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Abstract

Low-frequency axisymmetric waves in slender axisymmetric anisotropic columns are studied. The governing equation of

motion is solved using power series with a stretched radial coordinate, leading to a variety of ordinary differential equations in

the longitudinal direction. Detailed results for cylindrically orthotropic columns are given.
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1. Introduction

It is easy to formulate a mathematical problem representing the propagation of elastic waves along a solid

waveguide: for time-harmonic waves, one has to solve a three-dimensional elliptic boundary-value problem for

the displacement vector u. However, this problem is difficult to solve exactly, unless the waveguide is a circular

cylinder made from a homogeneous isotropic elastic solid; see, for example [1, Section 6.9] or [2, Section 8.2].

Consequently, many approximate theories have been developed. Here, we are interested in theories that lead to

ordinary differential equations that govern the behaviour of some quantity along the waveguide.

To fix ideas, consider an axisymmetric waveguide, defined in cylindrical polar coordinates, (r̃, θ, z̃), by

0 ≤ r̃ < aR̃(z̃), 0 ≤ θ < 2π, −ℓ < z̃ < ℓ, (1)

where 0 ≤ R̃(z̃) ≤ 1, so that 2a is the maximum diameter of the waveguide, and 2ℓ is its length. (Later, we will use

dimensionless versions of r̃ and z̃.) For simplicity, we call such a waveguide a column or a bat (because a baseball

bat gives a good example). In the special case that R̃(z̃) ≡ 1, the column reduces to a circular cylinder or rod.
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For low-frequency motions, where the wavelength is long compared to a, we expect to obtain approximate

solutions by assuming that u varies little over cross-sections of the column. For isotropic rods, such approximations

have a long history; see, for example [3, Chapter 20], the 1960 review by Green [4], [1, Section 6.11] and [2].

However, the literature on columns and on anisotropic rods is sparse. Some asymptotic results for non-uniform

isotropic elastic rods can be found in two papers by Rosenfeld and Keller [6,7], whereas anisotropy is included in

the analysis of Tromp and Dahlen [8].

Recently, Boström [5] developed a systematic method for axisymmetric motions in isotropic rods. His method

begins by seeking solutions of the equation of motion (Navier’s equation) in the form

u(r̃, z̃) = r̃ u1(z̃)+ r̃3 u3(z̃) + · · · ,

w(r̃, z̃) = w0(z̃)+ r̃2 w2(z̃)+ · · · ,

where u and w are the radial and longitudinal components, respectively, of u. Substitution then leads to a recursive

structure, enabling all the higher unknown functions,w2, u3, w4, u5, . . . to be expressed in terms of the two unknown

functions,w0(z̃) and u1(z̃), and their derivatives. Thus, solutions of Navier’s equation are constructed for any choice

of w0 and u1. These two functions are then obtained by imposing the lateral boundary condition on r̃ = a. This

condition reduces to power series in a and, for small a, this series may be truncated: doing this leads to ordinary

differential equations for w0 and u1.

In the present paper, we generalize Boström’s approach in two ways. First, we consider columns. To do this, we

introduce a scaled radial variable, so that the column is mapped onto a rod. This mapping simplifies the geometry

but at the expense of a more complicated system of partial differential equations; however, this complication is

handled easily, as we are going to seek solutions in the form of power series in the new radial variable. Second,

we consider anisotropic solids. Specifically, we consider materials with cylindrical anisotropy. We give results in

detail for columns with cylindrical orthotropy, so that isotropy is recovered as a special case. This generalization

requires the use of non-integer powers of r̃, as in the method of Frobenius. This method has been used by several

authors for wave propagation in rods with cylindrical anisotropy [9–15].

The motivation for this work comes from a study of the vibrations of wooden poles and baseball bats. Wood

can be modelled as a cylindrically orthotropic elastic solid. Bats are axisymmetric and slender: they have coaxial

circular cross-sections.

2. Governing equations

Consider a wooden axisymmetric column of length 2ℓ. The interior of the bat is specified by (1). It will be

convenient to define dimensionless variables, using a typical length scale L; one could choose L = ℓ, but one may

be interested in propagation problems where ℓ = ∞, in which case one could choose L as a typical wavelength.

