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SUMMARY

The method of fundamental solutions is applied to the computation of stress intensity factors in linear
elastic fracture mechanics. The displacements are approximated by linear combinations of the fundamental
solutions of the Cauchy–Navier equations of elasticity and the leading terms for the displacement near the
crack tip. Two algorithms are developed, one using a single domain and one using domain decomposition.
Numerical results are given. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A variety of methods are currently available for computing stress intensity factors (SIFs) for elastic

crack problems. The SIF is a measure of the strength of the stress singularity at a crack tip, and

is useful from a mechanics perspective as it characterizes the displacement, stress and strain in the

near field around the crack tip. Additionally, the stress intensity concept is important in terms of

crack extension as critical values of the SIF govern crack initiation.

The calculation of SIFs in finite solids under arbitrary loading conditions is difficult and is

usually done through numerical approximation. Typically this is performed using finite element

methods [1, 2], boundary element methods [3, 4], or boundary collocation of crack-tip stress-

field expansions [5]. For the modelling of crack extensions, boundary-type methods have some

advantages over domain discretization methods due to the ease in extending the crack front.
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Typical boundary element methods for crack modelling rely on either Green’s functions appro-

priate for crack problems [6, 7] or by using hypersingular integral equations over the crack surfaces
[8]. A comprehensive review of SIF computation techniques can be found in Reference [9].

The method of fundamental solutions (MFS) is another boundary-type method; for reviews, with

many references, see References [10–13]. The MFS is a mesh-free method in which approximations

are expressed in terms of discrete point sources (singularities) applied outside the physical boundary

of the solid. These singularities can either have preassigned locations or their locations can be

taken as unknowns. In the case when the locations are not preassigned, the satisfaction of the

boundary conditions leads to a non-linear least-squares problem. In the case when the locations are

preassigned, the imposition of the boundary conditions may be done in a linear least-squares sense

or by simple collocation. In this paper, all singularity locations are preassigned and the boundary

conditions are imposed in a linear least-squares sense.

The MFS, being a boundary-type technique, is well-suited for dealing with crack problems

(and boundary-value problems with boundary singularities in general) for the reasons already

mentioned. Further, unlike other boundary-type methods, it avoids numerical integration which

could be potentially troublesome, especially in problems involving boundary singularities. Also, it

is very easy to implement, and, as the solution of the problem is expressed as a linear combination of

fundamental solutions it is natural (and easy) to incorporate the singular behaviour of the singularity

into this expansion. However, it should be mentioned that the MFS is not a general purpose method

and that it is only (easily) applicable to problems governed by equations for which the fundamental

solutions are known.

Recently [14], the MFS has been used for the computation of SIFs in a simple, symmetric situa-

tion, in which the loading and geometry were such that a crack on the x-axis (y = 0) opened in mode

I; the problem is symmetric about the x-axis, and so it is sufficient to treat one half of the physical

problem, giving a reduced problem for y > 0 with boundary conditions on y = 0. In Reference

[14], the usual displacement field expansions for the MFS were augmented by the mode I elastic

crack tip displacement expansions, thereby allowing the SIF to be treated as simply an additional

unknown which is determined upon solution of the least-squares system. The methodology was

successfully applied to several opening-mode fracture problems.

Here, we extend the method developed in Reference [14] to problems involving not only the

opening mode but the forward shear mode (mode II) as well. The resulting mixed-mode problem

is solved numerically using the MFS in two different formulations. The first formulation follows

the idea presented in Reference [14] of appending the usual MFS displacement field expansions

with the elastic crack tip expansions. However, numerical experiments using this approach indicate

some difficulties with deeper cracks. We therefore develop a second formulation using a domain

decomposition approach similar to that used in Reference [15] for bimaterial problems; see also

Reference [16]. We then use the developed method to calculate SIFs for a variety of crack lengths

under mixed-mode loading conditions.

We begin by formulating a plane-strain problem for an oblique edge crack in a rectangular

domain; our methods are sufficiently flexible to permit domains of other shapes, although we do

assume that the crack is straight. Two MFS formulations are described in Section 3. The simplest,

called monodomain discretization (Section 3.1), uses fundamental solutions placed outside the

physical domain together with the known singular functions for a straight (semi-infinite) crack.

We use only the leading-order singular functions, although further terms could be incorporated if

desired. In Section 3.2, an approach based on domain decomposition is developed. The problem

is split in two, using an artificial cut on which continuity conditions are enforced. This method
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is more complicated but more accurate, especially for longer cracks. Some numerical results are

presented in Section 4 with concluding remarks in Section 5.

