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Abstract. A nominally straight crack of finite length is subjected to plane-
strain loadings. A perturbation method is developed for calculating the
stress-intensity factors, based on an asymptotic analysis of the governing
hypersingular boundary integral equation for the crack-opening displace-
ment. Comparisons with a recent paper by Ballarini and Villaggio are
made.
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1. Introduction. Consider a nominally straight crack under plane-strain
loading. The problem is to calculate the stress-intensity factors, correct to
first order in €, where the perturbed crack is defined by

y=cflx), —1<az<l; (1)

here, x and y are Cartesian coordinates, f is a given function and ¢ is a
small parameter.

In a previous paper (Martin, 2000; henceforth, we denote this paper
by M), we solved the plane-strain problem for a slightly curved crack, using
integral-equation methods. We began by reformulating the boundary-value
problem as a boundary integral equation; we chose to use a hypersingu-
lar integral equation for the crack-opening displacement (COD). Next, we
parametrised the curve defining the crack, leading to a one-dimensional hy-
persingular integral equation on a finite interval. Then, we introduced (1),
leading to a sequence of hypersingular integral equations for each term in
the regular expansion of the COD in powers of €. Each integral equation
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can be solved exactly. Each is of the form Hu = b, where b(x) is known
and the operator H is defined by

(Hu) (zo) = lj[l ﬂdx, —1<zy<1. (2)

T J_ 1 (x — x0)?

Each has to be solved for u(z), —1 < z < 1, subject to u(l) = u(—1) =
0. The easiest way to do this is to use Chebyshev polynomials of the
second kind, U, (z), defined by U,,(cos #) = [sin (n + 1)6]/ sin 8; for example,
Uo(z) = 1, Uy(z) = 22 and Us(x) = 42* — 1. Then, if

b(I) = Z bn Un(), (3)

the unique solution of Hu = b (with u(1) = u(—1) = 0) is given by

u(@) = —V1—a2 Y (n+1)"b, Upn(2). (4)

This approach is especially convenient when b(z) is a polynomial.

In M, we gave results for quadratic cracks (defined by f(z) = ag +
a1+ azx?) correct to second order in €, and we showed agreement with the
known exact solution for a circular-arc crack under constant loads. The
basic method is systematic, it permits non-uniform loadings, and it has
been exended to three-dimensional problems for “wrinkled penny-shaped
cracks” (Martin, 2001).

In a recent paper, Ballarini and Villaggio (2006; henceforth, we de-
note this paper by BV) have also considered the plane-strain problem for
a slightly curved crack. They assume uniform loading and give results to
first order only. They also begin with an integral-equation formulation, but
choose Cauchy-singular integral equations with dislocation components as
unknowns; these are tangential derivatives of the COD components. To
solve their equations, they use power series multiplied by an appropriate
square-root factor. (This is analogous to replacing U, (z) in (4) by a™.)
Many singular integrals are evaluated analytically (see p. 63 of BV), and
then the integral equations yield systems of linear algebraic equations for
the coefficients in the power-series expansions. These are solved and expres-
sions for the stress-intensity factors are obtained; we shall see that these
contain errors. Notice that the method in M avoids linear systems: this is
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a major benefit of using orthogonal polynomials. The method in M also
provides higher-order approximations in a systematic manner.

In the next section, we give results when f is a cubic polynomial. Com-
parisons with BV are made in Section 3.

2. An example: cubic cracks. Consider a cubic crack, defined by
f(x) = ag + a17 + axa® + aza’®, (5)

under uniform loading; here, ag, a1, as and az are constants. The traction
components in M(14) are t) = Bty and t}(xg) = —B7i1f'(x0), where i =
1,2, —7;; are the components of the constant stress field at infinity, B =
2(1 —v)/u, v is Poisson’s ratio and p is the shear modulus.