Thus, we put

r =
r̃

L
, z =

z̃

L
, R̃(z̃) = R(z) and ε =

a

L
.

In this paper, we are concerned exclusively with axisymmetric motions, so that there is no variation with θ. Then,

the governing equation of motion is

∂

∂r

(

rt̃r
)

+ Kt̃θ + r
∂

∂z
t̃z = ̺0L

2r
∂2ũ

∂t2
, (2)
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where ̺0 is the density

t̃r =







τrr

τrθ

τrz






, t̃θ =







τθr

τθθ

τθz






, t̃z =







τzr

τzθ

τzz






, K =







0 −1 0

1 0 0

0 0 0






, ũ =







ur

uθ

uz






(3)

is the displacement vector and τij are the stress components. In what follows, we use a generalization of the matrix

formulation of Ting [16] for static problems. From [16], we have the following expressions for the traction vectors

t̃i(r, z, t) in terms of ũ(r, z, t)

t̃r = Q
∂

∂r
ũ +

1

r
RKũ + P

∂

∂z
ũ, t̃θ = R

T ∂

∂r
ũ +

1

r
TKũ + S

∂

∂z
ũ, (4)

t̃z = P
T ∂

∂r
ũ +

1

r
S
T
Kũ +M

∂

∂z
ũ. (5)

In these expressions

Q =







C11 C16 C15

C16 C66 C56

C15 C56 C55






, R =







C16 C12 C14

C66 C26 C46

C56 C25 C45






, T =







C66 C26 C46

C26 C22 C24

C46 C24 C44






,

P =







C15 C14 C13

C56 C46 C36

C55 C45 C35






, M =







C55 C45 C35

C45 C44 C34

C35 C34 C33






, S =







C56 C46 C36

C25 C24 C23

C45 C44 C34






.

R
T is the transpose of R, and we have used the contracted notation Cαβ for the elastic stiffnesses with (1, 2, 3) =

(r, θ, z). Note that Q, T and M are symmetric matrices.

We look for time-harmonic solutions of (2) in the form

ũ(r, z, t) = u(r, z) e−iωt, (6)

with similar expressions for t̃i, where ω is the radian frequency. We find that u(r, z) solves

rQ
∂

∂r

(

r
∂u

∂r

)

+ r(RK+ KRT)
∂u

∂r
+ r2(P+ PT)

∂2u

∂r ∂z
+ r2M

∂2u

∂z2
+ r(P+ KS+ STK)

∂u

∂z

+ {̺0(ωLr)2I+ KTK}u = 0, (7)

where I is the identity. From (4) and (5), we also have

tr = Q
∂u

∂r
+

1

r
RKu + P

∂u

∂z
, (8)

tz = P
T ∂u

∂r
+

1

r
S
T
Ku +M

∂u

∂z
. (9)

These equations were studied in [14]. For two-dimensional motions independent of z, we recover the equations

studied in [13]. (This paper is mainly concerned with non-axisymmetric motions.) If we also put ω = 0 (static), we

obtain the equations solved by Ting [16].

Setting u = (u, v, w)T, (7) gives three coupled partial differential equations for the three components of u. In

general, these equations do not decouple.
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The lateral boundary of the bat is free from tractions, whence

tr − εR′(z) tz = 0 on r = εR(z). (10)

In this paper,we consider columns of infinite length. For finite-length columns, it is natural to assume that R̃(±ℓ) > 0,

and that the two flat ends of the bat are also free from tractions, whence tz = 0 at z̃ = ±ℓ. The application of these

conditions leads to an eigenvalue problem for the frequencies of free vibration of the column.

3. Reformulation

Let us make a simple change of the independent variables, from (r, z) to (ρ, ζ), so that the new geometry

is a circular cylinder. The price of this change is that the new governing partial differential equations are more

complicated, but it has the virtue that the lateral boundary condition is to be applied on a coordinate surface.

Thus, define new variables ρ and ζ by

ρ =
r

R(z)
and ζ = z, (11)

so that the bat is mapped onto the circular pole, given by

0 ≤ ρ < ε, 0 < ζ < 1.

