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MULTIPLE SCATTERING BY MULTIPLE SPHERES:

A NEW PROOF OF THE LLOYD–BERRY FORMULA

FOR THE EFFECTIVE WAVENUMBER∗

C. M. LINTON† AND P. A. MARTIN‡

Abstract. We provide the first classical derivation of the Lloyd–Berry formula for the effective
wavenumber of an acoustic medium filled with a sparse random array of identical small scatterers.
Our approach clarifies the assumptions under which the Lloyd–Berry formula is valid. More precisely,
we derive an expression for the effective wavenumber which assumes the validity of Lax’s quasi-
crystalline approximation but makes no further assumptions about scatterer size, and then we show
that the Lloyd–Berry formula is obtained in the limit as the scatterer size tends to zero.
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1. Introduction. Suppose that we are interested in the scattering of sound by
many small scatterers; for example, we might be interested in using ultrasound to
determine the quality of certain composites [15], fresh mortar [2], or food products
such as mayonnaise [24]. If we knew the shape, size, and location of every scatterer, we
could solve the multiple-scattering problem by solving a boundary integral equation,
for example [22]. However, usually we do not have this information. Thus, it is
common to regard the volume containing the scatterers as a random medium, with
certain average (homogenized) properties. Here, we are concerned with finding an
effective wavenumber , K, that can be used for modeling wave propagation through
the scattering volume. This is a classical topic with a large literature: we cite well-
known papers by Foldy [7], Lax [18, 19], Waterman and Truell [28], Twersky [26], and
Fikioris and Waterman [6], and we refer to the book by Tsang et al. [25] for more
information.

A typical problem is the following. The region z < 0 is filled with a homogeneous
compressible fluid of density ρ and sound-speed c. The region z > 0 contains the
same fluid and many scatterers; to fix ideas, suppose that the scatterers are identical
spheres. Then, a time-harmonic plane wave with wavenumber k = ω/c (ω is the an-
gular frequency) is incident on the scatterers. The scattered field may be computed
exactly for any given configuration (ensemble) of N spheres, but the cost increases
as N increases. If the computation can be done, it may be repeated for other config-
urations, and then the average reflected field could be computed (this is the Monte
Carlo approach). Instead of doing this, we shall do some ensemble averaging in order
to calculate the average (coherent) field. One result of this is a formula for K.

Foldy [7] considered isotropic point scatterers; this is an appropriate model for
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small sound-soft scatterers. He obtained the formula

(1.1) K2 = k2 − 4πign0/k,

where n0 is the number of spheres per unit volume and g is the scattering coefficient for
an isolated scatterer. The formula (1.1) assumes that the scatterers are independent
and that n0 is small. We are interested in calculating the correction to (1.1) (a term
proportional to n2

0), and this will require saying more about the distribution of the
scatterers; specifically, we shall use pair correlations. Thus, our goal is a formula of
the form

(1.2) K2 = k2 + δ1n0 + δ2n
2
0,

with computable expressions for δ1 and δ2. Moreover, we do not want to restrict our
formula only to sound-soft scatterers.

There is some controversy over the proper value for δ2. In order to state one such
formula, we introduce the far-field pattern f . For scattering by one sphere, we have
uin = exp (ik · r) for the incident plane wave, where k = kk̂, r = rr̂, k = |k|, and

r = |r|; the angle of incidence, θin, is defined by cos θin = k̂ · ẑ, where ẑ = (0, 0, 1) is
a unit vector in the z-direction. Then the scattered waves satisfy

(1.3) usc ∼ (ikr)−1eikrf(Θ) as kr → ∞,

where cos Θ = r̂ · k̂. Then, Twersky [26] has obtained (1.2) with

(1.4) δ1 = −(4πi/k)f(0) and δ2 = (4π2/k4) sec2 θin

{
[f(π − 2θin)]2 − [f(0)]2

}
.

The formula for δ2 involves θin, so that it gives a different effective wavenumber for
different incident fields. The same formulas but with θin = 0 (normal incidence) were
given by Urick and Ament [27] and by Waterman and Truell [28]:

(1.5) δ1 = −(4πi/k)f(0) and δ2 = (4π2/k4)
{
[f(π)]2 − [f(0)]2

}
.

Other formulas were obtained more recently [14, 30].
In 1967, Lloyd and Berry [21] showed that the formula for δ2 should be

(1.6) δ2 =
4π2

k4

{
−[f(π)]2 + [f(0)]2 +

∫ π

0

1

sin (θ/2)

d

dθ
[f(θ)]

2
dθ

}
,

with no dependence on θin. They used methods and language coming from nuclear
physics. Thus, in their approach, which they

call the “resummation method,” a point source of waves is considered to be situ-

ated in an infinite medium. The scattering series is then written out completely,

giving what Lax has called the “expanded” representation. In this expanded rep-

resentation the ensemble average may be taken exactly [but then] the coherent

wave does not exist; the series must be resummed in order to obtain any result

at all.

The main purpose of the present paper is to demonstrate that a proper analysis
of the semi-infinite model problem (with arbitrary angle of incidence) leads to the
Lloyd–Berry formula. Our analysis does not involve “resumming” series or divergent
integrals. It builds on a conventional approach, in the spirit of the paper by Fikioris
and Waterman [6].
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There are two good reasons for giving a new derivation of the Lloyd–Berry for-
mula. First, our analysis clarifies the assumptions that lead to (1.6). Second, erro-
neous formulas (such as (1.4) or (1.5)) continue to be used widely, perhaps because
they are simpler than (1.6) or perhaps because the original derivation in [21] seems
suspect. For some representative applications, see [15, 2, 23] and [24, Chapter 4].

The paper begins with a brief summary of some elementary probability theory.
The pair-correlation function is introduced, including the notion of “hole correction,”
which ensures that spheres do not overlap during the averaging process. In section 3,
we consider isotropic scatterers and derive the integral equations of Foldy (indepen-
dent scatterers, no hole correction) and of Lax (hole correction included). Foldy’s
equation is solved exactly. A method is developed in section 3.2 for obtaining an
expression for K which does not require an exact solution of the integral equation,
merely an assumption that an effective wavenumber can be used at some distance
from the “interface” at z = 0 between the homogeneous region (z < 0) and the re-
gion occupied by many small scatterers (z > 0). The virtue of this method is that
it succeeds when the governing integral equation cannot be solved exactly. Thus,
in section 3.3, we obtain an expression for K from Lax’s integral equation; Foldy’s
approximation is recovered when the hole correction is removed. The same method
is used in section 4 but without the restriction to isotropic scatterers. We start with
an exact, deterministic theory for acoustic scattering by N spheres; the spheres can
be soft, hard, or penetrable. We combine multipole solutions in spherical polar coor-
dinates with an appropriate addition theorem. This method is well known; for some
recent applications, see [17, 10, 12]. The exact system of equations is then subjected
to ensemble averaging in section 4.3; Lax’s “quasi-crystalline approximation” [19] is
invoked. This leads to a homogeneous infinite system of linear algebraic equations;
the existence of a nontrivial solution determines K. We solve the system for small n0

and recover the Lloyd–Berry formula.

