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On the T-matrix for scattering by small obstacles
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Abstract

Acoustic scattering by bounded obstacles is considered, in both two and three dimensions. Relations between the T-matrix and

the far-field pattern are derived, and then used to obtain new approximations for the T-matrix for small obstacles. The problem of

scattering by a pair of small sound-soft circular cylinders is also solved, in the Rayleigh approximation, using bipolar coordinates.
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1. Introduction

Consider the scattering of acoustic waves by a bounded, three-dimensional obstacle, B. Choose an origin O inside

B, and let C denote the smallest sphere that is centred at O and encloses B. If we know the T-matrix for B, we can

calculate the scattered field outside C for any given incident field. Similarly, if we know the far-field pattern, f, we can

also calculate the scattered field outside C, but only for the incident field that generated the far-field pattern via the

scattering process: f depends on the direction of observation and on the choice of incident field.

Evidently, we can calculate the far-field pattern from the T-matrix. However, we can also calculate the T-matrix

from the far-field pattern, provided we know f for all directions of observation and for all directions of incidence when

the incident field is a plane wave. This simple observation means that we can use known results for low-frequency

scattering of plane waves to obtain expressions for the T-matrix of small scatterers.

The main utility of these results occurs with multiple-scattering problems, where waves interact with two or (many)

more obstacles [10]. Such problems are often treated using T-matrix methods. Note that the basic ideas are not limited

to problems of acoustics, but may be generalised to electromagnetic and elastodynamic problems.

Although most of the paper is concerned with three-dimensional problems, we also discuss two-dimensional prob-

lems in Section 6. These problems are more complicated because low-frequency approximations are more difficult to

obtain. In an appendix, we also obtain such an approximation for a pair of sound-soft circular cylinders, using bipolar

coordinates.
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2. Formulation

Suppose that the scatterer B has surface S. Suppressing a time dependence of e−i�t , the total field u satisfies the

Helmholtz equation,

(∇2 + k2)u = 0,

in the unbounded region outside S, where k = �/c and c is the constant sound speed. We write u = uin + usc, where

uin is the known incident field and usc is the unknown scattered field. We require that usc satisfies the Sommerfeld

radiation condition at infinity. Consequently,

usc(r) ∼ f (r̂)h0(kr) as r → ∞,

where r = |r|, r̂ = r/r is a unit vector in the direction of observation (from O towards P, the point with position vector

r with respect to O), hn(kr) ≡ h
(1)
n (kr) is a spherical Hankel function, and f (r̂) is known as the far-field pattern. Note

that h0(kr) = eikr/(ikr).

For direct problems, one is often interested in calculating f. For inverse problems, one often starts with f and then

tries to say something about the scatterer. It is well known that if one knows f (r̂) for all r̂ ∈ � (the unit sphere), then

one can reconstruct usc(r) everywhere outside the escribed sphere C; this sphere has radius rc. Explicitly, we have the

Atkinson–Wilcox theorem,

usc(r) = h0(kr)

∞
∑

n=0

fn(r̂)

rn
for r > rc, (1)

where f0 ≡ f . For n=1, 2, . . ., fn is obtained by applying a second-order differential operator (essentially, the angular

part of the Laplacian) to fn−1. In principle, Eq. (1) can be used to continue usc from the far field to the near field.

3. The T-matrix and the far-field pattern

Outside the described sphere C, we have the expansion

usc(r) =
∑

n,m

cm
n hn(kr)Ym

n (r̂), r > rc, (2)

where Ym
n is a spherical harmonic and

∑

n,m

=
∞
∑

n=−∞

n
∑

m=−n

.

We use normalised complex-valued spherical harmonics, so that

Ym
n = (−1)mY−m

n

and
∫

�
Ym

n Y
�
� d� = �n��m�, (3)

where the overbar denotes complex conjugation. Using hn(x) ∼ (−i)nh0(x) as x → ∞, we have

f (r̂) =
∑

n,m

(−i)ncm
n Ym

n (r̂). (4)

For the incident field, we have the expansion

uin(r) =
∑

n,m

dm
n jn(kr)Ym

n (r̂), (5)
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where jn is a spherical Bessel function. This expansion holds in some ball centred at O. The coefficients dm
n in Eq. (5)

are known. In particular, for an incident plane wave,

uin(r) = exp(ikr · �̂),

and then we have

dm
n = 4�inYm

n (�̂), (6)

here �̂ is the direction of incidence.