(Later, we will use z in place of ζ, but it is clearer to distinguish the two variables at this stage.) The chain rule gives

∂u

∂r
=

1

R

∂u

∂ρ
,

∂2u

∂r2
=

1

R2

∂2u

∂ρ2
,

∂u

∂z
=

∂u

∂ζ
− ρ

R′

R

∂u

∂ρ
,

∂2u

∂z2
=

∂2u

∂ζ2
− 2ρ

R′

R

∂2u

∂ρ ∂ζ
− ρ

∂u

∂ρ

(

R′

R

)′
+ ρ

(

R′

R

)2
∂

∂ρ

(

ρ
∂u

∂ρ

)

,
∂2u

∂r ∂z
=

1

R

∂2u

∂ρ ∂ζ
−

R′

R2

∂

∂ρ

(

ρ
∂u

∂ρ

)

.

Hence, (7) becomes

{Q− ρR′(P+ PT)+ ρ2R′2
M}ρ

∂

∂ρ

(

ρ
∂u

∂ρ

)

+ {RK+ KRT − ρR′(P+ KS+ STK)

+ ρ2(R′2 − RR′′)M}ρ
∂u

∂ρ
+ {P+ PT − 2ρR′

M}ρ2R
∂2u

∂ρ ∂ζ
+ ρ2R2

M
∂2u

∂ζ2
+ {P+ KS+ STK}ρR

∂u

∂ζ

+ {̺0(ωLRρ)2I+ KTK}u = 0. (12)

This equation reduces to (7) when R(z) ≡ 1. Also, (8) and (9) give

tr = P
∂u

∂ζ
+ (Q− ρR′

P)
1

R

∂u

∂ρ
+

1

ρR
RKu, (13)

tz = M
∂u

∂ζ
+ (PT − ρR′

M)
1

R

∂u

∂ρ
+

1

ρR
S
T
Ku; (14)

these can be used to express the lateral boundary conditions (10) in terms of the new variables.
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4. The method of Frobenius

To solve (12), we write

u(ρ, ζ) =
∞
∑

n=0

ρn+αun(ζ). (15)

Substitution in (12) gives

0 =
∞
∑

n=0

ρn+α
Gn(α)un +

∞
∑

n=1

ρn+αÅn(α){Ru′
n−1 − (n − 1+ α)R′un−1} +

∞
∑

n=2

ρn+αgn−2(α), (16)

where

Gn(α) = (n + α)2Q+ (n + α)(RK+ KRT) + KTK,

Ån(α) = (n − 1+ α)(P+ PT)+ P+ KS+ STK,

gn−2(α) = (n − 2 + α){(n − 1+ α)R′2 − RR′′}Mun−2 − 2RR′(n − 2 + α)Mu′
n−2

+ R2
Mu′′

n−2 + ̺0(ωLR)2un−2. (17)

For (16) to be satisfied, we must first have

G0(α)u0(ζ) = 0. (18)

The terms with n = 1 give

G1(α)u1(ζ)+ Å1(α){Ru′
0 − αR′u0} = 0. (19)

Subsequent terms give

Gn(α)un(ζ) + Ån(α){Ru′
n−1 − (n − 1+ α)R′un−1} + gn−2(α) = 0, (20)

for n ≥ 2. Eq. (18) is the indicial equation. It has a non-trivial solution provided that

detG0(α) = det{α2Q+ α(RK+ KRT)+ KTK} = 0. (21)

This equation determines α; in general, there are six solutions. For each allowable α, (18) then determines the form

of (the eigenvector) u0.

Ting [16] has investigated (21) in detail in his study of related static problems; our G0 is his Γ . He showed that

detG0(α) = α2(α2 − 1)(α2|Q| − |Y|), (22)

where |Q| = detQ, |Y| = detY and

Y =







C22 C26 C25

C26 C66 C56

C25 C56 C55






.

