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a b s t r a c t

Acoustic scattering by random collections of identical circular cylinders is considered. Each

cylinder is penetrable, with a sound-speed that is close to that in the exterior: the scatter-

ing is said to be ‘‘weak”. Two classes of methods are used. The first is usually associated

with the names of Foldy and Lax. Such methods require a ‘‘closure assumption”, in addition

to the governing equations. The second class is based on iterative approximations to inte-

gral equations of Lippmann–Schwinger type. Such methods do not use a closure approxi-

mation. Our main result is that both approaches lead to exactly the same formulas for the

effective wavenumber, correct to second-order in scattering strength and second-order in

filling fraction. Approximations for the average wavefield are also derived and compared.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Understanding multiple scattering by random arrays of identical obstacles is a problem of long-standing interest. One

approach, going back to Foldy [1], begins with a deterministic model for scattering by N obstacles, which we write concisely

as

u ¼ uin þ
X

N

n¼1

Knun; ð1:1Þ

where u is the unknown wavefield, uin is the given incident field andKn is an operator. The quantity un can be viewed as the

(unknown) contribution to u coming from the scatterer centred at rn. Then, the ensemble average, hui, is calculated over all

possible configurations of the scatterers. It follows from the right-hand side of Eq. (1.1) that we have to calculate hKnuni, but

this only exists if there is a scatterer at rn: we are forced to introduce a conditional average of u. Thus, we cannot derive an

equation for hui, merely a hierarchy of equations relating various different conditional averages of u. Breaking this hierarchy

requires an additional ‘‘closure assumption”. Such assumptions are difficult to justify, in general; for an example, see [2].

For an alternative approach, suppose that we had an explicit formula for u, for any given configuration of the scatterers.

Then, we could calculate hui directly, in principle, without the use of closure assumptions. Of course, we do not have such an

explicit formula for u, but we do have explicit approximations for u, and these could be used. This idea also has a long history

(see, for example, [3] and [4, §7.4.2]).
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In this paper, we shall compare these two approaches for a simple two-dimensional, time-harmonic, acoustic problem,

where detailed explicit calculations can be made. We choose random arrays of identical penetrable circles. The number of

circles per unit area is n0. We assume that the area fraction occupied by the circles, / � pa2n0, is small, where each circle

has radius a. We also assume that the scattering is ‘‘weak”, meaning that the strength m0 ¼ 1� ðk0=kÞ
2 is small, where k

and k0 are the wavenumbers in the exterior and interior, respectively. The assumption of small n0 is common in many the-

oretical studies (the scatterers are dilute), whereas the assumption of small m0 is convenient for the derivation of good

approximations to the deterministic problem.We work to second-order in bothm0 and n0. Maurel [5] has made similar com-

parisons, but with uncorrelated ‘‘point scatterers”, meaning that each scatterer is represented by a Dirac delta function; we

are interested here in scatterers of finite size (and we do not make small-ka approximations). Comparisons with Maurel’s

results are made in Section 5.3.

One output from the analysis is a formula for the effective wavenumber, K: the averaged field hui is found to solve the

Helmholtz equation, ðr2 þ K2Þhui ¼ 0, in a fictitious ‘‘effective medium”. For small n0, formulas for K look like

K2 ’ k
2
þ n0d1 þ n2

0d2; ð1:2Þ

with explicit expressions for d1 and d2. (For references to the literature, see [6] and [7].) Foldy-type theories use his closure

assumption, they are essentially linear in n0, they assume that the scatterers are independent, and they predict that

K2 ¼ k
2
� 4in0f ð0Þ; ð1:3Þ

where f is the far-field pattern for one scatterer in isolation (see Eq. (2.7)). Also, when uin ¼ eikx,

hui ¼ AeiKx; ð1:4Þ

where Foldy theory predicts that the ‘‘amplitude”, A, is given by

A ¼ 1þ in0k
�2
f ð0Þ: ð1:5Þ

Observe that if we write A ¼ jAjeia and K ¼ Kr þ iK i, then

Refhuie�ixtg ¼ jAje�Kix cosðKrx� xt þ aÞ; ð1:6Þ

showing that the quantities j A j and K i ¼ ImK are of interest.