Our goal here is to calculate the stress-intensity factors, correct to
first order in €. As in M, we expand the crack-opening displacement
(1, Us), writing u; = u) + eu} + ---. We have Hu) = ¥ so that u)(z) =
— B2V 1 — 22, the solution for a straight crack (¢ = 0). Then, Hu} = b},
where b and b} are given by the two formulas at the bottom of p. 323 of M,
involving the function S},. We have

x)— f(z , ,
sty =2 IO 20 iy - pia) = —ag(o - o)
r — Xy
using (5), giving
b%(]’o) =—-B {3&37’11&1?3 + 2a9m1120 + Q1711 + %agTQQ}

=B {%@37'11(]2(1‘0) + asm11Ur (20)
+ [((u + %ag) 11 + %agrgg} Uo(f/Uo)}
by(x9) = —B1is {3asx] + 2asx0 + a1 + 3a3}
= — B { Ja3Us(0) + asU1(w0) + (a1 + Faz) Up(o) } -

Use of (3) and (4) then gives

ui(z) = B {(asx® + asx + a1)m11 + Las(mi1 + m0) } V1 — 22,
us(z) = Brio (a3x2 + asx + a; + a3) V1— 22

The stress-intensity factors, K and Ks, are defined by M(16) as

up(r) ~ —BK1\/2p and w(z) ~—BKs\/2p asp—0, (6)
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where p = /(1 — )2+ &2[f(1) — f(x)]? is distance from the edge at x = 1,
and u, and u; are the normal and tangential components, respectively, of
the COD. Near x = 1, as on p. 325 of M, we have

Uy ~ ud +e{us —ulf'(1)} ~ =By/2(1 — 2){ms — £(2a; + 3as + 5a3) 712}
and
e~y + efug +upf'(1)}
~ —B\/ 2(1 — Z‘){Tlg -+ 6{(@1 -+ 2(12 + ga;;)ng — (CL1 + ao + %CL:;)TH]}.
We now compare these expressions with (6), noting that /p ~ /1 —z,
giving
Ky = 12y — £(2a1 + 3ag + 5a3) 712, (7)
Kg =Tio+¢ {(a1 + 2&2 + gag)TQQ — (Cll + ag + %(13)7'11} s (8)

correct to first order in €.

3. Comparison with Ballarini and Villaggio. In BV, the authors
define their crack by

(X)) = A X + A X2+ A3X?, 0< X <1,

and then calculate the stress-intensity factors near the edge at X = 0. We
introduce a linear change of variables, mapping X =0tox =1and X =1
tox =—1;thus X = (1 —2)/2, 2 =1—-2X and

y= %Al + %Az + %Ag - (%A1 + %Az + %A.‘s) T+ (iAz + %As) z? — %A:ﬂg-

In this formula, the coefficient of 2™ equals €a,, in (5). Substituting in (7)
and (8) gives

Ky =m0+ %7'12 (2A1 + %AQ + %As) ) (9)
K2 = T12 + %7'11 (Al + %AQ + %AS) + %7—22 <_A1 + %A?)) . (10)
These should be compared with equations (5.4a,b) of BV, namely

KFV = Tog — T12 (2A1+%A2+§A3) ’ (1)
KV =mip — 1 (AL + 342) — 72 (= A1+ §45) - (12)
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For quadratic cracks, A3 = 0, and then these formulas agree apart from
a consistent factor of —% in all the first-order terms. This is an error in
(11) and (12). We know this because (9) and (10) give the correct results
for shallow circular-arc cracks; see Section 6 of M, where agreement to
second order is also shown. Ballarini and Villaggio also compare with the
circular-arc crack but their comparison contains errors. First, they used
y(X) = 2aX (1 — X) whereas they should have used y(X) = —2aX (1 - X)
when comparing with Cotterell and Rice (1980). Second, the parameter «
is related to the geometry. Thus, the crack subtends an angle of 2« at the
centre of the circle, and y(5) = —3a, so that Figure 2a in BV is incorrect.

The terms involving Az in (9)—(12) show some differences. We have not
checked these because the calculations in BV are complicated: our use of
orthogonal polynomials means that we do not have to solve any systems of
linear algebraic equations.

In conclusion, our method (Martin, 2000) is preferable to the method of
Ballarini and Villaggio (2006) because it is systematic, it does not require
the solution of systems of linear algebraic equations, it can give higher-
order approximations, it can be used for non-uniform loadings, and it can
be extended to certain three-dimensional problems (Martin, 2001).
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