Ting [16] has also given a complete discussion of the associated eigenvectors. If we know α and u0, (19) may be

used to determine u1, with un determined by (20) for n ≥ 2. This will give solutions of the equation of motion.
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To determine u0, we impose the lateral boundary condition. Thus, substituting (15) in (13) and (14), the boundary

condition (10) on ρ = ε gives

∞
∑

n=0

εn+αbn(α) = 0, (23)

where

b0(α) = (αQ+ RK)u0, (24)

b1(α) = {(α + 1)Q+ RK}u1 + RPu′
0 − R′{α(P+ PT)+ STK}u0, (25)

bn(α) = {(n + α)Q+ RK}un + RPu′
n−1 − R′{(n − 1+ α)(P+ PT) + STK}un−1

+ R′
M{(n − 2 + α)R′un−2 − Ru′

n−2}, n ≥ 2. (26)

From the calculations above, we know (in principle, at least) how to express un in terms of um with 0 ≤ m < n;

doing this ensures that the governing equation of motion is satisfied. Then, our strategy is to truncate (23) in order

to satisfy the lateral boundary condition, approximately. This will lead to ordinary differential equations. In fact, in

order to obtain the simplest, non-trivial, frequency-dependent results, we shall truncate (23) at n = 2, giving

b0(α)+ εb1(α)+ ε2b2(α) = 0. (27)

Evidently, more terms could be included if desired. We could also sum over allowable α in (23); see Section 7.

Let us investigate some of the simplest approximations. First, we are only interested in α ≥ 0, as we want

solutions that are bounded at ρ = 0. Second, when there are repeated roots, such as α = 0, we do not consider

solutions involving log ρ. As various special cases can arise, we choose to consider materials with cylindrical

orthotropy. This is a plausible model for wood, and includes isotropic materials as a special case.

5. Cylindrical orthotropy

For materials with cylindrical orthotropy, there are nine non-trivial stiffnesses, namely C11, C12, C13, C22, C23,

C33, C44, C55 and C66. The matrices Q, R, T, P, M and S simplify to

Q =







C11 0 0

0 C66 0

0 0 C55






, R =







0 C12 0

C66 0 0

0 0 0






, T =







C66 0 0

0 C22 0

0 0 C44






, P =







0 0 C13

0 0 0

C55 0 0






,

M =







C55 0 0

0 C44 0

0 0 C33






, S =







0 0 0

0 0 C23

0 C44 0






,

and the system (7) simplifies accordingly. For example, we find that the torsional component v(r, z) decouples so

that (7) then has the exact solution u = (0, v, 0)T with

v(r, z) = J1(pr) eiξz. (28)

Here, p = [̺0(ωL)2 − ξ2C44]/C66 and J1 is a Bessel function. When C44 = C66, (28) reduces to a solution found

in [17, p. 172].
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Note that isotropy is a special case of cylindrical orthotropy. For isotropicmaterials,C11 = C22 = C33 = λ + 2µ,

C12 = C13 = C23 = λ and C44 = C55 = C66 = µ, where λ and µ are the Lamé moduli. Exact solutions of (7) are

well known for isotropic solids; see, for example [2, Section 8.2].

Elementary calculations give RK = −KRT,

Gn(α) = diag{(n + α)2C11 − C22, [(n + α)2 − 1]C66, (n + α)2C55}, (29)

αQ+ RK = diag{αC11 + C12, (α − 1)C66, αC55},

P+ PT =







0 0 C13 + C55

0 0 0

C13 + C55 0 0






, S

T
K =







0 0 0

0 0 0

C23 0 0






, Ån(α) =







0 0 γn(α)

0 0 0

δn(α) 0 0






,

and |Y|/|Q| = C22/C11, with

γn(α) = (n − 1+ α)(C13 + C55)+ C13 − C23, δn(α) = (n − 1+ α)(C13 + C55)+ C23 + C55.

6. Some ordinary differential equations

We shall investigate three choices for the parameter α: α = 0, α = 1 and α = (C22/C11)
1/2. These are the three

non-negative solutions of (21). The solutions obtained will be summarized in Section 8.

6.1. Case 1: α = 0

Writing u0 = (u0, v0, w0)
T, and noting that G0(0) = diag{−C22, −C66, 0}, (18) (with α = 0) gives

u0(ζ) = (0, 0, w0(ζ))
T, (30)

for some scalar function w0(ζ). Then, (19) gives

G1(0)u1 = −RÅ1(0)u
′
0. (31)

But G1(0) = G0(1) is singular, as, from (22), α = 1 solves (21). (An eigenvector satisfying G1(0)a = 0 is a =
(0, 1, 0)T.) Thus, we can only solve (31) if a certain consistency condition is satisfied and, moreover, the solution

cannot be unique. If we write (31) explicitly, using u1 = (u1, v1, w1)
T and (30), we obtain







C11 − C22 0 0

0 0 0

0 0 C55













u1

v1

w1






= −Rw′

0







C13 − C23

0

0






,

whence v1 is arbitrary, w1 = 0 and

(C11 − C22)u1 = −R(C13 − C23)w
′
0. (32)

This equation determines u1 when C11 6= C22. If C11 = C22, u1 is arbitrary but (C13 − C23)w
′
0 = 0, so that we

must then have C13 = C23 too; this case includes isotropic solids.

