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Acoustic waves in slender axisymmetric tubes
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Abstract

Acoustic waves in a rigid axisymmetric tube with a variable cross-section are considered. The governing

Helmholtz equation is solved using Neumann series (expansions in Bessel functions of various orders) with

a stretched radial coordinate, leading to a hierarchy of one-dimensional ordinary differential equations in

the longitudinal direction. The lowest approximation for axisymmetric motion includes Webster’s horn

equation as a special case. Fourth-order differential equations are obtained at the next level of

approximation. Good agreement with existing asymptotic theories for waves in slender tubes is found.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of sound along rigid tubes is a classical subject with an enormous literature.

Early studies are concerned with low-frequency waves, meaning that the acoustic pressure is

supposed to be constant over any cross-section of the tube. This assumption leads to an ordinary

differential equation,

1

A

d

dz
AðzÞ

dP

dz

� �

þ
o2

c2
PðzÞ ¼ 0; (1)

where z is a coordinate along the tube, PðzÞ is the pressure at z where the cross-sectional area is

AðzÞ; o is the frequency and c is the speed of sound. Eq. (1) is usually known as Webster’s horn
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equation, even though it is actually much older; for a thorough review, see Ref. [1]; for a textbook

derivation, see Ref. [2, p. 360]. Extensions of Webster’s equation to other related problems (such

as when there is fluid flow along the tube) have been made; for example, see Refs. [3,4]. Exact

solutions of Eq. (1) are also known for various specific functions, AðzÞ; see Refs. [5,6] and

references therein for more information on this topic.

The exact problem for time-harmonic waves in a tube can be formulated as a three-dimensional

elliptic boundary-value problem for a pressure field, u. However, exact treatments of this

boundary-value problem are scarce. The simplest exact solutions concern waves in a cylinder with

a circular cross-section; these solutions can be obtained by the method of separation of variables

in cylindrical polar coordinates, ðr; y; zÞ; and they involve Bessel functions. Indeed, the lowest

axisymmetric mode depends on z only, and it does satisfy Webster’s equation. However, all other

modes are not governed by Eq. (1).

We are interested in the derivation of other one-dimensional models. Inevitably, these will be

approximations, but there is much scope for improvements on Webster’s equation. We suppose

from the outset that the tube is axisymmetric, with the rigid lateral boundary given by r ¼ RðzÞ:
We then change the independent variables in the governing Helmholtz equation from r and z to r

and z; where r is a scaled version of r chosen so that the lateral boundary at r ¼ RðzÞ is mapped to

r ¼ constant; and z ¼ z: This leads to a more complicated governing partial differential equation
(which we write concisely as Lu ¼ 0; see Eq. (9) below), but this is outweighed by moving the

lateral boundary condition onto a coordinate surface.

In a previous paper [7], we solved Lu ¼ 0 using a power-series expansion in the new ‘radial’

variable r; namely

uðr; y; zÞ ¼
X

1

n¼0

unðzÞr
2nþm cos my; (2)

similar expansions have been used previously by Boström [8] for elastic waves in cylindrical rods

of circular cross-section. Substitution of Eq. (2) into Lu ¼ 0 leads to a recursive construction of

un for nX1 once u0 has been determined. Substitution of Eq. (2) into the lateral boundary

condition leads to a further equation; if the tube is slender (in a sense to be made precise later),

this equation can be truncated, resulting in a hierarchy of ordinary differential equations for u0ðzÞ:
The method outlined above is attractive and general: the approximations can be improved at

the expense of solving higher-order differential equations, and the method itself can be extended

to other governing partial differential equations. However, the lowest-order approximations only

work well for low-frequency motions. For this reason, we have modified expansion (2), replacing

the power series by a Neumann series [9, Chapter 16],

uðr; y; zÞ ¼
X

1

n¼0

unðzÞJ2nþmðlrÞ cos my;

where Jn is a Bessel function and l is a parameter to be selected. The main motivation behind

choosing a Neumann series is that we know that all modes for circular cylinders (R ¼ constant)

are given by single Bessel functions of various orders and arguments. Thus, we may expect better

results for tubes of slowly varying cross-sections, even when the frequency is not low. In addition,

we have previously used Neumann series with success for elastic waves in wooden poles [10].
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The problem of waves in a tube of length L is formulated in Section 2; the stretched variables

are also used there, leading to Lu ¼ 0: The effects of using the Neumann series are explored in
Section 3, with ordinary differential equations for u0 derived in Section 4. At the lowest order of

truncation, we find that u0 solves a second-order equation,

u000 þDð1Þ
m u00 þ Eð1Þ

m u0 ¼ 0; (3)

where the coefficients Dð1Þ
m and Eð1Þ

m are explicit functions of the axial coordinate z and the

azimuthal mode number m; we recover Webster’s equation in an appropriate limit. For tubes of

finite length, Eq. (3) is to be solved subject to certain boundary conditions (which are derived

below); the resulting problem is a regular Sturm–Liouville problem, for which efficient numerical

algorithms are available [11].