2. GOVERNING EQUATIONS

In the absence of body forces, the governing equations of equilibrium for a homogeneous, isotropic,

linear-elastic solid are the Cauchy–Navier equations. Using the indicial tensor notation in terms of

the displacements u1, u2, the Cauchy–Navier equations, in a bounded two-dimensional domain �,

take the form [17]

(� + �)uk,ki + �ui,kk = 0, i, k = 1, 2 (1)

where � and � are the Lamé elastic constants. In the system, summation over repeated subscripts

is implied and partial derivatives are denoted by a comma. In the linear theory, the strains �i j ,

i, j = 1, 2, are related to the displacement gradients by means of �i j = (ui, j + u j,i )/2, and the

stresses �i j , i, j = 1, 2, are given by Hooke’s law �i j = ��i juk,k + 2��i j . The tractions t j , j = 1, 2

are defined in terms of the stresses as ti = �i jn j , where n1 and n2 denote the co-ordinates of the

outward normal to the boundary. Equations (1) are subject to boundary conditions

Bi [u1, u2, t1, t2] = fi on �� i = 1, 2 (2)

where �� is the boundary of �, which we assume to be piecewise smooth, and the operators

Bi , i = 1, 2, may specify displacement, traction or mixed boundary conditions.

The leading term for the two-dimensional displacement field (v1,v2) near the crack tip for plane

strain is given by Anderson [18]

vS
1 (r, �, KI, KII) =

KI

�

√
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[
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Here vS
1 and vS

2 are the displacement components corresponding to the axes along the crack and

perpendicular to it at the crack tip E , as shown in Figure 1; also, (r, �) are the polar co-ordinates

situated at the crack tip, corresponding to the above (local) axes. The coefficients KI and KII are

the mode I and mode II SIFs, respectively, and � is Poisson’s ratio. From Figure 1, it follows that

if (x1, x2) are the horizontal and vertical co-ordinates of a point with respect to the origin O , then

x1 = a cos 	 + r cos(� + 	), x2 = a sin 	 + r sin(� + 	) (5)

and

r =
√

(x1 − a cos 	)2 + (x2 − a sin 	)2, tan(� + 	) =
x2 − a sin 	

x1 − a cos 	
(6)
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Figure 1. An oblique edge crack in a plate �. The left-hand diagram shows the local polar co-ordinates at
the crack tip, E . The right-hand diagram shows the domain decomposition, using the line EF .

Therefore, for a point with co-ordinates (x1, x2), the displacements uS1 and uS2 corresponding to

the horizontal and vertical co-ordinates with respect to the origin O are given by

uS1 (x1, x2, KI, KII) = vS
1 (r, �, KI, KII) cos 	 − vS

2 (r, �, KI, KII) sin 	 (7)

and

uS2 (x1, x2, KI, KII) = vS
1 (r, �, KI, KII) sin 	 + vS

2 (r, �, KI, KII) cos 	 (8)

In addition to the displacement field, we will also require the tractions associated with the crack-

tip stress field for implementing the MFS. The near-field stresses at the tip of a crack are given by

Anderson [18]

�11(r, �, KI, KII) =
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where the local crack-tip co-ordinates (r, �) are related to the global (x1, x2) co-ordinates via (6).

Given a local normal vector (n1, n2) in the (x1, x2) co-ordinates, the components of the traction

vector (t1, t2) in the (x1, x2) co-ordinates are then given by

t1(x1, x2, KI, KII) = �11(n1 cos
2 	 + n2 sin 	 cos 	) + �22(n1 sin

2 	 − n2 sin 	 cos 	)

+ �12(−n1 sin 2	 + n2 cos 2	) (12)

t2(x1, x2, KI, KII) = �11(n1 cos 	 sin 	 + n2 sin
2 	) + �22(−n1 cos 	 sin 	 + n2 cos

2 	)

+ �12(n1 cos 2	 + n2 sin 2	) (13)

3. MFS FORMULATIONS

3.1. Monodomain discretization

In this formulation, the displacements at a point P in region �, are approximated by u1N , u2N as

linear combinations of fundamental solutions and expressions (3) and (4):

u1N (K N
I , K N

II , a,b,Q; P) = uS1 (x1P , x2P , K N
I , K N

II )

+
N
∑

j=1

a jG11(P, Q j ) +
N
∑

j=1

b jG12(P, Q j ) (14)

u2N (K N
I , K N

II , a,b,Q; P) = uS2 (x1P , x2P , K N
I , K N

II )

+
N
∑

j=1

a jG21(P, Q j ) +
N
∑

j=1

b jG22(P, Q j ) (15)

and the tractions are approximated accordingly [15]. Here, (x1P , x2P ) denote the co-ordinates of the

point P . The 2N -vector Q contains the co-ordinates of the N singularities surrounding region �,

while a= (a1, a2, . . . , aN ) and b= (b1, b2, . . . , bN ) are vectors containing unknown coefficients.