For one circular scatterer, we can construct the exact solution by separation of variables. This elementary calculation is

outlined in Section 2; it yields an exact formula for f ð0Þ, which can then be inserted in Eqs. (1.3) and (1.5).

For our model problem, the fluid density is constant everywhere, both inside and outside the scatterers. Consequently, the

scattering problem can be solved using the Lippmann–Schwinger integral equation (see Section 3). (This equation can also be

used when k0 is a function of position; if the density inside differs from that outside, a different integral equation must be

used [8].) Under certain circumstances, the Lippmann–Schwinger equation can be solved by iteration; we examine the first-

order (Born) approximation (linear in the strength m0) and the second-order approximation (quadratic in m0). For one cir-

cular scatterer, this is done in Section 4. We confirm that the second-order iterative approximation for the wavefield (both

inside and outside the scatterer) agrees with the second-order approximation of the exact solution.

Scattering by random arrangements of scatterers is considered in Section 5. We write down the iterative approximation

for scattering by N circles. Then, we calculate the ensemble average; we begin with first-order in both n0 and m0, and end

with second-order in both. No closure assumptions are used. At first-order in n0, we find precise agreement with the Foldy

estimate for K, Eq. (1.3), correct to second-order in m0. For the amplitude, A, we find agreement at first-order in m0 with the

Foldy estimate (given by Eq. (1.5)), but we find a discrepancy at second-order (see Eq. (5.25)).

Calculations at second-order in n0 are more difficult because one has to introduce conditional probabilities, intended to

prevent scatterers overlapping during the averaging process. We use a simple (but standard) pair-correlation function, giving

what is known as a ‘‘hole correction”, Eq. (5.13). This involves a new parameter, b, with bP 2a. Linton and Martin [6] found a

formula for d2 in Eq. (1.2), making use of the Lax quasicrystalline approximation for their closure assumption (see Section

2.3). We compare the Linton–Martin formula (approximated to second-order in m0) with our alternative approach: the

agreement turns out to be perfect. One could view this agreement as supporting either of the two approaches described

above, depending on one’s point of view. We also obtain a new estimate for A, and we verify agreement with known results

for ‘‘point scatterers” in the appropriate limit (see Section 5.3). Thus, our calculations show that good results may be ob-

tained without closure assumptions, and so such methods deserve further investigation. In particular, extensions to three

dimensions (random configurations of spheres) and to scatterers with a mass density that differs from that of the surround-

ing medium (including bubbles or rigid obstacles) should be made.

There is an extensive literature on multiple scattering by random configurations of identical obstacles. For thorough re-

views, see, for example, [7] or [9].

2. Scattering by one cylinder: exact solution

Consider one circle of radius a, centred at the origin. We have ðr2 þ k
2
Þu ¼ 0 for r > a and ðr2 þ k

2
0Þu0 ¼ 0 for r < a, where

r and h are plane polar coordinates and k and k0 are real constants. The interface conditions are u ¼ u0 and @u=@r ¼ @u0=@r on
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r ¼ a. Outside, we have u ¼ uin þ usc where uin ¼ eikx and usc satisfies the Sommerfeld radiation condition. Throughout, we

suppress a time dependence of e�ixt .

The one-cylinder problem can be solved by separation of variables. We use the expansions [6]

uinðr; hÞ ¼
X

1

n¼�1

i
n
JnðkrÞe

inh; ð2:1Þ

uscðr; hÞ ¼
X

1

n¼�1

AnZnHnðkrÞe
inh; ð2:2Þ

u0ðr; hÞ ¼
X

1

n¼�1

BnJnðk0rÞe
inh; ð2:3Þ

where Jn is a Bessel function, Hn � Hð1Þ
n is a Hankel function,

Zn ¼ ½ReDn�=Dn ¼ Z�n ð2:4Þ

and

Dn ¼ H0
nðkaÞJnðk0aÞ � ðk0=kÞJ

0
nðk0aÞHnðkaÞ: ð2:5Þ

The interface conditions yield An ¼ �i
n
and

Bn ¼ 2i
nþ1

=ðpkaDnÞ: ð2:6Þ

The far-field pattern, f ðhÞ, is defined by

usc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðpkrÞ
q

f ðhÞ expðikr � ip=4Þ as r ! 1: ð2:7Þ

Hence,

f ðhÞ ¼ �
X

1

n¼�1

Zne
inh: ð2:8Þ

2.1. Approximation for small m0

For weak scattering, k0 is close to k. To quantify this, we define the scattering strength, m0, by