At the next order of truncation, we find that u0 solves a fourth-order equation,

uiv0 þ Bð2Þ
m u0000 þ Cð2Þ

m u000 þDð2Þ
m u00 þ Eð2Þ

m u0 ¼ 0; (4)

where, again, the coefficients are known explicit functions of z and m. Higher orders of truncation

lead to higher-order differential equations.

In Section 5, the quality of the approximations obtained by solving Eq. (3) or (4) is assessed by

comparison with some asymptotic approximations of Ting and Miksis [12] and Geer and Keller

[13]. These authors treated the original three-dimensional elliptic boundary-value problem for u,

exploiting the slenderness assumption. We find, in particular, that for non-axisymmetric modes

with m ¼ 1; Eq. (4) gives excellent agreement with the asymptotic approximation in Refs. [12,13],
and this agreement is significantly better than that achieved when using the analogous fourth-

order equation derived in Ref. [7] from Eq. (2). Consequently, we conclude that similar fourth-

order models will offer both simplicity and approximations of good quality: the key is seen to be

the use of accurate representations in each cross-sectional plane.

2. Formulation

Consider a tube of circular cross-section and length L; the cross-section’s radius can vary

along the tube. We define dimensionless variables using L as our length scale. Thus,

using (dimensionless) cylindrical polar coordinates, ðr; y; zÞ; the interior of the tube is

specified by

0proeRðzÞ; 0pyo2p; 0ozo1:

Here, e ¼ a=L and 0oRðzÞp1; so that 2a is the maximum diameter of the tube.

Inside the tube, the acoustic potential Uðr; y; z; tÞ satisfies the wave equation,

1

r

q

qr
r
qU

qr

� �

þ
1

r2
q
2U

qy2
þ

q
2U

qz2
¼

L2

c2
q
2U

qt2
; (5)

where c is the speed of sound. On the lateral wall of the tube, the normal derivative of U vanishes:

qU

qr
� eR0ðzÞ

qU

qz
¼ 0 on r ¼ eRðzÞ; 0ozo1: (6)
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We assume that Rð0Þ and Rð1Þ are both positive, and close the two ends of the tube with rigid

circular discs, giving

@U=@z ¼ 0 at z ¼ 0 and at z ¼ 1: (7)

We seek free vibrations of the compressible fluid within the axisymmetric tube. Thus, we put

Uðr; y; z; tÞ ¼ uðr; zÞ cos my cos ot;

where m is a non-negative integer and o is the frequency. The wave equation becomes

r
q

qr
r
qu

qr

� �

þ r2
q
2u

qz2
þ ðk2r2 �m2Þu ¼ 0; (8)

where k ¼ oL=c is a dimensionless wavenumber. We are interested in determining eigen-

frequencies o so that there is a non-trivial u that satisfies Eq. (8) and the boundary conditions.

It is convenient to make a simple change of the independent variables, from ðr; zÞ to ðr; zÞ; so
that the new geometry is a circular cylinder. Thus, define new variables r and z by

r ¼ r=RðzÞ and z ¼ z

so that the tube is mapped onto the circular tube, given by

0proe; 0ozo1:

Application of the chain rule shows that Eq. (8) becomes

ð1þ r2R02Þr
q

qr
r
qu

qr

� �

þ r3ðR02 � RR00Þ
qu

qr
þ r2R2 q

2u

qz2

� 2r3RR0 q
2u

qrqz
þ ½ðkrRÞ2 �m2	u ¼ 0; ð9Þ

the lateral boundary condition (6) becomes

ð1þ e2R02Þ
qu

qr
� eRR0 qu

qz
¼ 0 on r ¼ e; 0ozo1 (10)

and the end boundary conditions (7) become

qu

qz
� r

R0

R

qu

qr
¼ 0 at z ¼ 0 and at z ¼ 1: (11)