The T-matrix relates the coefficients in Eqs. (2) and (5)

cm
n =

∑

�,�

T
m�
n� d

�
� . (7)

For properties of the T-matrix, see [14]. The T-matrix can be computed in various ways, such as by solving boundary

integral equations [9].

For an incident plane wave, with the corresponding far-field pattern denoted by f (r̂; �̂), Eqs. (4), (6) and (7) give

f (r̂; �̂) = 4�
∑

n,m

∑

�,�

i�−nT
m�
n� Ym

n (r̂)Y
�
� (�̂). (8)

Then, using the orthonormality relation, Eq. (3), twice, we obtain

T
m�
n� = in−�

4�

∫

�

∫

�
f (r̂; �̂)Ym

n (r̂)Y
�
� (�̂) d�(r̂) d�(�̂). (9)

This formula is exact. It can be found in [3]. It may be used to continue usc from the far field to the near field; cf.

Eq. (1).

4. Small soft scatterers

As a simple example, consider Rayleigh scattering by a small sound-soft obstacle (so that u = 0 on S). Then, it is

known that (see, for example, [4])

f (r̂; �̂) = −ikC + O(k2) as k → 0,

where the constant C is the capacity of S; by definition,

C = − 1

4�

∫

S

��

�n
ds,

where �/�n denotes normal differentiation on S away from B, and the potential � solves the following problem:

∇2� = 0 outside S,

� = 1 on S,

and

� = O(r−1) as r → ∞.

Then, Eq. (9) gives the corresponding T-matrix as

T
m�
n� = −ikCym

n y
�
� + O(k2) as k → 0,

where

ym
n = (−i)n√

4�

∫

�
Ym

n d� = �n0�m0,
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using Y 0
0 = (4�)−1/2. Thus, we find that every entry of the T-matrix is O(k2) except that

T 00
00 = −ikC + O(k2) as k → 0.

Consequently, for any incident field, uin(r), we have

usc(r) ≃ T 00
00 d0

0h0(kr)Y 0
0 ,

where from Eq. (5), d0
0Y 0

0 = uin(0). Hence, we obtain the approximation

usc(r) ≃ −ikCuin(0) h0(kr). (10)

Thus, as is generally known, small soft obstacles scatter isotropically (there is no dependence on r̂), with amplitude

proportional to the value of the incident field at the scatterer’s ‘centre’, r = 0. This was the starting point for Foldy’s

famous study on multiple scattering [5]. In fact, Foldy wrote

usc(r) ≃ guin(0) h0(kr), (11)

where g is a ‘scattering coefficient’. Our asymptotic analysis gives

g = −ikC. (12)

However, energy considerations show that g must satisfy

|g|2 + Re(g) = 0, (13)

so that a better choice for g is

g = −ikC/(1 + ikC), (14)

this choice satisfies Eq. (13) and agrees with Eq. (12) as k → 0.

It is worth noting that these results all hold for two or more soft scatterers. For example, the capacitance of a pair of

spheres can be calculated exactly, using bispherical coordinates. For details, see [2].

5. Small hard scatterers

For a sound-hard obstacle, we have �u/�n = 0 on S. From [4], we have

f (r̂; �̂) = ik3

4�

{

VB(r̂ · �̂ − 1) −
∫

S

(r̂ · n)(�̂ · �) ds

}

as k → 0, with an error that is O(k4). In this formula, VB is the volume of B, n(q) is the unit normal vector at q ∈ S

pointing away from B, and the vector field � solves the following problem (see [4, Eq. (5.20)])

∇2
� = 0 outside S, (15)

��/�n = n on S, (16)

and

� = O(r−2) as r → ∞.

Now, following Dassios and Kleinman [4, p. 166], we define the virtual mass tensor W by

Wij = −
∫

S

ni	j ds = Wji , (17)

and the magnetic polarizability tensor M by

Mij = Wij + VB�ij = Mji . (18)
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(For the special case of a sphere, Mij = 3
2VB�ij .) Then, we can express the far-field pattern concisely by

f (r̂; �̂) = ik3

4�
{r̂ · M · �̂ − VB} + O(k4) as k → 0. (19)

Thus, the far field of a small hard scatterer depends linearly on both the observation direction and the incident direction,

and it is much smaller than the far field of a small soft scatterer. Of course, this result was known to Lord Rayleigh

[12].