Next, we consider (20). As Gn(0) = G0(n), we deduce that Gn(0) is non-singular for n ≥ 2 (unless n2 =
C22/C11). Hence, (20) can be used to express un(ζ) in terms of w0(ζ), v1(ζ) and their derivatives. In particular, we
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have

G2(0)u2 + Å2(0){Ru′
1 − R′u1} + g0(0) = 0, (33)

where g0(0) = R2Mu′′
0 + ̺0(ωLR)2u0. (Notice that a dependence on the frequency ω enters via g0.) Writing

u2 = (u2, v2, w2)
T, we obtain (4C11 − C22)u2 = 0, v2 = 0 and

4C55w2 + (C13 + C23 + 2C55)(Ru′
1 − R′u1) + R2C33w

′′
0 + ̺0(ωLR)2w0 = 0. (34)

From (30), we have Ku0 = 0 so that (24) gives b0(0) = 0. Also, (25) and (26) give

b1(0) = [(C11 + C12)u1 + C13Rw′
0, 0, 0]

T,

b2(0) = [0, 0, 2C55w2 + C55Ru′
1 − (C13 + C23 + C55)R

′u1 − C33RR′w′
0]
T, (35)

where we have assumed that C22 6= 4C11 so that u2 = 0. Hence, (27) gives

(C11 + C12)u1 + C13Rw′
0 = 0 (36)

and

2C55w2 + C55Ru′
1 − (C13 + C23 + C55)R

′u1 − C33RR′w′
0 = 0. (37)

6.1.1. C11 6= C22

Suppose first that C11 6= C22. Then, (32) and (36) reduce to

{(C11 + C12)C23 − (C12 + C22)C13}Rw′
0 = 0,

so that we can only obtain non-trivial solutions when the stiffnesses satisfy

(C11 + C12)C23 = (C12 + C22)C13. (38)

Then, (32), (34) and (37) give

A0(R
2w′′

0 + 2RR′w′
0)+ ̺0(ωLR)2w0 = 0. (39)

where A0 = C33 + (C2
23 − C2

13)/(C11 − C22).

6.1.2. C11 = C22

Suppose instead that C11 = C22 and C13 = C23. Then, (36) defines u1 if C11 + C12 6= 0, and (37) gives

[(C11 + C12)C33 − 2C2
13](R

2w′′
0 + 2RR′w′

0) + ̺0(C11 + C12)(ωLR)2w0 = 0. (40)

In particular, for isotropic solids, this equation reduces to

R2w′′
0 + 2RR′w′

0 +
(̺0

E

)

(ωLR)2w0 = 0, (41)

where E = µ(3λ + 2µ)/(λ + µ) is Young’s modulus. Specialising further to cylinders, with R ≡ 1, we obtain

w′′
0 +

(̺0

E

)

(ωL)2w0 = 0, (42)

Eq. (42) is well known: it is used to model the propagation of longitudinal waves in thin cylindrical rods [2, Section

2.1]. The wavespeed
√

E/̺0 is known as the bar velocity. Eq. (41) is also known; see [2, Section 2.5.1]. In fact,

(41) is an elastodynamic variant of Webster’s horn equation [18, p. 360].
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6.2. Case 2: α = 1

Let us make similar calculations for α = 1. From (18)–(20) (with α = 1), we obtain

(C11 − C22)u0 = 0, v0 is arbitrary, w0 = 0, (43)

u1 = v1 = 0, 4C55w1 + (Ru′
0 − R′u0)δ1(1) = 0, (44)

(9C11 − C22)u2 + (Rw′
1 − 2R′w1)γ2(1)+ ̺0(ωLR)2u0 + C55{R2u′′

0 − 2RR′u′
0 + (2R′2 − RR′′)u0} = 0,

(45)

