
r0

,Esc
r0

}Sε
.

Now, due to the regularity of Esc
r0

, Esc
r0

inside Sε, we have {Esc
r0

,Esc
r0

}Sε
= 0. Using the mean value theorem, we obtain

{Einc
r0

,Einc
r0

}Sε
∼ 8iπk r2

0 as ε → 0. Implementing in addition Stokes’ theorem we get

{Einc
r0

,Esc
r0

}Sε
+ {Esc

r0
,Einc

r0
}Sε

∼ 8π(r0/k) ℑ
[
e−i kr0(∇ × Esc

r0
(r0; b̂)) · (r̂0 × b̂)

]
,

as ε → 0. Combining the above we finally obtain

σr0
=

2r0

k
ℑ

[
2π

k
e−i kr0(∇ × Esc

r0
(r0; b̂)) · (r̂0 × b̂)

− ei kr0

∫

S2

ei kr̂·r0F sc
r0

(r̂; b̂) · (r̂ × (r̂0 × b̂)) ds(r̂)

]
. (11)

This is the analogue of the optical theorem for a point-source incident field. It shows that the scattering cross-section due

to a point source at r0 is related to the scattered field at r0 and a Herglotz vector wavefunction, [2], with Herglotz kernel

F sc
r0

(r̂; b̂) · (r̂ × (r̂0 × b̂)).
The behaviour of σr0

as the point source recedes to infinity can be examined as in [1], and it turns out that (11) reduces to

σ = −4πk−2 ℜb̂ · F (−r̂0;−r̂0, b̂)

which is the standard optical theorem for plane-wave incidence; here

σ =
1

k2

∫

S2

|F (r̂;−r̂0, b̂)|2 ds(r̂)

is the scattering cross-section for plane-wave incidence, where F (r̂; p̂, b̂) is the far-field pattern in the direction r̂ due to a

plane wave propagating in the direction p̂ with polarization b̂.

We conclude this section by noting that the solution for a point source in the presence of a scatterer is an exact Green’s

function, and so we should expect a reciprocity theorem. Indeed, such a result is known: see equation (2.126) in [5].

4 Exact Green’s function for a perfectly conducting sphere

Consider a spherical scatterer of radius a. Take spherical polar coordinates (r, θ, φ) with the origin at the centre of the sphere,

so that the point source is at r = r0, θ = 0, and so that the polarization vector b̂ is in the x-direction. Thus, r0 = r0ẑ and

b̂ = x̂, where x̂ and ẑ are unit vectors in the x and z directions, respectively.

Using spherical vector wave functions, and in particular (13.3.68), (13.3.69), (13.3.70) of [7] we obtain the following

expansion for the incident field:

Einc
r0

(r; x̂) =
i

h0(kr0)

∞∑

n=1

2n + 1

n(n + 1)

{
hn(kr0) N1

e1n(r) − h̃n(kr0) M1
o1n(r)

}
(12)

for r < r0, where hn ≡ h
(1)
n is a spherical Hankel function, h̃(x) = x−1hn(x) + h′

n(x) = x−1[xhn(x)]′, and M
ρ
σ1n and

N
ρ
σ1n are defined in the Appendix. The scattered field has a similar expression; taking the radiation condition into account we

have

Esc
r0

(r; x̂) =
i

h0(kr0)

∞∑

n=1

2n + 1

n(n + 1)

{
αnhn(kr0) N3

e1n(r) − βnh̃n(kr0) M3
o1n(r)

}
, (13)

where the dimensionless coefficients αn and βn are to be determined. Indeed, using the boundary condition (5), on r = a, we

obtain

αn = − jn(ka) + kaj′
n(ka)

hn(ka) + kah′
n(ka)

and βn = − jn(ka)

hn(ka)
. (14)

Let us calculate the electric far-field pattern. Since

hn(x) ∼ (−i)nh0(x) and h′
n(x) ∼ (−i)n−1h0(x) x → ∞,
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and using (13.3.68) and (13.3.69) of [7] we find that

M3
o1n(r) =

√
n(n + 1)hn(kr) Co1n(r̂) (15)