We can use Eq. (19) to calculate the T-matrix for a small sound-hard scatterer. Substituting in Eq. (9), we find after

some calculation that the T-matrix has 10 entries that are O(k3) as k → 0:

T 00
00 = −ik3VB/(4�),

T 00
11 = ik3M33/(12�),

T 01
11 = −ik3(M31 + iM32)/(12�

√
2) = −T

−1,0
11 ,

T 10
11 = −ik3(M31 − iM32)/(12�

√
2) = −T

0,−1
11 ,

T 11
11 = ik3(M11 + M22)/(24�) = T

−1,−1
11 ,

T
1,−1

11 = ik3(M22 − M11 + 2iM12)/(24�),

T
−1,1

11 = ik3(M22 − M11 − 2iM12)/(24�).

Let us calculate the scattered field for any incident field, uin(r). We introduce a vector U with components

Uj = 1

k

�uin

�xj

evaluated at r = 0. (20)

Then, we find that d0
1 =

√
12�U3, d1

1 =−
√

6�(U1 − iU2) and d−1
1 =

√
6�(U1 + iU2). Also, as before, d0

0 =
√

4�uin(0).

We then calculate cm
n , using Eq. (7) and the approximations to the T-matrix given above. Eventually, we obtain

usc(r) ≃ ik3

4�
{r̂ · M · U h1(kr) − VBuin(0)h0(kr)}. (21)

This can be used to generalise Foldy’s method to collections of small hard scatterers.

6. Two dimensions

The analysis for two-dimensional problems is more involved. To fix ideas, let us consider scattering by a sound-soft

cylindrical obstacle with boundary S. Let B denote the interior of S and let Be denote the (unbounded) exterior of S.

The scattered field is given by

usc(r) ∼
√

2

�
e−i�/4 eikr

√
kr

f (r̂) as r → ∞, (22)

where the far-field pattern is

f (r̂) = − i

4

∫

S

�u

�nq

exp(−ikr̂ · rq) dsq . (23)

As r̂ = (cos 
, sin 
), we can write f (r̂) = f (
).

For low frequencies, we expand uin as

uin(r) =
∞
∑

n=0

(ik)nun
in(r).
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Then, near S, we have

u(r) = u0
in(r) + vs(r) + O(| log k|−1) as k → 0, (24)

where vs solves the following Dirichlet problem:

∇2vs = 0 in Be,

vs = −u0
in on S,

and

vs = O(1) as r → ∞.

The unique solution of this problem can be found by solving a boundary integral equation over S.

The result Eq. (24) is given in [8], for example. However, for an incident plane wave,

uin = eikr cos(
−�), (25)

we have u0
in = 1 and vs = −1, so that the leading term in Eq. (24) gives a zero contribution to the integral in

Eq. (23): therefore, we have to determine the term of order | log k|−1. We do this next, using the results of Kleinman and

Vainberg [7].

6.1. Kleinman–Vainberg theory

Kleinman and Vainberg [7] have given a systematic method for obtaining low-frequency asymptotic expansions in

two dimensions for the following problem:

(∇2 + k2)v = F in Be, Bv = 0 on S

and v satisfies the Sommerfeld radiation condition as r → ∞.

Here, Bv denotes v or �v/�n, and F has compact support. We shall refer to this problem as the K–V problem.

Our scattering problems can be formulated as

(∇2 + k2)usc = 0 in Be, Busc = −Buin on S

and usc satisfies the Sommerfeld radiation condition as r → ∞.

Let us convert this problem into the K–V problem. Choose c so that B is contained inside the disc r < c. Let � be a

C∞ cut-off function, so that � = 0 for r > 2c and � = 1 for 0�r < c. Put usc = −uin� + v. Then, v solves the K–V

problem with

F = (∇2 + k2)(uin�) = uin∇2� + 2 grad � · grad uin.

Note that the total field

u = usc + uin = (1 − �)uin + v,

so that v is the total field near S (r < c) but v is the scattered field far from S (r > 2c).