8C66v2 + C44{(2R′2 − RR′′)v0 − 2RR′v′
0 + R2v′′

0} + ̺0(ωLR)2v0 = 0, (46)

and w2 = 0, where we have assumed that C22 6= 4C11 in order to deduce that u1 = 0. Similarly, from (24)–(26)

(with α = 1), we obtain

b0(1) = [(C11 + C12)u0, 0, 0]
T, (47)

b1(1) = [0, 0, 2C55w1 + RC55u
′
0 − R′(C13 + C23 + C55)u0]

T, (48)

b2(1) = [(3C11 + C12)u2 + RC13w
′
1 − 2R′(C13 + C55)w1 + R′C55(R

′u0 − Ru′
0), 2C66v2

+ R′C44(R
′v0 − Rv′

0), 0]
T. (49)

We see immediately that only b2(1) contributes to the torsional (second) component of (27); setting this component

to zero, using (46) and (49), gives an equation for the torsional component v0

R2v′′
0 + 2RR′v′

0 − (2R′2 + RR′′)v0 + (̺0/C44)(ωLR)2v0 = 0. (50)

In particular, for cylinders (with R ≡ 1), we obtain

v′′
0 + (̺0/C44)(ωL)2v0 = 0.

This equation is well known for isotropic rods [2, Section 2.6.1].

6.2.1. C11 6= C22

From (43), we obtain u0 = 0 whenC11 6= C22. It follows thatw1 = 0 and u2 = 0, so that only the trivial solution

is obtained for this case.

6.2.2. C11 = C22

In this sub-case, α = 1 is a double root of (21). From (43), we see that u0 is arbitrary, and then w1 and u2 are

defined by (44) and (45), respectively; explicitly, we obtain

32C11C55u2 = 3{R2u′′
0 − 2RR′u′

0 + (2R′2 − RR′′)u0} − 4̺0C55(ωLR)2u0,

where

3 = δ1(1) γ2(1)− 4C2
55 = 8C13C55 + (C13 + C23)(3C13 − C23).
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Then, the radial (first) component of (27) gives

R2
Au′′

0 − 2RR′
Bu′

0 + Cu0 = 0, (51)

where A and B are known constants, defined by

A = 8C13C55(C11 + C12)+D, B = 8C55(C12C13 − C11C23)+D,

D = (C13 + C23){C11C13 − C12C23 + 3(C12C13 − C11C23)},

and C is a known function

C(z) = 2BR′2 −ARR′′ + 32ε−2C11C55(C11 + C12) − 4̺0C55(3C11 + C12)(ωLR)2.

Eq. (51) simplifies for cylinders and for isotropic solids. In the latter case, we obtain

(λ + 2µ)R2u′′
0 + 6µRR′u′

0 − {(λ + 2µ)RR′′ + 6µR′2}u0

+ λ−1{8ε−2(λ + µ)(λ + 2µ)− ̺0(2λ + 3µ)(ωLR)2}u0 = 0

and, simplifying further to R ≡ 1

(λ + 2µ)u′′
0 + λ−1{8ε−2(λ + µ)(λ + 2µ)− ̺0(2λ + 3µ)(ωL)2}u0 = 0.

6.3. Case 3: α = (C22/C11)
1/2

Suppose that α = (C22/C11)
1/2 = α̃, say. We assume that α̃ 6= 1 (so that isotropy is excluded). Note that (n +

α̃)2C11 − C22 = n(n + 2α̃)C11, which simplifies the first entry in Gn(α̃); see (29). From (18)–(20) (with α = α̃),

we obtain v0 = w0 = u1 = v1 = v2 = w2 = 0

(α̃ + 1)2C55w1 + (Ru′
0 − α̃R′u0)δ1(α̃) = 0,

4(α̃ + 1)C11u2 + {Rw′
1 − (α̃ + 1)R′w1}γ2(α̃)+ ̺0(ωLR)2u0

+ C55{R2u′′
0 − 2RR′α̃u′

0 + α̃[(α̃ + 1)R′2 − RR′′]u0} = 0. (52)

Eliminating w1 between the last two equations gives

4(α̃ + 1)3C11C55u2 = 3̃{R2u′′
0 − 2RR′α̃u′

0 + α̃[(α̃ + 1)R′2 − RR′′]u0} − ̺0(α̃ + 1)2C55(ωLR)2u0 = 0,

where

Λ̃ = δ1(α̃) γ2(α̃)− (α̃ + 1)2C2
55 = 2(α̃ + 1)2C13C55 + (α̃C13 + C23)[(α̃ + 2)C13 − C23].