An analogous theory can be developed in two dimensions and leads to a result that
is reminiscent of the Lloyd–Berry formula [20]. However, the three-dimensional calcu-
lations described below are much more complicated, as they involve addition theorems
for spherical wavefunctions and properties of spherical harmonics. Nevertheless, the
final results are rather simple.

2. Some probability theory. In this section, we give a very brief summary
of the probability theory needed. For more information, see [7], [18], or Chapter 14
of [13].

Suppose that we have N scatterers located at the points r1, r2, . . . , rN ; denote
the configuration of points by ΛN = {r1, r2, . . . , rN}. Then, the ensemble (or config-
urational) average of any quantity F (r|ΛN ) is defined by

(2.1) 〈F (r)〉 =

∫
· · ·
∫

p(r1, r2, . . . , rN )F (r|ΛN ) dV1 · · ·dVN ,

where the integration is over N copies of the volume BN containing N scatterers.
Here, p(r1, . . . , rN ) dV1 dV2 · · ·dVN is the probability of finding the scatterers in a
configuration in which the first scatterer is in the volume element dV1 about r1, the
second scatterer is in the volume element dV2 about r2, and so on, up to rN . The
joint probability distribution p(r1, . . . , rN ) is normalized so that 〈1〉 = 1. Similarly,
the average of F (r|ΛN ) over all configurations for which the first scatterer is fixed
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at r1 is given by

(2.2) 〈F (r)〉1 =

∫
· · ·
∫

p(r2, . . . , rN |r1)F (r|ΛN ) dV2 · · ·dVN ,

where the conditional probability p(r2, . . . , rN |r1) is defined by p(r1, r2, . . . , rN ) =
p(r1) p(r2, . . . , rN |r1). If two scatterers are fixed, say the first and the second, we
can define

(2.3) 〈F (r)〉12 =

∫
· · ·
∫

p(r3, . . . , rN |r1, r2)F (r|ΛN ) dV3 · · ·dVN ,

where p(r2, . . . , rN |r1) = p(r2|r1) p(r3, . . . , rN |r1, r2).
As each of the N scatterers is equally likely to occupy dV1, the density of scatterers

at r1 is Np(r1) = n0, the (constant) number of scatterers per unit volume. Thus

(2.4) p(r) = n0/N = |BN |−1,

where |BN | is the volume of BN . For spheres of radius a, the simplest sensible choice
for the pair-correlation function is

(2.5) p(r2|r1) = (n0/N)H(R12 − b), where R12 = |r1 − r2|

and H is the Heaviside unit function: H(x) = 1 for x > 0, and H(x) = 0 for x < 0.
The parameter b (the “hole radius”) satisfies b ≥ 2a so that spheres are not allowed
to overlap.

3. Foldy–Lax theory: Isotropic scatterers. Foldy’s theory [7] begins with a
simplified deterministic model for scattering by N identical scatterers, each of which
is supposed to scatter isotropically. Thus, the total field is assumed to be given by
the incident field plus a point source at each scattering center, rj :

(3.1) u(r|ΛN ) = uin(r) + g

N∑

j=1

uex(rj ; rj |ΛN )h0(k|r − rj |).

Here, hn(w) ≡ h
(1)
n (w) is a spherical Hankel function, g is the (assumed known)

scattering coefficient, and the exciting field uex is given by

(3.2) uex(r; rn|ΛN ) = uin(r) + g

N∑

j=1
j �=n

uex(rj ; rj |ΛN )h0(k|r − rj |);

the N numbers uex(rj ; rj |ΛN ) (j = 1, 2, . . . , N) required in (3.1) are to be determined
by solving the linear system obtained by evaluating (3.2) at r = rn.

If we try to compute the ensemble average of u, using (3.1) and (2.1), we obtain

(3.3) 〈u(r)〉 = uin(r) + gn0

∫

BN

〈uex(r1)〉1 h0(k|r − r1|) dV1,

where we have used (2.2), (2.4), and the indistinguishability of the scatterers. For
〈uex(r1)〉1, we obtain

(3.4) 〈uex(r)〉1 = uin(r) + g(N − 1)

∫

BN

p(r2|r1) 〈uex(r2)〉12 h0(k|r − r2|) dV2,
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where we have used (2.3) and (3.2). Equations (3.3) and (3.4) are the first two in
a hierarchy, involving more and more complicated information on the statistics of
the scatterer distribution. In practice, the hierarchy is broken using an additional
assumption. At the lowest level, we have Foldy’s assumption,

(3.5) 〈uex(r)〉1 ≃ 〈u(r)〉,

at least in the neighborhood of r1. When this is used in (3.3), we obtain

(3.6) 〈u(r)〉 = uin(r) + gn0

∫

BN

〈u(r1)〉h0(k|r − r1|) dV1, r ∈ BN .

We call this Foldy’s integral equation for 〈u〉. The integral on the right-hand side is
an acoustic volume potential. Hence, an application of (∇2 + k2) to (3.6) eliminates
the incident field and shows that (∇2 + K2)〈u〉 = 0 in BN , where K2 is given by
Foldy’s formula, (1.1).

At the next level, we have Lax’s quasi-crystalline assumption (QCA) [19],

(3.7) 〈uex(r)〉12 ≃ 〈uex(r)〉2.

When this is used in (3.4) evaluated at r = r1, we obtain

(3.8) v(r) = uin(r) + g(N − 1)

∫

BN

p(r1|r) v(r1)h0(k|r − r1|) dV1, r ∈ BN ,

where v(r) = 〈uex(r)〉1. We call this Lax’s integral equation.
In what follows, we let N → ∞ so that BN → B∞, a semi-infinite region, z > 0.