The results of [7] assume that F does not depend on k, so we write

F(r) =
∞
∑

n=0

(ik)nFn(r),

where

Fn = un
in∇2� + 2 grad � · grad un

in. (26)



P.A. Martin / Journal of Computational and Applied Mathematics 204 (2007) 219 – 230 225

We write vn for the solution of the K–V problem with F = Fn, so that

v(r) =
∞
∑

n=0

(ik)nvn(r). (27)

We are going to approximate vn near S using solutions of related static problems. The results are different depending

on the boundary condition on S. Therefore, we now consider soft and hard cylinders separately.

6.2. Small sound-soft cylinders

Consider the following uniquely solvable problems,

∇2un
0 = Fn in Be,

un
0 = 0 on S,

and

un
0 = O(1) as r → ∞

and

∇2u1 = 0 in Be,

u1 = 0 on S,

and

u1 = log(r/ℓ) + o(1) as r → ∞. (28)

Here, the constant ℓ is unknown, but it is to be determined by solving the problem for u1 with the specified logarithmic

growth at infinity. (In [7], there is a parameter 0 = − log ℓ.) Also, let � be the complex constant occurring in the

asymptotic approximation

H
(1)
0 (w) = (2i/�)(log w − �) + O(w2 log w) as w → 0,

where H
(1)
n is a Hankel function; thus, � = log 2 − � + i�/2 where � = 0.5772 . . . is Euler’s constant. Then [7,

Theorem 1], near S,

vn(r) = un
0(r) + Cn

0 u1(r)

log kℓ − �
+ O(k2 log k) as k → 0,

where Cn
0 = limr→∞ un

0(r). It follows from Eq. (27) that we only need v0 here. Then, the far-field pattern is given by

Eq. (23) as

f (
) = − i

4

∫

S

�v0

�nq

dsq + O(k) as k → 0. (29)

For a plane wave, given by Eq. (25), u0
in ≡ 1 and F0 = ∇2�. Thus u0

0(r) = �(r) − 1, which is constant (in fact, zero)

near S, and so (as expected) the leading term does not contribute to Eq. (29). The next term then gives

f (
; �) = − i

4

C0
0

log kℓ − �

∫

S

�u1

�nq

dsq + O(k) as k → 0. (30)

However, we have C0
0 = limr→∞ u0

0 = −1 and Green’s theorem gives

∫

S

�u1

�nq

dsq = lim
r→∞

∫ 2�

0

�u1

�r
r d
 = 2�.
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Hence, Eq. (30) reduces to

f (
; �) = 1
2�i (log kℓ − �)−1 + O(k) as k → 0. (31)

The parameter ℓ can be obtained explicitly for simple shapes. For a circle of radius a, u1 = log(r/a) and so ℓ = a.

For an ellipse, we can use elliptic cylindrical coordinates, (�, �), defined by x = c0 cosh � cos � and y = c0 sinh � sin �,

giving u1 = � − �0 (where � = �0 defines S); then it follows that

ℓ = 1
2c0 e�0 = 1

2 (a + b).

The corresponding low-frequency approximation for scattering by a soft elliptic cylinder can be found in [11, Eq. (48a)]

and [1, Section 3.2.1.2].

We can also calculate ℓ for a pair of sound-soft circular cylinders, using bipolar coordinates; see Appendix A for

details.

We can use Eq. (31) to calculate the T-matrix. In two dimensions, the analogues of Eqs. (8) and (9) are

f (
; �) =
∞
∑

n=−∞

∞
∑

m=−∞
(−i)nimTnmein
e−im�

and

Tnm = in(−i)m

(2�)2

∫ �

−�

∫ �

−�
f (
; �) e−in
eim� d
 d�, (32)

respectively. Substituting in Eq. (32), we find that

T00 = 1
2 i�(log kℓ − �)−1 + O(k) as k → 0;

all other entries Tnm are asymptotically smaller. Consequently, for any incident field uin(r), we obtain

usc(r) ≃ 1
2 i�(log kℓ − �)−1uin(0)H

(1)
0 (kr). (33)

Again, we see that small soft cylinders scatter isotropically.

6.3. Small sound-hard cylinders

For scattering by a sound-hard cylinder, the far field is given again by Eq. (22) with the far-field pattern now given

by

f (r̂) = k

4

∫

S

u(q)[r̂ · n(q)] exp(−ikr̂ · rq) dsq . (34)

Then, for low-frequency approximations, we are led to consider the following uniquely solvable problems,

∇2wm = Fm in Be,

�wm

�n
= 0 on S,

and

wm = �m(log r − �) + o(1) as r → ∞,

where

�m = 1

2�

∫

Be

Fm dV .
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Then [7, Theorem 2], near S,

vn(r) = �n log k + wn(r) + O(k2 log3k) as k → 0.