3. Neumann series

In a previous paper [7], we solved Eq. (9) using a power-series expansion for u; see Eq. (2). Here,

motivated by the exact solution for circular tubes, we use a Neumann expansion,

uðr; zÞ ¼
X

1

n¼0

J2nþaðlrÞunðzÞ; (12)

where a and unðzÞ are to be found, l is a (non-zero) constant at our disposal and JnðzÞ is a Bessel

function.
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When substituting in Eq. (9), we make use of the fact that wðrÞ ¼ JnðlrÞ solves

r½rw0	0 þ ðl2r2 � n2Þw ¼ 0:

Thus, Eq. (9) becomes

0 ¼
X

1

n¼0

½ð2nþ aÞ2 �m2	unðzÞJ2nþaðlrÞ

þ r2
X

1

n¼0

f½ð2nþ aÞ2R02 � l2 þ k2R2	un þ R2u00ngJ2nþaðlrÞ

� r4l2R02
X

1

n¼0

unðzÞJ2nþaðlrÞ

þ r3l
X

1

n¼0

½ðR02 � RR00Þun � 2RR0u0n	J
0
2nþaðlrÞ: ð13Þ

We rewrite this equation in the form

X

1

n¼0

GnJ2nþaðlrÞ ¼ 0; (14)

where Gn is independent of r: Then, it follows that Gn ¼ 0 for n ¼ 0; 1; 2; . . . :
In order to obtain Eq. (14), we need the following three expansions:

z2JnðzÞ ¼
X

1

n¼1

að1Þn J2nþnðzÞ; z4JnðzÞ ¼
X

1

n¼2

að2Þn J2nþnðzÞ;

z3J 0
nðzÞ ¼

X

1

n¼1

að3Þn J2nþnðzÞ:

The coefficients aðjÞn can be obtained by manipulating the recurrence relations for Bessel functions.

For our purposes, we shall want the coefficients for np2: Thus

z2JnðzÞ ¼ 4ðnþ 2Þ½ðnþ 1ÞJnþ2ðzÞ � 2ðnþ 4ÞJnþ4ðzÞ	 þ � � � ;

z4JnðzÞ ¼ 16ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4ÞJnþ4ðzÞ þ � � � ;

z3J 0
nðzÞ ¼ 4ðnþ 2Þ½nðnþ 1ÞJnþ2ðzÞ � 2ðnþ 4Þð2nþ 3ÞJnþ4ðzÞ	 þ � � � :

Substitution in Eq. (13) gives Eq. (14) in which

G0 ¼ ða2 �m2Þu0ðzÞ;

G1 ¼ ½ðaþ 2Þ2 �m2	u1ðzÞ þ 4ðaþ 1Þðaþ 2Þl�2fR2u000 � 2aRR0u00

þ ½k2R2 � l2 þ aðaþ 1ÞR02 � aRR00	u0g;
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G2 ¼ ½ðaþ 4Þ2 �m2	u2ðzÞ þ 4ðaþ 3Þðaþ 4Þl�2O1ðaÞ

� 8ðaþ 2Þðaþ 4Þl�2O0ðaÞ;

O0ðaÞ ¼ R2u000 � 2ð2aþ 3ÞRR0u00

þ ½k2R2 � l2 þ ð3a2 þ 10aþ 9ÞR02 � ð2aþ 3ÞRR00	u0;

O1ðaÞ ¼ R2u001 � 2ðaþ 2ÞRR0u01 þ ½k2R2 � l2 þ ðaþ 2Þðaþ 3ÞR02 � ðaþ 2ÞRR00	u1:

From G0 ¼ 0; we deduce that a2 ¼ m2
; we take a ¼ þmX0; as we want u to be bounded at

r ¼ 0: Then, G1 ¼ 0 yields an expression for u1 in terms of u0:

�l2u1 ¼ ðmþ 2ÞfR2u000 � 2mRR0u00 þ ½k2R2 � l2 þmðmþ 1ÞR02 �mRR00	u0g: (15)

Similarly, G2 ¼ 0 yields an expression for u2 in terms of u1 and u0:

�2l2ðmþ 2Þu2 ¼ ðmþ 4Þfðmþ 3ÞO1ðmÞ � 2ðmþ 2ÞO0ðmÞg:

Eliminating u1 from this equation, using Eq. (15), gives

2l4u2 ¼ ðmþ 3Þðmþ 4Þfamu
iv
0 þ bmu

000
0 þ gmu

00
0 þ dmu

0
0 þ emu0g; (16)

where

amðzÞ ¼ R4; bmðzÞ ¼ �4mR3R0;

gmðzÞ ¼ 2R2fk2R2 þ 3m½ðmþ 1ÞR02 � RR00	g � 2l2R2ðmþ 2Þ=ðmþ 3Þ;

dmðzÞ ¼ � 4mRfk2R2R0 þ R2R000 � ðmþ 1ÞR0½3RR00 � ðmþ 2ÞR02	g

þ 4l2RR0mðmþ 2Þ=ðmþ 3Þ;

emðzÞ ¼ k4R4 þ 2mk2R2fðmþ 1ÞR02 � RR00g �mR3Riv

þ mðmþ 1ÞfR2ð4R0R000 þ 3R002Þ � ðmþ 2ÞR02½6RR00 � ðmþ 3ÞR02	g

þ l4
mþ 1

mþ 3
� 2l2

mþ 2

mþ 3
½k2R2 þmðmþ 1ÞR02 �mRR00	:

Proceeding in a similar way, we could determine all the functions unðzÞ in Eq. (12) in terms of

derivatives of u0ðzÞ: Evidently, hand calculation of un with n42 would be tedious, but the

calculation could be mechanized if desired.

3.1. Lateral boundary condition

Substituting Eq. (12) in the lateral boundary condition (10) gives

X

1

n¼0

lð1þ e2R02ÞunðzÞ J
0
2nþmðleÞ �

X

1

n¼0

eRR0u0nðzÞJ2nþmðleÞ ¼ 0; (17)

where we have used a ¼ m: Later, we shall want to truncate this equation, assuming that e51:
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With this in mind, we rewrite Eq. (17) as

X

1

n¼0

HnJ
0
2nþmðleÞ ¼ 0; (18)

using the following two expansions:

z2J0nðzÞ ¼
X

1

n¼1

að4Þn J 0
2nþnðzÞ

¼ 4nðnþ 1ÞJ 0
nþ2ðzÞ � 8½ðnþ 2Þðnþ 4Þ � 2	J 0

nþ4ðzÞ þ � � � ;

zJnðzÞ ¼
X

1

n¼1

að5Þn J 0
2nþnðzÞ

¼ 4ðnþ 1ÞJ 0
nþ2ðzÞ � 8J 0

nþ4ðzÞ þ � � � :

Thus, we find that the first three Hn are

H0 ¼ l2u0;

H1 ¼ l2u1 þ 4ðmþ 1ÞðmR02u0 � RR0u00Þ;

H2 ¼ l2u2 þ 4ðmþ 3Þfðmþ 2ÞR02u1 � RR0u01g

� 8f½ðmþ 2Þðmþ 4Þ � 2	R02u0 � RR0u00g:

Eliminating u1; using (15), gives

H1ðzÞ ¼ �ðmþ 2ÞR2fu000ðzÞ þDð1Þ
m ðzÞu00ðzÞ þ Eð1Þ

m ðzÞu0ðzÞg; (19)

where

Dð1Þ
m ¼

2ð2�m2Þ

mþ 2
S1; Eð1Þ

m ðzÞ ¼ k2 �
l2

R2
�mS2 þ

mðmþ 1Þðm� 2Þ

mþ 2
S

2
1 (20)

and, here and below, we use the following shorthand notation:

S1 ¼ R0=R; S2 ¼ R00=R; S3 ¼ R000=R; S4 ¼ Riv=R:

A similar calculation yields

2l2H2ðzÞ ¼ ðmþ 3Þðmþ 4ÞR4fuiv0 þBu0000 þ Cu000 þDu00 þ Eu0g; (21)

where

B ¼ 4S1ð4� 2m�m2Þ=ðmþ 4Þ;

C ¼ 2k2 � 2
l2

R2

mþ 2

mþ 3
� 6m S2 þ

4�m�m2

mþ 4
S

2
1

� �

;
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D ¼ 4k2S1

4� 2m�m2

mþ 4
þ 4S1

l2

R2

m2 � 2

mþ 3
� 4mS3

þ
4mS1

mþ 4
fðmþ 1Þð4�m2ÞS2

1 þ 3mðmþ 3ÞS2g;