3.1. Foldy’s integral equation: Exact treatment. Consider a plane wave
at oblique incidence, so that

(3.9) uin = exp (ik · r) = eiαz exp (ikT · q),

where r = (x, y, z), q = (x, y, 0), k = kT + αẑ, ẑ = (0, 0, 1), the wavenumber vector
k is given in spherical polar coordinates by

k = kk̂ with k̂ = (sin θin cosφin, sin θin sinφin, cos θin), 0 ≤ θin < π/2,

α = k cos θin, and kT is the transverse wavenumber vector, satisfying kT · ẑ = 0.
For a semi-infinite domain B∞ (z > 0), Foldy’s integral equation (3.6) becomes

〈u(x, y, z)〉 = uin(x, y, z) + gn0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

〈u(x+X, y + Y, z1)〉h0(k̺1) dX dY dz1,

for 0 ≤ |x| < ∞, 0 ≤ |y| < ∞, and z > 0, where ̺1 =
√
X2 + Y 2 + (z − z1)2. This

equation can be solved exactly. Thus, writing

(3.10) 〈u(x, y, z)〉 = U(z) exp (ikT · q), 0 ≤ |q| < ∞, z > 0,

we obtain

(3.11) U(z) = eiαz + gn0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

U(z1)h0(k̺1) exp (ikT · Q) dX dY dz1
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for z > 0, where Q = (X,Y, 0).
In Appendix B, it is shown that

(3.12)

∫ ∞

−∞

∫ ∞

−∞

h0(k̺1) exp (ikT · Q) dX dY =
2π

kα
eiα|z−z1|.

Thus, we see that U solves

(3.13) U(z) = eiαz +
2πgn0

kα

∫ ∞

0

U(z1) eiα|z−z1| dz1, z > 0.

Now, set U(z) = U0 eiλz, so that (3.13) gives

U0 eiλz − eiαz =
2πgn0

ikα
U0

(
2αeiλz

λ2 − α2
− eiαz

λ− α

)
,

where we have assumed that Imλ > 0. If we compare the coefficients of eiλz, we see
that U0 cancels, leaving

(3.14) λ2 − α2 = −4πign0/k,

which determines λ. Then, the coefficients of eiαz give U0 = 2α/(λ + α). A similar
method can be used to find 〈u〉 when B∞ is a slab of finite thickness, 0 < z < h.

It is natural to define an effective wavenumber vector by

K = K(sinϑ cosϕ, sinϑ sinϕ, cosϑ) = KK̂(3.15)

= (k sin θin cosφin, k sin θin sinφin, λ),

whence

(3.16) λ = K cosϑ and K sinϑ = k sin θin.

The last equality is recognized as Snell’s law, even though K and ϑ are complex, with
ImK > 0. Hence, we see that

(3.17) λ2 − α2 = K2 − k2,

whence (3.14) reduces to Foldy’s formula (1.1).

3.2. Foldy’s integral equation: Alternative treatment. We have seen that
Foldy’s integral equation can be solved exactly, and that the solution process has two
parts: first find λ (and hence the effective wavenumber) and then find U0. In fact,
λ can be found without finding the complete solution; the reason for pursuing this is
that we cannot usually find exact solutions. Thus, consider (3.13), and suppose that

U(z) = U0e
iλz for z > ℓ,

where U0, λ, and ℓ are unknown. To proceed, we need say nothing about the solution
U in the “boundary layer” 0 < z < ℓ. Now, evaluate the integral equation for z > ℓ;
we find that

U0 eiλz − eiαz =
2πgn0

kα
eiαz

∫ ℓ

0

U(t) e−iαt dt +
2πgn0

kα

∫ ∞

ℓ

U(t) eiα|z−t| dt

= A eiλz + B eiαz for z > ℓ,
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where A = −4πign0U0/[k(λ2 − α2)] and

B =
2πgn0

kα

∫ ℓ

0

U(t) e−iαt dt +
2πign0U0

kα(λ− α)
ei(λ−α)ℓ.

Then, setting U0 = A gives (3.14) again, without knowing the solution U everywhere.
This basic method will be used again below.

3.3. Lax’s integral equation. Using (2.5) for p(r1|r) in (3.8) gives

(3.18) v(r) = uin(r) + gn0
N − 1

N

∫

Bb

N

v(r1)h0(kR1) dr1, r ∈ BN ,

where Bb
N (r) = {r1 ∈ BN : R1 = |r − r1| > b}, which is BN with a (possibly

incomplete) ball excluded.
Let N → ∞ and take an incident plane wave, (3.9), giving

v(x, y, z) = eiαz exp (ikT · q) + gn0

∫

z1>0, ̺1>b

v(x + X, y + Y, z1)h0(k̺1) dX dY dz1,

for 0 ≤ |q| < ∞ and z > 0. As in section 3.1, we write

(3.19) v(x, y, z) = V (z) exp (ikT · q), 0 ≤ |q| < ∞, z > 0,

giving

(3.20) V (z) = eiαz + gn0

∫

z1>0, ̺1>b

V (z1)h0(k̺1) exp (ikT · Q) dX dY dz1

for 0 ≤ |q| < ∞ and z > 0, where Q = (X,Y, 0). Then, using (3.12), we see that V
solves

(3.21) V (z) = eiαz + gn0

∫ ∞

0

V (z1)L(z − z1) dz1, z > 0,

where the kernel, L(z − z1), is given by

L(Z) =
2π

kα
eiα|Z| −

∫ c(Z)

0

∫ 2π

0

h0(k
√
Q2 + Z2)eikQ sin θin cos (Φ−φin)QdΦ dQ

=
2π

kα
eiα|Z| − 2π

∫ c(Z)

0

h0(k
√
Q2 + Z2) J0(kQ sin θin)QdQ(3.22)

with c(Z) =
√
b2 − Z2 H(b− |Z|); here, Jn is a Bessel function, and we have written

the double integral over X and Y in (3.20) as an integral over all X and Y minus an
integral through the cross section of the ball at z, if necessary.

We have been unable to solve (3.21) exactly. However, the alternative method
described in section 3.2 can be used. Thus, let us suppose that

(3.23) V (z) = V0 eiλz for z > ℓ,

where V0, λ, and ℓ are unknown. Then, consider (3.21) for z > ℓ + b, so that the
interval |z − z1| < b is entirely within the range z1 > ℓ. Using (3.22), (3.21) gives

V0 eiλz − eiαz

gn0
=

2π

kα
eiαz

∫ ℓ

0

V (t) e−iαt dt +
2π

kα

∫ ∞

ℓ

V (t) eiα|z−t| dt(3.24)

− 2π

∫ z+b

z−b

V (t)

∫ c(z−t)

0

h0(k
√
Q2 + (z − t)2) J0(kQ sin θin)QdQdt
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for z > ℓ + b. Equation (3.23) can be used in the second and third integrals. The
second integral is elementary, and has the value

2πiV0

kα

{
ei(λ−α)ℓ

λ− α
eiαz − 2α

λ2 − α2
eiλz

}
.