For a plane wave, u0
in ≡ 1 and u1

in(r) = r · �̂. Then, Eq. (26) gives F0 = ∇2� and F1 = ∇2(�r · �̂). Hence,

2��0 =
∫

Be

∇2� dV = −
∫

S

��

�n
ds = 0

and

2��1 = −
∫

S

�

�n
{�r · �̂} ds = −

∫

S

n · �̂ ds = 0,

where the last equality follows from an application of the divergence theorem in B, and we have used � ≡ 1 near S.

Thus,

v =
∞
∑

n=0

(ik)nvn = w0 + ikw1 + O(k2 log3k) as k → 0.

Then, as u ≡ v near S, Eq. (34) gives

f (r̂; �̂) = k

4

∫

S

[r̂ · n(q)](w0 + ikf 1) dsq + O(k3log3k) (35)

as k → 0, where f1(q) = w1 − w0 r̂ · rq .

As �0 = 0 and F0 = ∇2�, we obtain w0 = �. Then, as
∫

S
r̂ · n ds = 0, we see that the leading contribution to Eq. (35)

vanishes. As �1 = 0 and F1 = ∇2(�r · �̂), we obtain

w1(r) = �r · �̂ − �̂ · �,

where the two-dimensional vector field � is defined by Eqs. (15) and (16) and � = O(r−1) as r → ∞. It follows that

f1(q) is given by

f1(q) = rq · (�̂ − r̂) − �̂ · �(q)

and then

f (r̂; �̂) = 1
4 ik2{r̂ · M · �̂ − AB} + O(k3log3k) as k → 0, (36)

where AB is the area of B,

Mij = Wij + AB�ij = Mji

and Wij is defined by Eq. (17). Thus, the far-field pattern is given by a formula that is similar to the analogous formula

in three dimensions, namely, Eq. (19). A formula similar to Eq. (36) can be found in [6].

For a circle of radius a, Mij = 2AB�ij and then Eq. (36) reduces to

f (
; �) ≃ 1
4 i�(ka)2{2 cos(
 − �) − 1},

in agreement with the known result [1, Eq. (2.43)].

Substitution of Eq. (36) in Eq. (32) gives the T-matrix for a small sound-hard cylinder. We obtain

Tnm = 1
4 ik2{zn · M · zm − AB�n0�m0} + O(k3log3k) as k → 0,

where

zn = (−i)n

2�

∫ �

−�
r̂ ein
 d
.
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Thus,

z1 = 1
2 (−i, 1) = z−1 and zn = 0 for n �= ±1.

Hence, the T-matrix has five entries that are O(k2) as k → 0:

T00 = − 1
4 ik2AB ,

T11 = 1
16 ik2(M11 + M22) = T−1,−1,

T1,−1 = 1
16 ik2(M22 − M11 + 2iM12),

T−1,1 = 1
16 ik2(M22 − M11 − 2iM12).

Next, we calculate the scattered field for any incident field, uin(r). We have

d0 = uin(0), d1 = U1 − iU2 and d−1 = −U1 − iU2,

where U = (U1, U2) is defined by Eq. (20) with x1 = x and x2 = y, and

uin(r) =
∞
∑

n=−∞
dnJn(kr) ein
,

where Jn is a Bessel function. For the scattered field, we calculate cn =
∑

m Tnmdm and find

c0 = − 1
4 ik2ABuin(0),

c1 = 1
8 ik2(M1j − iM2j )Uj ,

c−1 = − 1
8 ik2(M1j + iM2j )Uj ,

where summation over j = 1 and j = 2 is implied. All the other coefficients cn are asymptotically smaller. Hence, the

scattered field is

usc ≃ 1
4 ik2

{

r̂ · M · UH
(1)
1 (kr) − ABuin(0)H

(1)
0 (kr)

}

. (37)

7. Conclusions

We have described a systematic method for obtaining approximations to the T-matrix, valid for small scatterers of

any shape. (The only other related results known to us are for elliptical cylinders and for spheroids in [13].) The method

generalises to penetrable scatterers and to other physical situations.