∼
√

n(n + 1) (−i)n h0(kr) Co1n(r̂)

and

N3
e1n(r) = n(n + 1) (kr)−1 hn(kr) P e1n(r̂) +

√
n(n + 1) h̃n(kr) Be1n(r̂) (16)

∼
√

n(n + 1) (−i)n−1 h0(kr) Be1n(r̂) (17)

as kr → ∞, where Co1n(r̂), P e1n(r̂), and Be1n(r̂) are defined in the Appendix. Therefore for the electric far-field pattern,

we have

F sc
r0

(r; x̂) = −
∞∑

n=1

(2n + 1)(−i)n

√
n(n + 1)

{
αn

hn(kr0)

h0(kr0)
Be1n(r̂) − iβn

h̃n(kr0)

h0(kr0)
Co1n(r̂)

}
. (18)

5 Far-field results for a small perfectly conducting sphere

So far, all of our formulae are exact. In the asymptotic results to follow, there are two parameters,

κ = ika and τ = a/r0.

We assume that |κ| = ka ≪ 1; that is we make the so-called low-frequency assumption. We also note that the geometrical

parameter τ must satisfy 0 < τ < 1 because the point source is outside the sphere.

From (14), we obtain

αn ∼ i(n + 1) (ka)2n+1

n(2n + 1) c2
n

and βn ∼ − i(ka)2n+1

(2n + 1) c2
n

(19)

as ka → 0, where cn := 1 · 3 · 5 · · · (2n − 1) = (2n)!/(2nn!). In particular,

α1 = − 2
3κ3 + O(κ5), β1 = 1

3κ3 + O(κ5),

α2 = 1
30κ5 + O(κ7), β2 = − 1

45κ5 + O(κ7),

α3 = − 4
4725κ7 + O(κ9), β3 = 1

1575κ7 + O(κ9),

as ka → 0. Moreover we have

hn(kr0)

h0(kr0)
∼ cn

(kr0)n
and

h̃n(kr0)

h0(kr0)
∼ −n cn

(kr0)n+1
as kr0 → 0. (20)

With the use of the ‘angular differential operator’

Da := θ̂
∂

∂θ
+

φ̂

sin θ

∂

∂φ

we have

Co1n(r̂) = −{n(n + 1)}−1/2 r̂ × Da

{
P 1

n(cos θ) sinφ
}

,

Be1n(r̂) = {n(n + 1)}−1/2 Da

{
P 1

n(cos θ) cos φ
}

,

where P 1
n is an associated Legendre function; see the Appendix.

In order to calculate F sc
r0

with an error of O((ka)4) we only need the following:

Co11(r̂) = 2−1/2
{

θ̂ cos φ − φ̂ cos θ sinφ
}

,

Be11(r̂) = 2−1/2
{

θ̂ cos θ cos φ − φ̂ sinφ
}

,

Co12(r̂) = (3/2)1/2
{

θ̂ cos θ cos φ − φ̂ cos 2θ sinφ
}

,

Be12(r̂) = (3/2)1/2
{

θ̂ cos 2θ cos φ − φ̂ cos θ sinφ
}

,

Co13(r̂) = 1
4

√
3

{
θ̂ (4 − 5 sin2 θ) cos φ + φ̂ (4 cos θ − 15 sin2 θ cos θ) sinφ

}
.
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From (18) we finally obtain

F sc
r0

(r; b̂) = −κ
τ2

√
2

Co11(r̂) + κ2

[
τ√
2

(Co11(r̂) − 2Be11(r̂)) +
2τ3

3
√

6
Co12(r̂)

]

+ κ3

[
1√
2

(2Be11(r̂) + Co11(r̂)) − τ2

√
6

(
1

2
Be12(r̂) +

2

3
Co12(r̂)

)

+
τ4

5
√

12
Co13(r̂)

]
+ O(κ4), as κ → 0, (21)

where τ = a/r0. In particular, when r0 → ∞, (21) yields

F sc(r; b̂) = 1
2 i(ka)3{−θ̂(2 cos θ + 1) cos φ + φ̂(2 + cos θ) sinφ} + O((ka)4)

as ka → 0, recovering (10.198) of [9, p. 406].