Denote the third integral in (3.24) by I3; we have

I3 = −2πV0

∫ b

−b

eiλ(z+ξ)

∫ √
b2−ξ2

0

h0(k
√
Q2 + ξ2) J0(kQ sin θin)QdQdξ

= −2πV0 eiλz

∫ π

0

∫ b

0

eiλr cos θ h0(kr) J0(kr sin θ sin θin) r2 sin θ dr dθ

= −V0 eiλz

∫ 2π

0

∫ π

0

∫ b

0

eir[λ cos θ+k sin θ sin θin cos (φ−φin)] h0(kr) r
2 sin θ dr dθ dφ.

Using (3.16), the exponent simplifies to K · r, whence

I3 = −V0 eiλz

∫

r<b

exp (iK · r)h0(k|r|) dV (r)

= −2πV0 eiλz

∫ b

0

∫ π

0

eikr

ikr
eiKr cos θ r2 sin θ dθ dr

=
2πV0

kK
eiλz

∫ b

0

eikr
(
eiKr − e−iKr

)
dr =

4πiV0

k(K2 − k2)
eiλz{1 −N0(Kb)},

where N0(x) = eikb{cosx − i(kb/x) sinx}. Using these results in (3.24) and noting
(3.17), we obtain

V0 eiλz − eiαz = A eiλz + B eiαz for z > ℓ + b,

where

A =
4πign0V0

k(k2 −K2)
N0(Kb), B =

2πgn0

kα

∫ ℓ

0

V (t) e−iαt dt +
2πign0V0

kα(λ− α)
ei(λ−α)ℓ.

For a solution, we must have A = V0, whence

(3.25) K2 = k2 − 4πig(n0/k)N0(Kb),

which is a nonlinear equation for K. Notice that this equation does not depend on
the angle of incidence, θin.

We have N0(Kb) → 1 as Kb → 0 so that, in this limit, we recover Foldy’s formula
for the effective wavenumber, (1.1).

Let us solve (3.25) for small n0. (We could use the dimensionless volume fraction
4
3πa

3n0, but it is customary to use n0.) Begin by writing

(3.26) K2 = k2 + δ1n0 + δ2n
2
0 + · · · ,

where δ1 and δ2 are to be found; for δ1, we expect to obtain the result given by (1.1).
It follows that K = k + 1

2δ1n0/k + O(n2
0) and then

N0(Kb) = N0(kb) + (Kb− kb)N ′
0(kb) + · · ·

= 1 − 1
2 ib(n0/k)δ1d0(kb) + O(n2

0),
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where d0(x) = 1−x−1eix sinx. When this approximation for N0(Kb) is used in (3.25),
we obtain

K2 = k2 − 4πign0/k − 2πbg(n0/k)2δ1d0(kb).

Comparison of this formula with (3.26) gives δ1 = −4πig/k (as expected) and δ2 =
8π2ig2bk−3d0(kb), so that we obtain the approximation

(3.27) K2 = k2 − 4πig

k
n0 +

8ib(πgn0)
2

k3

(
1 − eikb sin kb

kb

)
.

(Recall that a common choice for the hole radius is b = 2a.) As far as we know, the
formula (3.27) is new. Note that the second-order term in (3.27) vanishes in the limit
kb → 0.

4. A finite array of identical spheres: Exact theory. Let O be the origin
of three-dimensional Cartesian coordinates, so that a typical point has position vector
r = (x, y, z) with respect to O. Define spherical polar coordinates (r, θ, φ) at O, so
that r = rr̂ = r(sin θ cosφ, sin θ sinφ, cos θ). We consider N identical spheres, Sj ,
j = 1, 2, . . . , N . The sphere Sj has radius a and center Oj at r = rj . We define
spherical polar coordinates (ρj , θj , φj) at Oj , so that r = ρj + rj with

ρj = ρjρ̂j = ρj(sin θj cosφj , sin θj sinφj , cos θj).

We assume that θj = 0 is in the z-direction (θ = 0).
Exterior to the spheres the pressure field is u, where

(4.1) ∇2u + k2u = 0.

Inside Sj , the field is uj , where

(4.2) ∇2uj + κ2uj = 0,

κ = ω/c̃, and c̃ is the sound speed inside the spheres. The transmission conditions on
the spheres are

(4.3) u = uj ,
1

ρ

∂u

∂ρj
=

1

ρ̃

∂uj

∂ρj
on ρj = a, j = 1, . . . , N,

where ρ̃ is the fluid density inside the spheres.
A plane wave, given by (3.9), is incident on the spheres. The problem is to

calculate the scattered field outside the spheres, defined as usc = u − uin. We start
with just one sphere, in order to fix our notation.

4.1. Scattering by one sphere. For the incident plane wave, we have

(4.4) uin(r) = exp (ik · r) = 4π
∑

n,m

inψ̂m
n (r)Y m

n (k̂),

where ψ̂m
n (r) = jn(kr)Y m

n (r̂), jn(w) is a spherical Bessel function, Y m
n (r̂) = Y m

n (θ, φ)
is a spherical harmonic (see Appendix A), the overbar denotes complex conjugation,
and we have used the shorthand notation

∑

n,m

≡
∞∑

n=0

n∑

m=−n

.
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With our choice of normalization, the spherical harmonics are orthonormal; see (A.1).
For the scattered and interior fields, we can write

usc(r) = 4π
∑

n,m

inAm
n Znψ

m
n (r) and uint(r) = 4π

∑

n,m

inBm
n jn(κr)Y m

n (r̂),

respectively, where ψm
n (r) = hn(kr)Y m

n (r̂), the coefficients Am
n and Bm

n are to be
found, and the factor

(4.5) Zn =
qj′n(ka)jn(κa) − jn(ka)j′n(κa)

qh′
n(ka)jn(κa) − hn(ka)j′n(κa)

,

with q = ρ̃c̃/(ρc), has been introduced for later convenience. Then, the transmission

conditions on r = a yield Am
n and Bm

n ; in particular, we obtain Am
n = −Y m

n (k̂). Also,
the far-field pattern, defined by (1.3), is given by

(4.6) f(Θ) = 4π
∑

n,m

ZnA
m
n Y m

n (r̂) = −
∞∑

n=0

(2n + 1)ZnPn(cos Θ),

where cos Θ = r̂ · k̂ and we have used (A.3) in order to evaluate the sum over m. Note
that we recover the sound-soft results in the limit q → 0, whereas the limit q → ∞
gives the sound-hard results.