Appendix A. Scattering by a pair of small soft circular cylinders

The low-frequency asymptotic theory for the scattering of long acoustic waves by a pair of sound-soft circular

cylinders leads to the following problem: solve ∇2u1 = 0 in Be, with u1 = 0 on each cylinder, and the condition

Eq. (28) as r → ∞; the problem is to calculate the constant ℓ.

To solve ∇2u1 = 0, we use bipolar coordinates, � and ϑ, defined by

x = c sinh �

cosh � − cos ϑ
and y = c sin ϑ

cosh � − cos ϑ
,

where c is a positive constant. Hence

r2 = x2 + y2 = c2 cosh � + cos ϑ

cosh � − cos ϑ
. (A.1)
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We also have

x − iy = c coth(�/2) with � = � + iϑ. (A.2)

The line � = �0 > 0, |ϑ| < �, corresponds to the circle (x − b0)
2 + y2 = a2

0 with b0 = c coth �0 and a0 = c/ sinh �0.

Similarly, the line � = −�1, with �1 > 0 and |ϑ| < �, corresponds to the circle (x + b1)
2 + y2 = a2

1 with b1 = c coth �1

and a1 = c/ sinh �1. Let Be denote the region exterior to these two circles in the xy-plane. This region corresponds to

the rectangle

−�1 < � < �0, −��ϑ < �,

in the �ϑ-plane. Note that the origin in this plane corresponds to the point at infinity in the xy-plane: |�| ≃ 2c/r near

� = 0.

Laplace’s equation is not affected by changing to bipolar coordinates:

�2u1

��2
+ �2u1

�ϑ
2

= 0. (A.3)

As we want to solve ∇2u1 =0 in Be, we can admit only those solutions of Eq. (A.3) that are 2�-periodic in ϑ. Separated

solutions with this property are

1, �, cosh n� cos nϑ, sinh n� cos nϑ, (A.4)

cosh n� sin nϑ and sinh n� sin nϑ, where n is a positive integer.

There are also useful non-separated solutions of Eq. (A.3). One is

− 1
2 log(cosh � − cos ϑ) = L(�, ϑ),

say. This solution is 2�-periodic in ϑ and has a logarithmic singularity at � = 0, corresponding to logarithmic growth

as r → ∞; explicitly, from Eq. (A.1), we have

L = log(r/c) − 1
2 log(cosh � + cos ϑ)

∼ log r − log(c
√

2) + o(1) as |�| → 0. (A.5)

L(�, ϑ) has a Fourier series in ϑ. As

|1 − e−�| = 2 e−�(cosh � − cos ϑ),

we obtain

L(�, ϑ) = − 1
2 log |1 − e−�| + 1

2 log(2 e−�)

= − �

2
+ log

√
2 +

∞
∑

n=1

e−n�

2n
cos nϑ (A.6)

for � > 0, where we have used the real part of the formula

log(1 − e−�) = −
∞
∑

n=1

e−n�

n

(obtained by integrating the geometric series), which is valid for � > 0. As L(�, ϑ) is an even function of �, we can

replace � by |�| on the right-hand side of Eq. (A.6). Note that, as expected, the series for L(0, 0) is divergent.

Now, return to the calculation of u1, and write

u1 = L + v, (A.7)
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so that v solves Eq. (A.3), v is bounded as r → ∞, and v = −L on each cylinder. Once we have found v(�, 
),

Eqs. (A.5), (28) and (A.7) give

log ℓ = log(c
√

2) − v(0, 0).

To solve for v, we use the solutions in Eq. (A.4); they are all even in ϑ, just like L. Then, write

v(�, 
) = A0 + B0� +
∞
∑

n=1

(An cosh n� + Bn sinh n�) cos nϑ, (A.8)

so that

log ℓ = log(c
√

2) −
∞
∑

n=0

An.

To find An, we apply the boundary conditions using Eqs. (A.6) and (A.8); this gives

A0 = − log
√

2 + �0�1/(�0 + �1)

and

An = −e−n�0 sinh n�1 + e−n�1 sinh n�0

2n sinh n(�0 + �1)
, n�1.

In particular, for identical cylinders, we have �0 = �1, and obtain

log ℓ = log(2c) − �0

2
+

∞
∑

n=1

e−n�0

2n cosh n�0

.

Here, both cylinders have radius a0, and their centres are distance 2b0 apart; the parameters c and �0 are defined by

b0/a0 = cosh �0 and c =
√

b2
0 − a2

0 .
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