m0 ¼ 1� ðk0=kÞ
2: ð2:9Þ

Then, for weak scattering, we approximate the exact solution, assuming that m0 is small. From (2.9), we obtain

k0=k ’ 1�
1

2
m0 �

1

8
m2

0 ð2:10Þ

and

Fðk0aÞ ’ FðkaÞ �
1

2
m0kaF

0
ðkaÞ �

1

8
m2

0kafF
0ðkaÞ � kaF

00
ðkaÞg ð2:11Þ

for any smooth function F. Then, some calculation gives

Dn ’ 2i=ðpkaÞ � ðm0=2ÞkadnðkaÞ þ ðm2
0=8ÞUn; ð2:12Þ

where

dnðxÞ ¼ J0nðxÞH
0
nðxÞ þ ½1� ðn=xÞ2�JnðxÞHnðxÞ; ð2:13Þ

Un ¼ kaðkaJ
00
n � J0nÞH

0
n þ ðJ0n � ka½J00n þ kaJ

000
n �ÞHn ¼ 2ka½JnðkaÞHnðkaÞ � dnðkaÞ � i=p� þ 2in2=ðpkaÞ ð2:14Þ

and we have used

H0
nðxÞJnðxÞ � J0nðxÞHnðxÞ ¼ 2i=ðpxÞ: ð2:15Þ

Then, from Eq. (2.12), the numerator in Eq. (2.4) is given approximately by

ReDn ’ �ðm0=2ÞkaJnðkaÞ þ ðm2
0=8ÞSn;

where

JnðkaÞ ¼ RednðkaÞ ¼ J2nðkaÞ � Jn�1ðkaÞJnþ1ðkaÞ; ð2:16Þ

Sn ¼ ReUn ¼ 2kaJn�1ðkaÞJnþ1ðkaÞ: ð2:17Þ

Hence, we obtain the following approximation for Zn:
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Zn ’
p

4
m0iðkaÞ

2
JnðkaÞ �

p

16
m2

0kafiSn � pðkaÞ3JnðkaÞdnðkaÞg: ð2:18Þ

Similarly, for the interior field, u0, Eq. (2.6) gives

i�nBn ’ 1�
im0

4
ln þ

m2
0

16
ðpikaUn � l2

nÞ with ln ¼ pðkaÞ2dnðkaÞ:

Also, using Eq. (2.11),

Jnðk0rÞ ’ JnðkrÞ � ðm0=2ÞkrJ
0
nðkrÞ þ ðm2

0=8Þf½n
2 � ðkrÞ2�JnðkrÞ � 2krJ

0
nðkrÞg;

and then Eq. (2.3) gives

u0ðr; hÞ ’ eikx �
im0

4

X

1

n¼�1

i
n
uð1Þ
n einh þ

m2
0

16

X

1

n¼�1

i
n
uð2Þ
n einh; ð2:19Þ

where

uð1Þ
n ¼ lnJnðkrÞ � 2ikrJ

0
nðkrÞ;

uð2Þ
n ¼ f2½n2 � ðkrÞ2� þ pikaUn � l2

ngJnðkrÞ þ 2ðiln � 2ÞkrJ
0
nðkrÞ:

2.2. Application to Foldy theory

Foldy’s theory predicts that hui ¼ AeiKx, where K is given by Eq. (1.3) and A is given by Eq. (1.5). Using Eqs. (2.8), (1.3) gives

K2 � k
2
¼ 4in0

X

1

n¼�1

Zn ’ �m0n0pðkaÞ
2
X

1

n¼�1

JnðkaÞ ¼ �m0n0pðkaÞ
2 ð2:20Þ

to first-order in m0. Here, we have used

X

1

n¼�1

Jn ¼
X

1

n¼�1

J2n �
X

1

n¼�1

JnJnþ2 ¼ 1; ð2:21Þ

X

1

n¼�1

J2nðxÞ ¼ 1; ð2:22Þ

X

1

n¼�1

JnðxÞJnþmðxÞ ¼ 0 for m ¼ �1;�2; . . . : ð2:23Þ

Also, from Eq. (1.5), we obtain A ’ 1þ 1
4
pm0n0a2.