4.2. Scattering by N spheres. A phase factor for each sphere is defined by
Ij = exp (ik · rj), and then we can write

(4.7) uin = Ij exp (ik · ρj) = 4πIj
∑

n,m

inψ̂m
n (ρj)Y

m
n (k̂).

We seek a solution to (4.1) and (4.2) in the form

u = uin + 4π

N∑

j=1

∑

n,m

inAm
njZnψ

m
n (ρj), uj = 4π

∑

n,m

inBm
nj jn(κρj)Y

m
n (ρ̂j),

for some set of unknown complex coefficients Am
nj and Bm

nj .
Now, in order to apply the transmission conditions on each sphere, we shall need

an addition theorem. Thus, given vectors a, b, and c = a + b, we have

(4.8) ψm
n (c) =

∑

ν,µ

Smµ
nν (b) ψ̂µ

ν (a) for |a| < |b|,

where the separation matrix Sµm
νn is given by

(4.9) Sµm
νn (R) = 4πin−ν(−1)m

∑

q

iqψµ−m
q (R)G(n,m; ν,−µ; q).

In this formula, G is a Gaunt coefficient (defined by (A.5)), and the sum has a finite
number of terms; in fact, q runs from |n− ν| to (n + ν) in steps of 2, so that

(4.10) (q + n + ν) is even.

For more information on the addition theorem, see [3, 10, 11] and references therein.
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Let Rsj = rs − rj = ρj − ρs be the position vector of Os with respect to Oj .
Then, provided that ρs < Rsj = |Rsj | for all j, we can write the field exterior to the
sphere Ss as

u = 4π
∑

n,m

in
{
Isψ̂

m
n (ρs)Y

m
n (k̂) + Am

nsZnψ
m
n (ρs)

}
(4.11)

+ 4π
∑

n,m

ψ̂m
n (ρs)

N∑

j=1
j �=s

∑

ν,µ

iνAµ
νjZνS

µm
νn (Rsj).

The geometrical restriction implies that this expression is valid near the surface of
Ss, and so (4.11) can be used to apply the transmission conditions on ρs = a. Thus,
after using the orthogonality of the functions Y m

n (ρ̂s), (A.1), and then eliminating
the coefficients Bm

nj , we obtain

(4.12) Am
ns +

N∑

j=1
j �=s

∑

ν,µ

iν−nAµ
νjZνS

µm
νn (Rsj) = −IsY m

n (k̂),
s = 1, 2, . . . , N,
n = 0, 1, 2, . . . ,
m = −n, . . . , n,

an infinite linear system of equations for Am
nj . Note that the quantities q, κ, and a

enter the equations only through the terms Zν .

4.3. Arrays of spheres: Averaged equations. The above analysis applies to
a specific configuration of scatterers. Now we take ensemble averages. Specifically,
setting s = 1 in (4.12) and then taking the conditional average, using (2.5), we obtain

(4.13) 〈Am
n1〉1+n0

N − 1

N

∑

ν,µ

iν−nZν

∫

BN :R12>b

Sµm
νn (R12) 〈Aµ

ν2〉12 dV2 = −I1Y m
n (k̂),

for n = 0, 1, 2, . . . and m = −n, . . . , n. Then, we let N → ∞ so that BN becomes the
half-space z > 0, and invoke Lax’s QCA, (3.7). This implies that 〈Am

n2〉12 = 〈Am
n2〉2.

Hence, (4.13) reduces to

(4.14) 〈Am
n1〉1 + n0

∑

ν,µ

iν−nZν

∫

z2>0, R12>b

Sµm
νn (R12) 〈Aµ

ν2〉2 dV2 = −I1Y m
n (k̂),

for n = 0, 1, 2, . . . and m = −n, . . . , n. As I1 = exp (ik · r1) = eiαz1 exp (ikT · q1) with
α = k cos θin and qs = (xs, ys, 0), we seek a solution to (4.14) in the form

(4.15) 〈Am
ns〉s = Φm

n (zs) exp (ikT · qs)

so that
(4.16)

Φm
n (z1) + n0

∑

ν,µ

iν−nZν

∫

z2>0, R12>b

Sµm
νn (R12) exp (ikT · q21) Φµ

ν (z2) dV2 = −eiαz1Y m
n (k̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n, where qsj = qs − qj .
Proceeding as before, suppose that for sufficiently large z (say, z > ℓ) we can

write

(4.17) Φm
n (z) = Fm

n eiλz.
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Then if z1 > ℓ + b, (4.16) becomes
(4.18)

Fm
n eiλz1 +n0

∑

ν,µ

(−i)ν−nZν

{∫ ℓ

0

Φµ
ν (z2)Lµm

νn (z21) dz2+Fµ
ν eiλz1Mµm

νn

}
= −eiαz1Y m

n (k̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n, where z21 = z2 − z1,

Lµm
νn (z21) =

∫ ∞

−∞

∫ ∞

−∞

Sµm
νn (R21) exp (ikT · q21) dx2 dy2,

Mµm
νn =

∫

z2>ℓ,R21>b

Sµm
νn (R21) exp (ikT · q21) eiλz21 dV2,

and we have used Sµm
νn (−r) = (−1)n+νSµm

νn (r), a relation that follows from (4.9).
Indeed, because of (4.9), it is sufficient to consider

Lm
n (z) =

∫ ∞

−∞

∫ ∞

−∞

ψm
n (R) exp (ikT · Q) dX dY

for z < 0 and

Mm
n =

∫

z2>ℓ,R21>b

ψm
n (R21) Ψ(R21) dV2,

where Ψ(R) = eiλz exp (ikT · Q) = exp (iK · R) and K = KK̂ is defined by (3.15).
From (B.5), we have

Lm
n (z21) =

2πin

kα
Y m
n (k̂) eiα(z1−z2) for z1 > z2.