E ¼ k4 þ
l4

R4

mþ 1

mþ 3
�mS4 þ 3mðmþ 1ÞS2

2

þ 2mk2
m2 þm� 4

mþ 4
S

2
1 �S2

� �

þ
4m2ðmþ 3Þ

mþ 4
S1S3

�
mðmþ 1Þðmþ 2Þ

mþ 4
S

2
1f6mS2 þ ð4þm�m2ÞS2

1g

� 2
l2

R2

mþ 2

mþ 3
ðk2 �mS2Þ þ

mðmþ 1Þðm� 2Þ

mþ 3
S

2
1

� �

:

3.2. End boundary conditions

Substituting Eq. (12) in the end boundary conditions (11) gives

X

1

n¼0

u0nðzÞJ2nþmðlrÞ � lrS1

X

1

n¼0

unðzÞJ
0
2nþmðlrÞ ¼ 0 (22)

at z ¼ 0 and at z ¼ 1; where we have used a ¼ m: Using the expansion

zJ 0
nðzÞ ¼ nJnðzÞ þ 2

X

1

l¼1

ð�1Þlðnþ 2lÞ Jnþ2lðzÞ

and then changing the order of summation, we can write Eq. (22) as

X

1

n¼0

MnðzÞJ2nþmðlrÞ ¼ 0 at z ¼ 0 and at z ¼ 1;

where M0ðzÞ ¼ u00 �mS1u0 and

MnðzÞ ¼ u0n � ð2nþmÞS1 un þ 2
X

n�1

l¼0

ð�1Þnþlul

( )

for n ¼ 1; 2; . . . : Hence, we immediately obtain

Mnð0Þ ¼ Mnð1Þ ¼ 0 for n ¼ 0; 1; 2; . . . :

In particular, we have

u00ðzÞ �mS1ðzÞ u0ðzÞ ¼ 0 at z ¼ 0 and at z ¼ 1 (23)

and

u01ðzÞ � ðmþ 2ÞS1ðzÞfu1ðzÞ � 2u0ðzÞg ¼ 0 at z ¼ 0 and at z ¼ 1: (24)
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Eliminating u1 using Eq. (15), and then using Eq. (23), we can write Eq. (24) as

u0000 � 3mS1u
00
0 þ f2ðm2 � 1ÞS2

1 þ 3S2gu
0
0 �mS3u0 ¼ 0 (25)

at the two ends of the tube. This form of the boundary condition does not involve k2:

4. Ordinary differential equations

In order to obtain ordinary differential equations for u0ðzÞ; we truncate Eq. (18). (Some

comments on this procedure are given in Section 6.) The term with n ¼ 0 gives

l2J0mðleÞu0ðzÞ ¼ 0

and so we take

l ¼
j0m;‘

e
¼ lm;‘; (26)

say, where ‘ is an integer and j0m;‘ is the ‘th zero of J 0
m: J

0
mðj

0
m;‘Þ ¼ 0 for ‘ ¼ 1; 2; . . . : Note that

j00;1 ¼ 0:

4.1. First approximation

Retaining the n ¼ 1 term in Eq. (18), we obtain

H1J
0
mþ2ðj

0
m;‘Þ ¼ 0:

Hence, our first approximation is H1 ¼ 0; so that Eq. (19) gives

u000ðzÞ þDð1Þ
m ðzÞu00ðzÞ þ Eð1Þ

m ðzÞ u0ðzÞ ¼ 0; (27)

where Dð1Þ
m and Eð1Þ

m are defined by Eq. (20) wherein l is given by Eq. (26). Eq. (27) is to be solved

subject to Eq. (23).

When RðzÞ  1; Eq. (27) reduces to

u000ðzÞ þ ðk2 � l2m;‘Þu0ðzÞ ¼ 0; (28)

which yields the exact solution for circular tubes. (Note that we also obtain unðzÞ  0 for

n ¼ 1; 2; . . . :)
When m ¼ 0; Eq. (27) reduces to

ðR2u00Þ
0 þ ðk2R2 � l20;‘Þu0 ¼ 0: (29)

This is a generalization of Webster’s horn equation (for which l0;‘ ¼ 0). It is to be solved subject

to u00ð0Þ ¼ u00ð1Þ ¼ 0: Note that exact solutions of Eq. (29) can be found for specific functions,

RðzÞ; for example, if RðzÞ ¼ mz (where m is a constant), solutions for u0 can be constructed in terms

of Bessel functions.