Also, K N
I , K N

II are the (unknown) approximations to the SIFs KI and KII. The functions G11, G12,

G21 and G22 are the fundamental solutions of the system (1). For a singularity located at Q acting

on P they are (see, for example, References [19, 17])

G11(P, Q) = −
1

8��(1 − �)

[

(3 − 4�) log rPQ −
(x1P − x1Q )2

r2PQ

]

(16)

G12(P, Q) = G21(P, Q) =
1

8��(1 − �)

[

(x1P − x1Q )(x2P − x2Q )

r2PQ

]

(17)
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G22(P, Q) = −
1

8��(1 − �)

[

(3 − 4�) log rPQ −
(x2P − x2Q )2

r2PQ

]

(18)

where rPQ =
√

(x1P − x1Q )2 + (x2P − x2Q )2 and (x1Q , x2Q ) are the co-ordinates of the

point Q.

In the linear least-squares MFS, the co-ordinates of the singularities Q j are prescribed. If

the boundary of � is denoted by �� = AB ∪ BC ∪ CD ∪ DA (see Figure 1), these are

located on a pseudoboundary ��̃, similar to �� and at a distance e from it. The pseudobound-

ary does not contain a crack. A set of points {Pi }Mi = 1 is selected on �� ∪ OE . In particu-

lar, we take MAB , MBC , MCD and MDA uniformly distributed points on the segments AB,

BC , CD and DA, respectively. Finally, MOE points are placed on OE , thus MAB + MBC +
MCD + MDA + MOE = M . Also, NAB , NBC , NCD and NDA singularities are placed on seg-

ments parallel to AB, BC , CD and DA, respectively. Thus NAB + NBC + NCD + NDA = N .

The 2N + 2 coefficients a, b, K N
I and K N

II are determined from the satisfaction of the boundary

conditions:

B1[u1N , u2N , t1N , t2N ](K N
I , K N

II , a,b,Q; Pi ) = f1(Pi )

B2[u1N , u2N , t1N , t2N ](K N
I , K N

II , a,b,Q; Pi ) = f2(Pi ), i = 1, 2, . . . , M
(19)

System (19) is a linear system of 2M equations in 2N + 2 unknowns. In this study, we choose

M > N + 1 and the resulting system is overdetermined. This system is solved in a least-squares

sense using the NAG [20] routine F04AMF which uses a QR factorization and iterative refinement.

3.2. Domain decomposition

The domain � is now subdivided into two subdomains �1 and �2 as shown in Figure 1. The

displacements u
(ℓ)
1N

, u
(ℓ)
2N

at a point P in region �ℓ, ℓ= 1, 2, are approximated by

u
(ℓ)
1N

(K N
I , K N

II , a(ℓ),b(ℓ),Q(ℓ); P) = uS1 (x1P , x2P , K N
I , K N

II )

+
N
∑
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a
(ℓ)
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j ) +
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∑
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b
(ℓ)
j G12(P, Q

(ℓ)
j ) (20)

u
(ℓ)
2N

(K N
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II , a(ℓ),b(ℓ),Q(ℓ); P) = uS2 (x1P , x2P , K N
I , K N

II )

+
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∑
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(ℓ)
j G21(P, Q

(ℓ)
j ) +

N
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b
(ℓ)
j G22(P, Q

(ℓ)
j ) (21)

with the tractions approximated accordingly.

From Figure 1, it is clear that �1 has boundary ��1 = OE ∪ EF ∪ FC ∪ CD ∪ DO . The

singularities Q1
j are located on a pseudoboundary ��̃1, similar to ��1 and at a distance e from

it. A set of points {P1
i }M1

i = 1 is selected on ��1. In particular, we take MOE , MEF , MFC , MCD

and MDO uniformly distributed points on the segments OE , EF , FC , CD and DO , respectively.
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Similarly, the singularities {Q1
j }
N1

j = 1 are placed on ��̃1 accordingly, by taking NOE , NEF , NFC ,

NCD and NDO uniformly distributed singularities on segments parallel to OE , EF , FC , CD and

DO , respectively. Clearly, M1 = MOE + MEF + MFC + MCD + MDO and N1 = NOE + NEF +
NFC + NCD + NDO .