Hence, Lµm
νn is proportional to eiα(z1−z2), and so the integral term in (4.18) is propor-

tional to eiαz1 .
The volume integral Mm

n can be evaluated readily using Green’s theorem. We
have ψm

n ∇2Ψ − Ψ∇2ψm
n = (k2 −K2)ψm

n Ψ. It follows that

Mm
n =

1

k2 −K2

∫

∂B

[
ψm
n

∂Ψ

∂n
− Ψ

∂ψm
n

∂n

]
dS2,

where ∂B consists of two parts, the plane z2 = ℓ and the sphere R12 = b. Now, on
z2 = ℓ, ∂/∂n = −∂/∂z2, and so we have

−
∫

z2=ℓ

[
ψm
n

∂Ψ

∂z2
− Ψ

∂ψm
n

∂z2

]
dx2 dy2 =

2π

kα
ei(α−λ)(z1−ℓ) in−1(λ + α)Y m

n (k̂),

using (B.8). Thus, the plane part of ∂B contributes a term to Mµm
νn proportional to

ei(α−λ)z1 , which in turn gives a contribution to (4.18) proportional to eiαz1 .
Next, from (4.4), we have

Ψ = exp (iK · R) = 4π
∑

ν,µ

iνjν(KR)Y µ
ν (R̂)Y µ

ν (K̂).

Then, the contribution from the sphere R12 = b is

−
∫

Ω

[
ψm
n

∂Ψ

∂R
− Ψ

∂ψm
n

∂R

]

R=b

b2 dΩ

= 4πb2
∑

ν,µ

iνY µ
ν (K̂){kjν(Kb)h′

n(kb) −Kj′ν(Kb)hn(kb)}
∫

Ω

Y m
n Y µ

ν dΩ

= 4πb2inY m
n (K̂){kjn(Kb)h′

n(kb) −Kj′n(Kb)hn(kb)},
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which is independent of z1; here, Ω is the unit sphere and we have used (A.1).
Collecting up our results, we find that (4.18) can be written as

(4.19) Am
n eiλz1 + Bm

n eiαz1 = −eiαz1 Y m
n (k̂),

for n = 0, 1, 2, . . . ,m = −n, . . . , n, and z1 > ℓ + b, where

(4.20) Am
n = Fm

n +
(4π)2in0(−1)m

k(k2 −K2)

∑

ν,µ

ZνF
µ
ν

∑

q

Y µ−m
q (K̂)Nq(Kb)G(n,m; ν,−µ; q),

(4.21) Nn(x) = ikb{x j′n(x)hn(kb) − kb jn(x)h′
n(kb)},

and we have used (4.10) to remove a factor of (−1)q+n+ν . In particular, we note that
N0 appeared in section 3.3 during our analysis of Lax’s integral equation.

From (4.19), we immediately obtain Am
n = 0 for n = 0, 1, 2, . . ., m = −n, . . . , n.

These equations yield an infinite homogeneous system of linear algebraic equations
for Fm

n . The existence of a nontrivial solution to this system determines K.
It is worth noting that even though the solution of the system Am

n = 0 can depend
on θin via K̂ (see (3.15)), the effective wavenumber itself, K, should not depend on θin.

4.4. Approximate determination of K for small n0. The only approxima-
tion made in the derivation of the system Am

n = 0 is the QCA, which is expected to
be valid for small values of the scatterer concentration (n0a

3 ≪ 1). We now assume
(as in section 3.3) that n0b/k

2 is also small and write K2 = k2 + δ1n0 + δ2n
2
0 + · · · .

Then

(4.22) Nn(Kb) = 1 − ibn0

2k
δ1dn(kb) + O(n2

0),

where

(4.23) dn(x) = xj′n(x)[xh′
n(x) + hn(x)] + [x2 − n(n + 1)]jn(x)hn(x),

and so

(4.24)
Nn(Kb)

k2 −K2
= − 1

δ1n0
+

ibdn(kb)

2k
+

δ2
δ2
1

+ O(n0).

If (4.24) is substituted into Am
n = 0, with Am

n defined by (4.20) and O(n2
0) terms

neglected, we obtain
(4.25)

Fm
n =

(4π)2i

kδ1
(−1)m

(
1 − n0δ2

δ1

)∑

ν,µ

ZνF
µ
ν W

mµ
nν +

(4π)2bn0

2k2
(−1)m

∑

ν,µ

ZνF
µ
ν X

mµ
nν ,

where

Wmµ
nν =

∑

q

Y µ−m
q (K̂)G(n,m; ν,−µ; q),(4.26)

Xmµ
nν =

∑

q

Y µ−m
q (K̂)G(n,m; ν,−µ; q) dq(kb).(4.27)

The Gaunt coefficients appear in the linearization formula for spherical harmonics,
(A.4). Replacing µ by −µ and r̂ by K̂ in the complex conjugate of (A.4), we obtain

Wmµ
nν = Y −m

n (K̂)Y µ
ν (K̂).
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Thus, at leading order, (4.25) gives

Fm
n =

(4π)2i

kδ1
Y m
n (K̂)

∑

ν,µ

ZνF
µ
ν Y

µ
ν (K̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n. Set Fm
n = Y m

n (K̂) F̃m
n , whence

F̃m
n =

(4π)2i

kδ1

∑

ν,µ

Zν F̃
µ
ν Y

µ
ν (K̂)Y µ

ν (K̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n. However, the right-hand side of this equation
does not depend on n or m, so that F̃m

n = F̃ , say. Hence

(4.28) δ1 =
(4π)2i

k

∞∑

ν=0

Zν

ν∑

µ=−ν

Y µ
ν (K̂)Y µ

ν (K̂).

The sum over µ can be evaluated using Legendre’s addition theorem, (A.3). Setting

r̂1 = r̂2 = K̂ in (A.3) and noting that Pn(1) = 1, we obtain

(4.29) δ1 =
4πi

k

∞∑

ν=0

(2ν + 1)Zν = −4πi

k
f(0),

where f is the far-field pattern given by (4.6).
Returning to (4.25), we now set

Fm
n = Y m

n (K̂) F̃ + n0G
m
n ,

and then the O(n0) terms give

(4.30) Gm
n = Y m

n (K̂)V +
(4π)2b

2k2
(−1)mF̃

∑

ν,µ

ZνY
µ
ν (K̂)Xmµ

nν ,

where

(4.31) V =
(4π)2i

kδ1

∑

ν,µ

ZνG
µ
νY

µ
ν (K̂) − δ2

δ1
F̃ .

Note that V does not depend on n or m. Substituting for Gµ
ν from (4.30) in (4.31),

making use of (4.28), gives a formula for δ2:

(4.32) δ2 =
(4π)4ib

2k3

∑

n,m

∑

ν,µ

(−1)mZnZνY
m
n (K̂)Y µ

ν (K̂)Xmµ
nν .