Eq. (27) can be transformed so as to eliminate the first-derivative term. Thus, put

u0ðzÞ ¼ RgU0ðzÞ with g ¼ ðm2 � 2Þ=ðmþ 2Þ: (30)
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Then, we find that U0ðzÞ solves

U 00
0ðzÞ þ ½k2 � KðzÞ	U0ðzÞ ¼ 0; (31)

where

KðzÞ ¼
2ðmþ 1Þ

mþ 2

mS
2
1

mþ 2
þS2

� �

þ
l2m;‘

R2

subject to ðmþ 2ÞU 0
0 ¼ 2ðmþ 1ÞS1U0 at z ¼ 0 and at z ¼ 1: Notice that Eq. (31) has oscillatory

solutions when k24K but exponential solutions when k2oK :
Eq. (27) and its associated boundary conditions can also be written as a regular

Sturm–Liouville problem. Thus,

d

dz
pðzÞ

du0

dz

� �

þ ½qðzÞ þ k2wðzÞ	u0ðzÞ ¼ 0;

where p ¼ w ¼ R�2g; g is defined by Eq. (30), and

qðzÞ ¼ R�2g mðmþ 1Þðm� 2Þ

mþ 2
S

2
1 �mS2 �

l2m;‘

R2

( )

:

Software for solving Sturm–Liouville problems is available [11].

4.2. Second approximation

If we retain both the n ¼ 1 and the n ¼ 2 terms in Eq. (18), we obtain

H1J
0
mþ2ðj

0
m;‘Þ þH2J

0
mþ4ðj

0
m;‘Þ ¼ 0:

Then, Eq. (19) and (21) give

uiv0 ðzÞ þ Bð2Þ
m ðzÞ u0000 ðzÞ þ Cð2Þ

m ðzÞu000ðzÞ þDð2Þ
m ðzÞu00ðzÞ þ Eð2Þ

m ðzÞ u0ðzÞ ¼ 0; (32)

where

Bð2Þ
m ¼ B; Cð2Þ

m ¼ Cþ ðeRÞ�2tm;‘;

Dð2Þ
m ¼ Dþ ðeRÞ�2tm;‘D

ð1Þ
m ; Eð2Þ

m ¼ Eþ ðeRÞ�2tm;‘E
ð1Þ
m

and

tm;‘ ¼ �
2ðmþ 2Þ½j0m;‘	

2

ðmþ 3Þðmþ 4Þ

J 0
mþ2ðj

0
m;‘Þ

J 0
mþ4ðj

0
m;‘Þ

:

Elementary calculations, using the recurrence relations for Jn together with J 0
mðj

0
m;‘Þ ¼ 0; give

tm;‘ ¼
ðmþ 1Þj4½j2 �mðmþ 2Þ	

ðmþ 3Þðmþ 4Þ½j4 � 3ðmþ 2Þ2j2 þ 2mðmþ 1Þðmþ 3Þðmþ 4Þ	
(33)
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with j  j0m;l : Formula (33) is not valid when j ¼ 0: This case can arise only for t0;1: as

½J 0
2ðwÞ	=½J

0
4ðwÞ	 � 24=w2 as w ! 0; we have

t0;1 ¼ �8: (34)

Eq. (32) is to be solved subject to Eqs. (23) and (25).

When RðzÞ  1; Eq. (32) reduces to

d2

dz2
þ k2 �

mþ 1

mþ 3
l2m;‘ þ

tm;‘

e2

� �

d2u0

dz2
þ ðk2 � l2m;‘Þu0

� �

¼ 0;

which is satisfied by any solution of Eq. (28).

When m ¼ 0; Eq. (32) reduces to

uiv0 þ
4R0

R
u0000 þ 2 k2 �

n1;‘

e2R2

� �

u000

þ
4R0

R
k2 �

n1;‘

e2R2

� �

u00 þ k4 �
2k2n1;‘

e2R2
þ

n2;‘

e4R4

� �

u0 ¼ 0; ð35Þ

where

n1;‘ ¼
2

3
½j00;‘	

2 �
1

2
t0;‘ and n2;‘ ¼

1

3
½j00;‘	

4 � ½j00;‘	
2t0;‘:

The boundary conditions (23) and (25) reduce to u00ð0Þ ¼ u0000 ð0Þ ¼ u00ð1Þ ¼ u0000 ð1Þ ¼ 0:

5. Asymptotic approximations

Asymptotic approximations for waves in slender tubes have been derived in Refs. [12,13]. Two

kinds of approximation are available. First, there are those for which the wavelength is

comparable to the length of the tube, so that k ¼ Oð1Þ as e ! 0: It can be shown that all solutions
of this kind are axisymmetric.