In a similar fashion, the singularities Q2
j are located on a pseudoboundary ��̃2, similar to

��2 = OE ∪ EF ∪ FB ∪ BA ∪ AO and at a distance e from it. In particular, a set of points

{P2
i }M2

i = 1 is selected on ��2, and the singularities {Q2
j }
N2

j = 1 are placed on ��̃2 with, analogously

to �1, M2 = MOE + MEF + MFB + MBA + MAO and N2 = NOE + NEF + NFB + NBA + NAO .

The total number of boundary points is therefore M1 + M2 and the total number of singularities

is N1+N2. We impose the boundary conditions (19) on the segments OE, FC,CD and DO in �1

and on the segments OE, FB, BA and AO in �2. On the interface EF we impose the continuity

conditions

u
(1)
jN

= u
(2)
jN

and t
(1)
jN

+ t
(2)
jN

= 0, j = 1, 2 (22)

We thus have 2M1 + 2M2 equations in the 2N1 + 2N2 + 2 unknowns a(ℓ),b(ℓ), ℓ= 1, 2 and

K N
I , K N

II . If we take M1 + M2 > N1 + N2 + 1 the resulting system is overdetermined and, as

before, is solved using the NAG routine F04AMF.

3.3. Implementational considerations

In all the examples considered in this study, for simplicity, in the monodomain case, we took

MAB = MCD = MOE =m and MBC = MDA = 2m and thus M = 7m. Similarly, we took NAB =
NCD = n and NBC = NDA = 2n and thus N = 6n. Thus we need to solve a linear system of

14m equations in 12n + 2 unknowns. Similarly, in the domain decomposition formulation, we

took MOE = MEF = MFC = MCD = MDO = MFB = MBA = MAO =m and NOE =NEF =NFC =
NCD = NDO = NFB = NBA = NAO = n. Thus M1 = M2 = 5m, N1 = N2 = 5n and we need to solve

a linear system of 20m equations in 20n + 2 unknowns.

Our goal is the evaluation of the quantities K N
I and K N

II . In each problem we considered we

took a sequence of values of e, namely e= 0.01+0.01
, 
= 1, . . . , 199 so that 0 < e�2. For each


, we calculated K N
I

(
)
and K N

II

(
)
. We also calculated the quantities

R(
) =
√

[(K N
I

(
+1) − K N
I

(
)
)/K N

I

(
)]2 + [(K N
II

(
+1) − K N
II

(
)
)/K N

II

(
)]2

The optimal values of K N
I and K N

II were chosen to be those for which the value of R(
) was

minimal. In the case of perpendicular edge cracks (	= 0), we only considered K N
I

(
)
.

4. NUMERICAL EXAMPLES

We consider an oblique edge crack of length a in a rectangular sheet of width b as shown in

Figure 1. The crack angle is 	. The governing equations are the equilibrium equations (1), subject
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Figure 2. Comparison of KI using the monodomain discretization for various values of a/b.
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Figure 3. Comparison of KI using domain decomposition for various values of a/b.
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Table I. Values of e optimizing R(
) in Example 1.

m, n e= 0.1 e= 0.2 e= 0.3 e= 0.4 e= 0.5

24, 8 0.51 0.28 0.50 0.31 0.48
36, 12 0.14 0.22 0.18 0.36 0.27
48, 16 0.12 0.18 0.25 0.31 0.26
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Figure 4. Normalized mode I stress intensity factor for 	 = 0.

to the following boundary conditions:

t1 = 0, t2 = 0 on DA

t1 = 0, t2 = 1 on CD

t1 = 0, t2 = 0 on BC

t1 = 0, t2 = − 1 on AB

t1 = 0, t2 = 0 on OE

(23)

To ensure a unique solution we also impose the following crack-tip condition:

u1 = 0, u2 = 0 at E (24)
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Figure 5. Normalized mode I and II stress intensity factors for 	 = �/8.
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Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:469–483

DOI: 10.1002/nme



STRESS INTENSITY FACTOR COMPUTATIONS 479

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4
β=0

Monodomain
Domain decomposition

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

a/b

β=π/4

K
′ I

K
′ I

K
′ I

β=π/8

Figure 7. Comparison of normalized mode I stress intensity factors, computed using the monodomain
discretization and domain decomposition methods.

4.1. Example 1. Perpendicular edge crack

In order to test the methods described in this paper, we first consider the example of a perpendicular

edge crack (	= 0) with b= 1 and c= d = b. The solution of this (symmetric) problem is known,

and is given by the following formula [21, 22]:

KI =
√

�a[1.12 − 0.231(a/b) + 10.55(a/b)2 − 21.72(a/b)3 + 30.39(a/b)4]

Clearly, by symmetry, KII = 0.