So far we have not made any assumptions about the size of ka or kb (though
clearly kb ≥ 2ka). Now we will assume that kb is small. In the limit x → 0, we have
dn(x) ∼ in/x. Using this approximation simplifies Xmµ

nν , defined by (4.27). Hence,

(4.33) δ2 ∼ −1

2
(4π/k)4

∞∑

n=0

∞∑

ν=0

ZnZν Knν(K̂) as kb → 0,
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where

(4.34) Knν(K̂) =

n∑

m=−n

ν∑

µ=−ν

(−1)mY m
n (K̂)Y µ

ν (K̂)
∑

q

q Y µ−m
q (K̂)G(n,m; ν,−µ; q).

From (A.5) and
∫ 2π

0
eimφ dφ = 2πδ0m, we have

Y µ−m
q (K̂)G(n,m; ν,−µ; q) = (−1)m

∑

M

Y M
q (K̂)

∫

Ω

Y m
n Y µ

ν Y M
q dΩ

= (−1)m
2q + 1

4π

∫

Ω

Y m
n (r̂)Y µ

ν (r̂)Pq(r̂ · K̂) dΩ(r̂),

using (A.3). Hence, using (A.3) two more times, we obtain

Knν(K̂) =
(2n + 1)(2ν + 1)

(4π)3

∑

q

q(2q + 1)

∫

Ω

Pn(r̂ · K̂)Pν(r̂ · K̂)Pq(r̂ · K̂) dΩ(r̂)

=

√
(2n + 1)(2ν + 1)

(4π)3/2

∑

q

q
√

2q + 1G(n, 0; ν, 0; q),

where we have used Y 0
n =

√
(2n + 1)/(4π)Pn and (A.5). When this formula for Knν

is substituted into (4.33), we obtain complete agreement with the formula of Lloyd
and Berry [21]; see Appendix C.

In conclusion, we note that if we were to replace (2.5) with the (clearly unreason-
able)

p(r2|r1) = (n0/N)H(|z2 − z1| − a),

an analysis similar to that given above yields Twersky’s erroneous expression for δ2,
as given in (1.4). We omit the details of this calculation, but see [21] for a related
discussion and [20] for analogous calculations in two dimensions.

It is perhaps worth summarizing the various approximations that are needed to
arrive at the Lloyd–Berry formula. The system Am

n = 0 (with Am
n defined by (4.20))

serves to determine the effective wavenumber, subject only to the QCA. The QCA is
certainly appropriate only for low volume fractions, but it is very difficult to make a
precise quantitative assessment of its range of validity. Some numerical estimates of
the accuracy of the QCA can be found in, for example, [16] and [9]. If we assume
that the concentration of scatterers is small, in the sense that n0a

3 ≪ 1 (which is
consistent with the QCA) and also that n0b/k

2 ≪ 1, then the effective wavenumber,
up to second order in concentration, follows from (4.29) and (4.32). If we finally let
kb → 0, we obtain the Lloyd–Berry formula in the form of (4.29) and (4.33).

Appendix A. Spherical harmonics. We define spherical harmonics Y m
n by

Y m
n (r̂) = Y m

n (θ, φ) = (−1)m
√

2n + 1

4π

√
(n−m)!

(n + m)!
Pm
n (cos θ) eimφ,

where Pm
n is an associated Legendre function. We have orthonormality,

(A.1)

∫

Ω

Y m
n Y µ

ν dΩ = δnνδmµ,
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where Ω is the unit sphere. Also, Y −m
n = (−1)mY m

n .
For 0 ≤ m ≤ n, we have the expansion

(A.2)
Pm
n (t)

(1 − t2)m/2
=

1

2n n!

dm+n

dtm+n
(t2 − 1)n =

[(n−m)/2]∑

l=0

Bn,m
l tn−m−2l,

where [n] denotes the integer part of n. The coefficients Bn,m
l are known explicitly,

but we shall not need them.
We shall make use of Legendre’s addition theorem, namely,

(A.3) Pn(r̂1 · r̂2) =
4π

2n + 1

n∑

m=−n

Y m
n (r̂1)Y m

n (r̂2),

where Pn(t) is a Legendre polynomial.
The linearization formula for spherical harmonics is

(A.4) Y m
n (r̂)Y µ

ν (r̂) =
∑

q

Y m+µ
q (r̂)G(n,m; ν, µ; q),

where G is a Gaunt coefficient. Note that G is real. Making use of (A.1), we obtain

(A.5) G(n,m; ν,−µ; q) = (−1)m
∫

Ω

Y m
n Y µ

ν Y µ−m
q dΩ.

Appendix B. Some integrals. Consider the integral

L(z) =

∫ ∞

−∞

∫ ∞

−∞

h0(kR) exp (ikT · Q) dX dY,

where R = |R|, R = (X,Y, z), and Q = (X,Y, 0). Set Q = Q(cos Φ, sin Φ, 0) so
that kT ·Q = kQ sin θin cos (Φ − φin). Hence, as dX dY = QdQdΦ, we can integrate
over Φ, giving

L(z) = 2π

∫ ∞

0

h0(k
√
Q2 + z2) J0(kQ sin θin)QdQ.

We have

Qh0(k
√

Q2 + z2) =
Q eik

√
Q2+z2

ik
√
Q2 + z2

=
1

(ik)2
d

dQ
eik

√
Q2+z2

,

so that an integration by parts (using J ′
0 = −J1) gives

(B.1) L(z) = 2πk−2{eik|z| − L̂(z)},

where

L̂(z) = k sin θin

∫ ∞

0

J1(kQ sin θin) eik
√

Q2+z2

dQ.

Now, from [8, equation 6.637(1)] (with ν = 1 therein), we have

(B.2)

∫ ∞

0

e−a
√

x2+β2

√
x2 + β2

J1(γx) dx = I1/2(X−)K1/2(X+),
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where X± = 1
2β{

√
a2 + γ2 ± a}, Re a > 0, Reβ > 0, and Re γ > 0. From [1, 10.2.13

and 10.2.17], the modified Bessel functions are given by

I1/2(w) = {2/(πw)}1/2 sinhw and K1/2(w) = {π/(2w)}1/2 e−w,

so that

I1/2(X−)K1/2(X+) = (βγ)−1
{

e−aβ − e−β
√

a2+γ2

}
.

Then, differentiating (B.2) with respect to a gives

(B.3) γ

∫ ∞

0

J1(γx) e−a
√

x2+β2

dx = e−aβ − a√
a2 + γ2

e−β
√

a2+γ2

.