Thus, consider the fourth-order equation (35) with m ¼ 0 and ‘ ¼ 1: Eq. (34) gives n1;1 ¼ 4 and

n2;1 ¼ 0; and then Eq. (35) reduces to an equation studied previously; see Section IV.A of Ref. [7].

Moreover, this reduced equation was shown to yield the two-term approximation k ’ k0 þ e2k2;
with a formula for k2 that agrees precisely with that obtained in Ref. [13] using a completely

different approach.

All other solutions have shorter wavelengths. For wavelengths comparable to the tube

diameter, we have k ¼ Oðe�1Þ as e ! 0: For such solutions, the comparisons made in Ref. [7] were
disappointing; indeed, these comparisons motivated the present work. Let us examine how our

new approximations perform. Thus, in the differential equations (27) and (32), put

k ¼
k

e
and u0ðzÞ ¼ EðzÞwðzÞ with EðzÞ ¼ exp

i

e

Z z

z0

FðtÞdt

� �

; (36)

where FðtÞ and wðzÞ are to be determined, and z0 is a constant. Suppose further that

wðzÞ ¼ w0ðzÞ þ ew1ðzÞ þ e2w2ðzÞ þ � � � :

ARTICLE IN PRESS

P.A. Martin / Journal of Sound and Vibration 286 (2005) 55–68 65



Then, we obtain the following approximations:

u0=E ¼ w0 þ ew1 þOðe2Þ; u00=E ¼ e�1iFw0 þOð1Þ;

u000=E ¼ �e�2F2w0 þ e�1ð2iFw0
0 þ iF0w0 � F2w1Þ þOð1Þ;

u0000 =E ¼ �e�3iF3w0 þOðe�2Þ;

uiv0 =E ¼ e�4F4w0 þ e�3F2fF2w1 � 2ið3F0w0 þ 2Fw0
0Þg þOðe�2Þ

as e ! 0:
Let us begin with the second-order equation (27). We note that

Dð1Þ
m ¼ Oð1Þ and Eð1Þ

m ¼ e�2ðk2 � j2=R2Þ þOð1Þ as e ! 0;

where j  j0m;‘: Then, substituting in Eq. (27) and collecting powers of e; we find that the terms in
e�2 give

½FðzÞ	2 ¼ k2 � j2=R2: (37)

This agrees with the asymptotic solution obtained by Ting and Miksis [12] and by Geer and

Keller [13].

The terms in e�1 give

2Fw0
0 þ fF0 þ FDð1Þ

m gw0 ¼ 0;

which is a first-order differential equation for w0: Rearranging gives

ðw0F
1=2Þ0

w0F
1=2

¼
w0
0

w0

þ
F0

2F
¼ �

Dð1Þ
m

2
¼ �qð1Þm

R0

R
;

where qð1Þm ¼ ð2�m2Þ=ðmþ 2Þ: An integration gives

w2
0FR

2q ¼ constant; (38)

where w0; F and R are all functions of z only, and q  qð1Þm :
Next, consider the fourth-order equation (32). Substituting as before, we find that

Bð2Þ
m ¼ Oð1Þ; Cð2Þ

m ¼ e�2Cð2Þ
m þOð1Þ;

Dð2Þ
m ¼ e�2Dð2Þ

m þOð1Þ and Eð2Þ
m ¼ e�4Eð2Þ

m þOðe�2Þ

as e ! 0; where

C
ð2Þ
m ¼ 2k2 þ

1

R2
tm;‘ � 2j2

mþ 2

mþ 3

� �

;

D
ð2Þ
m ¼ 2S1 2k2

4� 2m�m2

mþ 4
þ

2�m2

ðmþ 2ÞR2
tm;‘ � 2j2

mþ 2

mþ 3

� �� �

;

E
ð2Þ
m ¼ k2 �

j2

R2

� �

k2 þ
1

R2
tm;‘ � j2

mþ 1

mþ 3

� �� �

:
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Then, we see that the terms in e�4 give

F4 � F2
C

ð2Þ
m þ E

ð2Þ
m ¼ 0; (39)

which can be rewritten as

F2 � k2 �
j2

R2

	 
� �

F2 � k2 �
mþ 1

mþ 3

j2

R2
þ
tm;‘

R2

	 
� �

¼ 0:

This equation is satisfied by Eq. (37).