Eqs. (24)–(26) (with α = α̃) give

b0(α̃) = [(α̃C11 + C12)u0, 0, 0]
T, (53)

b1(α̃) = [0, 0, (α̃ + 1)C55w1 + RC55u
′
0 − R′(α̃C13 + C23 + α̃C55)u0]

T, (54)

b2(α̃) = [{(α̃ + 2)C11+C12}u2+RC13w
′
1−R′(α̃ + 1)(C13 + C55)w1 + R′C55(α̃R′u0 − Ru′

0), 0, 0]
T. (55)
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Then, the radial component of (27) gives

R2
Ãu′′

0 − 2RR′
B̃u′

0 + C̃u0 = 0, (56)

where Ã and B̃ are known constants, defined by

Ã = 2(α̃ + 1)2C13C55(α̃C11 + C12) + D̃,

B̃ = 2(α̃ + 1)2C55(α̃(α̃ − 1)C11C13 + α̃C12C13 − C11C23)+ α̃D̃,

D̃ = (α̃C13 + C23){α̃2C11C13 − C12C23 + (α̃ + 2)(C12C13 − C11C23)},

and C̃ is a known function

C̃(z) = C̃1R′2 − α̃ÃRR′′ + C̃2,

C̃1 = 2α̃(α̃ + 1)2C55{α̃(α̃ − 1)C11C13 + (α̃ + 1)C12C13 − 2C11C23} + α̃(α̃ + 1)D̃,

C̃2 = (α̃ + 1)2C55{4ε−2(α̃ + 1)C11(α̃C11 + C12) − ̺0[(α̃ + 2)C11 + C12](ωLR)2}.

We note that (56) reduces to (51) when α̃ = 1. Also, for cylinders (R ≡ 1), (56) reduces to

u′′
0 + (C̃2/Ã)u0 = 0; (57)

this equation appears to be new.

7. Coupled extensional-radial modes

We saw in Section 6.2 that torsional modes are decoupled; they are given approximately by (50). However,

generically (meaning C11 6= C22), the extensional (α = 0) and radial (α = α̃) solutions are coupled through the

boundary conditions. To construct these coupled modes, we first introduce the notation 〈b〉i for the ith component

of the vector b, i = 1, 2, 3. Then, summing (27) over α = 0 and α = α̃, we find that the non-trivial terms give

ε−2〈b0(α̃)〉1 + ε−1〈b1(0)〉1 + 〈b2(α̃)〉1 = 0, (58)

and

ε−1〈b1(α̃)〉3 + 〈b2(0)〉3 = 0. (59)

Eq. (58) yields a modified form of (56)

R2
Ãu′′

0 − 2RR′
B̃u′

0 + F̃Rw′
0 + C̃u0 = 0, (60)

where F̃ = 4ε−1(α̃ + 1)2C55{(C11 + C12)C23 − (C12 + C22)C13}/(1− α̃). Here, we have used (32) and (35). Note

that we do not need to assume that (38) is satisfied. Similarly, (59) gives a modified form of (39)

A0(R
2w′′

0 + 2RR′w′
0) + F0(Ru′

0 + R′u0)+ ̺0(ωLR)2w0 = 0, (61)

where F0 = 2ε−1(1+ α̃)−1(α̃C13 + C23). Here, we have used (52) and (54).

Eqs. (60) and (61) give a system of coupled ordinary differential equations for u0 andw0. For cylinders (R ≡ 1),

we obtain

Ãu′′
0 + F̃w′

0 + C̃2u0 = 0, A0w
′′
0 + F0u′

0 + ̺0(ωL)2w0 = 0; (62)

eliminating u0 or w0 yields single fourth-order differential equations.
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8. Discussion

In Section 6,we obtained several second-order ordinary differential equations. These yield simple approximations

for long waves in slender anisotropic elastic columns. For α = 0 and longitudinal motion, equations for w0 were

obtained; see (39) and (40). These equations are of the form

R−2(R2w′
0)

′ +
(̺0

E

)

(ωL)2w0 = 0, (63)

where E is defined in terms of Cij , and E reduces to Young’s modulus for isotropic solids. Eq. (63) is usually known

asWebster’s horn equation in the context of sound waves along a tube with slowly varying rigid walls. Longitudinal

motions are also the subject of Boström’s paper [5]. He shows how higher-order approximations can be obtained,

essentially by truncating (23) at a higher value of n; similar calculations could be done here but the algebra is tedious

(although it could be expedited using software for symbolic manipulation).