The calculations leading to (B.3) are certainly valid for Re a > 0, Reβ > 0, and
Re γ > 0. We want to use (B.3) for β = z; as the left-hand side of (B.3) is an
even function of β, we can replace β by |β| on the right-hand side. We also want to

substitute a = −ik and γ = k sin θin, so that
√
a2 + γ2 = ±ik cos θin. To determine

the sign, we note that (from [8, equations 6.671(1) and 6.671(2)])

γ

∫ ∞

0

J1(γx) eikx dx = 1 − k√
k2 − γ2

for k > γ,

implying that we should take
√
a2 + γ2 = −ik cos θin. (Alternatively, we note that

the right-hand side of (B.3) is an analytic function of a in a cut plane; we can take
the cut between a = iγ and a = −iγ (γ real and positive), and we choose the branch
so that the right-hand side of (B.3) is real when a is real and positive. This leads to√
a2 + γ2 = −i

√
k2 − γ2 when a = −ik with k > γ > 0.) Hence,

L̂(z) = eik|z| − eik|z| cos θin sec θin,

and so (B.1) gives

(B.4) L(z) =

∫ ∞

−∞

∫ ∞

−∞

h0(kR) exp (ikT · Q) dX dY =
2π

k2 cos θin
eik|z| cos θin .

This formula generalizes. Thus, let

Lm
n (z) =

∫ ∞

−∞

∫ ∞

−∞

ψm
n (R) exp (ikT · Q) dX dY,

with ψm
n (r) = hn(kr)Y m

n (r̂). Then,

(B.5) Lm
n (z) =

2π in

k2 cos θin
Y m
n (k̂) e−ikz cos θin for z < 0,

with a similar formula for z > 0 (which we shall not need). When both m = 0 and
θin = 0, (B.5) reduces to a result obtained in [27].

To prove (B.5), begin by assuming that 0 ≤ m ≤ n. Let

(B.6) Ωm
n (r) = hn(kr)Pm

n (cos θ) eimφ.

(ψm
n (r) is a normalized form of Ωm

n (r).) Then, we have [5, 29, 4]

Ωm
n (r) = Ym

n h0(kr),
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where the Erdélyi operator Ym
n is defined by

Ym
n = (Dxy)

m

[(n−m)/2]∑

l=0

(−1)lBn,m
l (Dz)

n−m−2l, Dxy = −1

k

(
∂

∂x
+ i

∂

∂y

)
,

and Dz = −k−1∂/∂z; the coefficients Bn,m
l appear in the expansion (A.2). Hence,

Om
n (z) ≡

∫ ∞

−∞

∫ ∞

−∞

Ωm
n (R) exp (ikT · Q) dX dY =

∑

l

(−1)lBn,m
l (Dz)

n−m−2lIm(z),

where the sum is from l = 0 to the integer part of (n−m)/2, and

Im(z) =

∫ ∞

−∞

∫ ∞

−∞

exp (ikT · Q) (DXY )mh0(kR) dX dY

=

∫ ∞

−∞

∫ ∞

−∞

h0(kR) (−DXY )m exp (ikT · Q) dX dY = im sinm θin eimφinL(z).

Hence, substituting for L(z) from (B.4) and carrying out the differentiations with
respect to z, we obtain

(B.7) Om
n (z) =

2π in

k2 cos θin
Pm
n (cos θin) eimφin e−ikz cos θin

for z < 0. The result (B.5) follows after multiplication by the appropriate normaliza-
tion constant. It can be shown that the same result is also true for −n ≤ m ≤ 0.

Next, we consider an integral required in section 4.3. We have

−
∫

z2=ℓ

[
Ωm

n

∂Ψ

∂z2
− Ψ

∂Ωm
n

∂z2

]
dx2 dy2

= eiλ(ℓ−z1)

∫ ∞

−∞

∫ ∞

−∞

exp (ikT · q21)

[
−iλΩm

n +
∂Ωm

n

∂z2

]

z2=ℓ

dx2 dy2,

where Ψ = exp (iK · R21). Using

DzΩ
m
n = (2n + 1)−1{(n−m + 1)Ωm

n+1 − (n + m)Ωm
n−1}

and (B.7) thrice gives the integral’s value as

(B.8)
2π

kα
ei(α−λ)(z1−ℓ) in−1(λ + α)Pm

n (cos θin) eimφin ,

where we have also used (2n + 1)tPm
n (t) = (n−m + 1)Pm

n+1(t) + (n + m)Pm
n−1(t).

Appendix C. The Lloyd–Berry formula. Recall the formula (1.6). From
(4.6) and Y 0

n (r̂) =
√

(2n + 1)/(4π)Pn(cos θ), we obtain

f(θ) = −
√

4π

∞∑

n=0

√
2n + 1ZnY

0
n .

Then, the linearization formula (A.4) gives

(C.1) [f(θ)]2 =

∞∑

n=0

∞∑

ν=0

∑

q

T (n, ν; q)Pq(cos θ),
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where

T (n, ν; q) =
√

4π(2n + 1)(2ν + 1)(2q + 1)ZnZν G(n, 0; ν, 0; q).

Hence,

(C.2) −[f(π)]2 + [f(0)]2 =

∞∑

n=0

∞∑

ν=0

∑

q

T (n, ν; q) {1 − (−1)q}.

For the integral term in (1.6), we use (C.1) and

(C.3)

∫ π

0

1

sin (θ/2)

d

dθ
Pq(cos θ) dθ = −

∫ 1

−1

√
2

1 − x
P ′
q(x) dx = (−1)q − 1 − 2q.

(The last equality was obtained as follows. From [8, equation 7.225(1)], we have

2

2n + 1

1√
1 + x

{Tn(x) + Tn+1(x)} =

∫ x

−1

1√
x− t

Pn(t) dt

= 2(−1)n
√

1 + x + 2

∫ x

−1

√
x− t P ′

n(t) dt,

after an integration by parts, where Tn(cos θ) = cosnθ is a Chebyshev polynomial,
and we have used Pn(−1) = (−1)n. Now, differentiate this formula with respect to x
and then let x → 1, using Tn(1) = 1 and T ′

n(1) = n2.) Substituting (C.1), (C.2), and
(C.3) into (1.6) gives

(C.4) δ2 = −8π2

k4

∞∑

n=0

∞∑

ν=0

∑

q

q T (n, ν; q),

which is the same as (4.33).
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