Now for the scattering cross-section σr0
, defined in (10), after lengthy calculations we obtain

σr0
= πa2

{
2
3 τ4 + 2

3 (ka)2 τ2
[
5 + 4

15 τ4
]

+ (ka)4
(

10
3 + τ2

[
4
9 + 19

90 τ2 + 1
30 τ4 + 2

175 τ6
])}

+ O((ka)6) (22)

as ka → 0. In the special case r0 → ∞ (τ → 0), i.e. for a plane incident wave of arbitrary polarization b̂ with b̂ · r̂0 = 0, we

obtain

σ = 10
3 (πa2)(ka)4 + O((ka)6), ka → 0.

This is a well-known result, first obtained by Mie and Debye in 1909; see (10.202) of [9, p. 406], [7, p. 1884], [6, pp. 417

and 775] or (7.92) of [5].

6 Inverse scattering problems

In this section we consider the inverse problem of determining a small spherical scatterer from a number of measurements of

either a far-field, or a near-field quantity.

6.1 Measurements of the scattering cross-section: far-field data

This approach is similar to the one considered by Dassios and his co-workers for the acoustic case, with various boundary

conditions.

Recall that for the scattering cross-section we know in view of (22) that

σr0
= 2

3 πa2 (a/r0)
4
, as ka → 0.

Choose a Cartesian coordinate system Oxyz, and five point-source locations, namely (0, 0, 0), (ℓ, 0, 0), (0, ℓ, 0), (0, 0, ℓ), and

(0, 0, 2ℓ), which are at (unknown) distances r0, r1, r2, r3, and r4, respectively, from the sphere’s centre. The parameter ℓ
is a chosen fixed length. For each location, measure the leading-order term in the low-frequency expansion of the scattering

cross-section. Thus, our five measurements are

mj = 2
3 πa2 (a/rj)

4
, j = 0, 1, 2, 3, 4.

Dimensionless quantities related to mj are

γj =
ℓ

√
mj

=

√
3

2π

ℓ

a

(rj

a

)2

, j = 0, 1, 2, 3, 4. (23)

There are six unknowns, namely r0, r1, r2, r3, r4, and a. However, r0, r3, and r4 are related using the cosine rule [3],

r2
4 = 2ℓ2 + 2r2

3 − r2
0 , whence

γ4 = (ℓ/a)3
√

6/π + 2γ3 − γ0. (24)

Then, eliminating a3 between (23) and (24) gives

(rj/ℓ)2 = 2γj/(γ4 − 2γ3 + γ0), j = 0, 1, 2, 3.

Hence the centre of the spherical scatterer is obtained from the intersection of the four spheres centred at (0, 0, 0), (ℓ, 0, 0),
(0, ℓ, 0), and (0, 0, ℓ), with corresponding radii r0, r1, r2, r3, respectively, while the radius a of the sphere is given by (24).
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6.2 Measurements of the scattered field at the source point: near-field data

The scattered field at the source point is given by setting r = r0 in (13):

Esc
r0

(r0; x̂) =
i

h0(kr0)

∞∑

n=1

2n + 1

n(n + 1)

{
αnhn(kr0) N3

e1n(r0) − βnh̃n(kr0) M3
o1n(r0)

}
.

As r0 = r0ẑ, this formula simplifies, using

lim
θ→0

d

dθ
P 1

n(cos θ) =
n(n + 1)

2
and lim

θ→0

P 1
n(cos θ)

sin θ
=

n(n + 1)

2
.