The terms in e�3 give

0 ¼ fF4 � F2
C

ð2Þ
m þ E

ð2Þ
m gw1 þ 2iFw0

0fC
ð2Þ
m � 2F2g

þ iw0fFD
ð2Þ
m þ F0

C
ð2Þ
m � F3Bð2Þ

m � 6F2F0g:

The factor multiplying w1 vanishes, due to Eq. (39), leaving a first-order differential equation for

w0ðzÞ:

w0
0

w0

þ
F2

D
ð2Þ
m þ FF0

C
ð2Þ
m � F4Bð2Þ

m � 6F3F0

2F2½Cð2Þ
m � 2F2	

¼ 0:

Rearranging this equation gives

ðw0F
1=2Þ0

w0F
1=2

¼
4FF0 �D

ð2Þ
m þ F2Bð2Þ

m

2½Cð2Þ
m � 2F2	

¼ �q
ð2Þ
m;‘

R0

R
;

where

q
ð2Þ
m;‘ ¼

ð2�m2Þðmþ 3Þðmþ 4Þtm;‘ � 2j2ðmþ 2Þð2m2 þ 11mþ 8Þ

ðmþ 2Þðmþ 4Þ½ðmþ 3Þtm;‘ þ 2j2	
; (40)

j  j0m;‘ and we have used Eq. (37). Hence, an integration gives Eq. (38) again, but with q  q
ð2Þ
m;‘:

The version of Eq. (38) derived in Refs. [12,13] has q ¼ 1 for all m and for all ‘: In general, our
approximate solutions for q differ from unity. For example, we have q

ð1Þ
0 ¼ 1 but q

ð1Þ
1 ¼ 1

3
: For

m ¼ 0; our second approximation becomes

q
ð2Þ
0;‘ ¼

3t0;‘ � 4½j00;‘	
2

3t0;‘ þ 2½j00;‘	
2

for the lowest axisymmetric mode, this gives q
ð2Þ
0;1 ¼ 1: For the lowest non-axisymmetric mode

(m ¼ ‘ ¼ 1), we have j ¼ j01;1 ’ 1:841; so that Eq. (33) gives t1;1 ’ �12:22 and then Eq. (40) gives
q
ð2Þ
1;1 ’ 1:06; this is a significant improvement over the value 1.43 obtained from the fourth-order

differential equation derived in Ref. [7] using the power-series expansion (2).

6. Conclusions

The fourth-order ordinary differential equation (32) is seen to be worthy of further study. We

have begun to develop the model for elastic waves in slender solid axisymmetric bodies [14]. (A

good example of such a body is a wooden baseball bat.) The underlying method is sufficiently
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general that cylindrical orthotropy can be included without much extra effort; see Ref. [10] for

information on the modelling of wooden poles.

One mathematical point remains. Recall that ordinary differential equations were obtained by

truncating an equation that was derived by imposition of the lateral boundary condition. The

relevant equation is Eq. (18). We truncated this equation by truncating the sum over n. It is

difficult to give a rigorous justification of this step because, although e is small, we typically take

le as being independent of e (see Eq. (26)); in addition, the terms Hn also depend on e:
Nevertheless, the basic strategy is sound: we always generate an exact solution of the underlying

partial differential equation via Eq. (12), regardless of the choice of u0; then, good approximations

of the lateral boundary condition should lead to good approximations for u0:
Much remains to be done with the method developed above, even for axisymmetric, long-

wavelength motions. For such motions, the textbook approach is to use Webster’s horn equation,

which is derived by assuming that the pressure is constant at any station z. We have shown that

Webster’s equation can be generalized and refined; we can represent any (unknown) cross-

sectional variation via Eq. (12). Notice that u1; u2; u3; . . . are all determined from u0: in general, we

always have an infinite series for u. The function u0 itself is found by imposing the boundary

condition on the rigid wall of the tube. We anticipate that a variety of exact analytical solutions of

the simplest generalization of Webster’s equation, namely Eq. (29), will be found for specific

geometries, RðzÞ: Moreover, various numerical treatments are envisaged, but all this remains for

future investigations.
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