For α = 1, we obtained an equation for v0 (torsional motions), namely (50). For α = (C22/C11)
1/2, we obtained

a differential equation for u0, namely (56). This equation is interesting because it contains the slenderness parameter

ε. Similar equations are obtained for analogous acoustic problems.

In Section 7, we discussed the generic situation, in whichC11 6= C22. Then, we saw that the radial and extensional

motions are coupled; they are given approximately by the system of ordinary differential Eqs. (60) and (61).

The next step is to investigate flexural modes. The procedures outlined above will extend to non-axisymmetric

modes, but the calculations are more complicated. The specific application that we have in mind is the computation

of the “sweet spot” of a baseball bat incorporating the anisotropy of the wood (usually ash); for more information

on this problem, see [19–21].

References

[1] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.

[2] K.F. Graff, Wave Motion in Elastic Solids, Oxford University Press, Oxford, 1975.

[3] A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, fourth ed., Cambridge University Press, Cambridge, 1927.

[4] W.A. Green, Dispersion relations for elastic waves in bars, in: I.N. Sneddon, R. Hill (Eds.), Progress in Solid Mechanics, vol. I, North-

Holland, Amsterdam, 1960 (pp. 223–261).

[5] A. Boström, On wave equations for elastic rods, Z. Angew. Math. Mech. 80 (2000) 245–251.

[6] G. Rosenfeld, J.B. Keller, Wave propagation in elastic rods of arbitrary cross section, J. Acoust. Soc. Am. 55 (1974) 555–561.

[7] G. Rosenfeld, J.B. Keller, Wave propagation in non-uniform elastic rods, J. Acoust. Soc. Am. 57 (1975) 1094–1096.

[8] J. Tromp, F.A. Dahlen, Surface wave propagation in a slowly varying anisotropic waveguide, Geophys. J. Int. 113 (1993) 239–249.

[9] H. Ohnabe, J.L. Nowinski, On the propagation of flexural waves in anisotropic bars, Ingenieur Arch. 40 (1971) 327–338.

[10] F.H. Chou, J.D. Achenbach, Three-dimensional vibrations of orthotropic cylinders, Proc. ASCE J. Eng. Mech. Div. 98 (1972) 813–822.

[11] S̆. Markus̆, D.J. Mead, Axisymmetric and asymmetric wave motion in orthotropic cylinders, J. Sound Vib. 181 (1995) 127–147.

[12] F.G. Yuan, C.C. Hsieh, Three-dimensional wave propagation in composite cylindrical shells, Compos. Struct. 42 (1998) 153–167.

[13] P.A. Martin, J.R. Berger, Waves in wood: free vibrations of a wooden pole, J. Mech. Phys. Solids 49 (2001) 1155–1178.

[14] P.A. Martin, J.R. Berger, Waves in wood: axisymmetric guided waves along boreholes, Chin. J. Mech. A 19 (2003) 105–111.

[15] A.L. Shuvalov, The Frobenius power series solution for cylindrically anisotropic radially inhomogeneous elastic materials, Q. J. Mech.

Appl. Math. 56 (2003) 327–345.

[16] T.C.T. Ting, Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material, Proc. R. Soc. A 452

(1996) 2397–2421.

[17] M.J.P. Musgrave, Crystal Acoustics, Holden-Day, San Francisco, 1970.

[18] A.D. Pierce, Acoustics, Acoustical Society of America, New York, 1989.

[19] H. Brody, The sweet spot of a baseball bat, Am. J. Phys. 54 (1986) 640–643.

[20] L.L. Van Zandt, The dynamical theory of the baseball bat, Am. J. Phys. 60 (1992) 172–181.

[21] R. Cross, The sweet spot of a baseball bat, Am. J. Phys. 66 (1998) 772–779.