We solved this problem using both the monodomain and the domain decomposition discretiza-

tions for different values of m and n and a variety of crack lengths a. In Figures 2 and 3 we

present some results for K N
I for the monodomain and the domain decomposition discretizations,

respectively. The approximations in the monodomain discretization are accurate for smaller values

of the crack lengths a whereas the approximations in the domain decomposition discretization are

accurate for all values of a considered.

In Table I, we present the values of e giving the optimal values of R(
) for various num-

bers of degrees of freedom and different crack lengths in the case of the domain decomposition

discretization.
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Figure 8. Comparison of normalized mode II stress intensity factors, computed using the monodomain
discretization and domain decomposition methods.

4.2. Example 2. Oblique edge crack

We considered the case of a crack at an angle 	, with b= 1, c= 3b/2 and d = b. In particular,

we considered the angles 	 = 0, �/8 and �/4. For comparison purposes we shall be presenting

the normalized values K ′
I = K N

I /
√
a� and K ′

II = K N
II /

√
a�. In Figures 4–6 we present the domain

decomposition computed values of K ′
I and K

′
II for three sets ofm and n, for a = 0.1, 0.2, 0.3, 0.4, 0.5

and 0.6, for the cases 	 = 0, 	 = �/8 and 	 = �/4, respectively. These results indicate consistency

for various numbers of degrees of freedom. Further, the results for a = 0.3, 0.4, 0.5 and 0.6 are in

excellent agreement with the results of Wilson, as given in Reference [4, Figure 6.21] (results for
a < 0.3 are not given in Reference [4]).

Also, in Figures 7 and 8, we compare the results obtained with the monodomain and the domain

decomposition discretizations for the case when m = 48, n = 16, for K ′
I and K ′

II, respectively. The

two sets of results agree for smaller values of a and, as in Example 1, the monodomain discretization

suffers from loss of accuracy as a increases. It should be mentioned that in the case a = 0.1

for m = 48, n = 16, in some instances, in the domain decomposition discretization, the iterative

refinement used in the least-squares method failed to converge, indicating that the coefficient matrix

in the MFS system is too ill-conditioned. This problem was overcome by reducing the number of

sources used.

Finally, in Figure 9 we present the variation of K ′
I and K ′

II with the distance e of the pseudobound-

ary from the boundary in the domain decomposition discretization. This behaviour is typical of

both methods considered.
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Figure 9. Variation of normalized mode I and II stress intensity factors with e.

5. CONCLUDING REMARKS

Two applications of the MFS have been described, in the context of plane-strain elastostatics. Both

are applicable to straight edge cracks in bounded regions; the outer boundary can have any shape.

The main virtue of the first method (monodomain discretization) is its simplicity: the basic MFS

is augmented by a singular function to take account of the crack-tip singularity. The method was

shown to give good results for short cracks. This result can be explained as follows. The crack

opening displacement (the discontinuity in the vector (u1, u2) across the crack) is represented by

4(1 − �)

�

√

r

2�
(KII cos 	 − KI sin 	, KII sin 	 + KI cos 	) for 0 < r < a

this approximation is only expected to be accurate near r = 0. Increasing N (the number of fun-

damental solutions) will not lead to improvements because any linear combination of fundamental

solutions will be continuous across the crack. Of course, we could augment the approximations with

additional higher-order crack-tip solutions (proportional to rn+1/2 with n = 1, 2, . . .) but this would

make the method more complicated. Thus, the simplest monodomain discretization, as described

in this study, should only be used for short cracks.

The second method utilized domain decomposition. Such splitting (sometimes called ‘stitching’)

has been used before for crack problems, using boundary element methods [23, 24]. As a result,

the crack has two faces, and the displacement near one face (in �1, say; see Figure 1) can be

represented by fundamental solutions near the other face (in �2): the numerical approximation

can be improved by increasing N . Consequently, better results are obtained, especially for longer

cracks.
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In the present study, in order to demonstrate its applicability, the MFS is applied to test prob-

lems from the literature. However, the method could be applied to more complicated geometries

and problems with multiple cracks of various shapes. Further extensions are feasible, including

straight cracks with two tips and anisotropic media. Additional internal boundaries can also be

treated without difficulty; applications to cracks starting from holes are of interest. Furthermore,

applications to Signorini-type problems are envisaged, in which crack faces may come into contact

along part of their length as the loading is changed. Some of these extensions are currently under

consideration.
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