We obtain

P e1n(ẑ) = 0 and Be1n(ẑ) = Co1n(ẑ) = 1
2

√
n(n + 1) x̂,

whence (15) and (16) give

M3
o1n(r0) = 1

2n(n + 1)hn(kr0) x̂, N3
e1n(r0) = 1

2n(n + 1) h̃n(kr0) x̂ ,

and

Esc
r0

(r0; x̂) =
−ix̂

2h0(kr0)

∞∑

n=1

(2n + 1)(αn − βn) hn(kr0) h̃n(kr0). (25)

This formula is exact. Let us evaluate it when ka is small. From (19) and (20), we obtain

αn − βn ∼ i (ka)2n+1

nc2
n

and
hn(kr0) h̃n(kr0)

[h0(kr0)]2
∼ −nc2

n

(kr0)2n+1

as ka → 0 for fixed τ = a/r0. Hence, (25) gives

Esc
r0

(r0; b̂) ∼ 1

2
h0(kr0) b̂

∞∑

n=1

(2n + 1)τ2n+1 =
1

2
h0(kr0) b̂

τ3(3 − τ2)

(1 − τ2)2
,

after summing the infinite series (recall that 0 ≤ τ < 1). Finally, we obtain

|Esc
r0

(r0; b̂)| ∼ 1

2ka

τ4(3 − τ2)

(1 − τ2)
2 as ka → 0.

This gives the magnitude of the scattered field at the source, for a sphere that is small compared to a wavelength.

Let us now formulate a simple inverse problem. Thus, we consider measurements of the scattered field at the same five

source points as in Section 6.1, and let

Mj = 2kℓ |Esc
rj

(rj ; b̂j)| =
α3(3ρj − α2)

ρj(ρj − α2)2
, j = 0, 1, 2, 3, 4, (26)

where ρj = (rj/ℓ)2 and α = a/ℓ. Thus, as before, we have five measurements with six unknowns (ρ0, ρ1, ρ2, ρ3, ρ4, and α)

and the cosine-rule constraint,

ρ4 = 2 + 2ρ3 − ρ0; (27)

we also have ρj > α2 > 0. We can write (26) as

ρ3
j − 2α2ρ2

j + α3(α − 3/Mj)ρj + α5/Mj = 0,

which is a cubic equation for ρj if α is known. If α is not known, one has to solve the six algebraic equations, (26) and (27),

for the six unknowns.

Analytical progress is possible if α is known to be small, so that a ≪ ℓ. Then, one can approximate (26) by

Mj = 3α3/ρ2
j , j = 0, 1, 2, 3, 4.

It follows that α can then be obtained from (27). One can then proceed as in Section 6.1.

Here, we have discussed a simple but genuinely near-field inverse problem. This is perhaps a more natural and realisable

experiment. It is similar to, but more complicated than, the analogous acoustic problem analysed in [1].
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Appendix: Spherical vector wave functions

In this appendix we include for convenience the definitions of the spherical vector wave functions used in the paper. So, for

n = 1, 2, . . ., and σ = e or o (even or odd) we have the spherical vector wave functions of the first kind

M1
σ1n(r) = curl [r jn(kr) Yσ1n(θ, φ)] =

√
n(n + 1)Cσ1n(θ, φ) jn(kr)

and

N1
σ1n(r) = k−1 curlM1

σ1n(r)

= n(n + 1)P σ1n(θ, φ) (kr)−1 jn(kr) +
√

n(n + 1)Bσ1n(θ, φ) (kr)−1 (d/dr)[rjn(kr)].

Here, the spherical harmonics are defined by Ye1n(θ, φ) = P 1
n(cos θ) cos φ and Yo1n(θ, φ) = P 1

n(cos θ) sinφ, where P 1
n(w) =

(1 − w2)1/2 P ′
n(w) is an associated Legendre function and Pn(w) is a Legendre polynomial. Moreover, for σ = e or o, we

have [7, pp. 1898–1899]

P σ1n(θ, φ) = r̂Yσ1n(θ, φ),

Bσ1n(θ, φ) = r{n(n + 1)}−1/2 gradYσ1n(θ, φ),

Cσ1n(θ, φ) = {n(n + 1)}−1/2 curl [rYσ1n(θ, φ)].

The corresponding spherical vector wave functions of the third kind, M3
σ1n and N3

σ1n, are obtained by using the spherical

Hankel functions hn(kr) instead of jn(kr) in the above definitions.
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