For an approximation to second-order in m0, use Eq. (2.18). The term in Sn does not contribute to f ð0Þ:
P1

n¼�1Sn ¼ 0.

To see this, use Eqs. (2.17) and (2.23). Thus, we obtain

f ð0Þ ¼ �
1

4
im0pðkaÞ

2 þ
1

4
im2

0p
2ðkaÞ4HðkaÞ; ð2:24Þ

where

HðkaÞ ¼
i

4

X

1

n¼�1

JnðkaÞdnðkaÞ: ð2:25Þ

(Another formula for HðkaÞ is given in Appendix B.) Then Eq. (1.3) gives

K2 � k
2
’ �m0n0pðkaÞ

2 þm2
0n0p

2ðkaÞ4HðkaÞ ð2:26Þ

and Eq. (1.5) gives

A ’ 1þ
1

4
m0n0pa

2 �
1

4
m2

0n0p
2k

2
a4HðkaÞ: ð2:27Þ

2.3. Application to Linton–Martin theory

According to Linton and Martin [6, Eq. (80)], the second-order correction in Eq. (1.2) is given by

d2 ¼ 4pib
2
X

1

n¼�1

X

1

m¼�1

ZnZmdn�mðkbÞ; ð2:28Þ

where b is the parameter in the ‘‘hole correction”, Eq. (5.13). (In the limit kb ! 0; d2 can be written as a certain integral of the

far-field pattern; see [6, Eq. (86)].)
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As a special case of Eq. (2.28), consider isotropic scattering, meaning that Zn ¼ 0 when n 6¼ 0, so that f ðhÞ ¼ �Z0. Then, we

obtain the estimate [6, Eq. (42)]

K2 ¼ k
2
� 4in0f ð0Þ þ 4pi½n0bf ð0Þ�

2d0ðkbÞ: ð2:29Þ

This is Eq. (5) in [10] when keff is replaced by k0 in its right-hand side. (In fact, [10, Eq. (5)] is equivalent to [6, Eq. (40)].)

From Eq. (2.18), the first-order approximation to Zn is given by

Zn ’ ðm0=4ÞpiðkaÞ
2
JnðkaÞ; ð2:30Þ

whence Eq. (2.28) gives

d2 ’ m2
0

p3

4i
b
2
ðkaÞ4

X

1

n¼�1

X

1

m¼�1

JnðkaÞJmðkaÞdn�mðkbÞ: ð2:31Þ

Thus, there are no contributions to K2 that are proportional to n2
0m0.

3. Lippmann–Schwinger equation

In two dimensions, the Lippmann–Schwinger integral equation is [11]

uðrÞ ¼ uinðrÞ � k
2
Z

G0ðr; r
0Þmðr0Þuðr0ÞdV 0; ð3:1Þ

where u is the total field and

G0ðr; r
0Þ ¼ ði=4ÞHð1Þ

0 ðkjr� r0jÞ: ð3:2Þ

The governing partial differential equation is

r2uþ k
2
u ¼ k

2
mðrÞu; ð3:3Þ

withm � 0 outside the scatterers. Thus, although the integration in Eq. (3.1) can be written as an integration over all space, it

is really only over the scatterers.

It is known that Eq. (3.1) is always uniquely solvable. Moreover, the solution can be constructed by iterating the integral

equation, under certain circumstances. We do not investigate these circumstances here. We simply accept the second iter-

ation, giving

uðrÞ ’ uinðrÞ � k
2
Z

G0ðr; r
0Þmðr0Þuinðr

0ÞdV 0 þ k
4
Z

G0ðr; r
0Þmðr0Þ

Z

G0ðr
0; r00Þmðr00Þuinðr

00ÞdV 00 dV 0: ð3:4Þ

We assume that the scatterers are Di, centred at ri, i ¼ 1;2; . . . ;N. Each scatterer is a circular disc of radius a with constant

strength m0; when Eq. (2.9) is combined with Eq. (3.3), we see that ðr2 þ k
2
0Þu ¼ 0 holds inside the disc, as assumed in Sec-

tion 2. Thus

ðr2 þ k
2
Þu ¼ k

2
m0uðrÞ

X

N

i¼1

viðrÞ; ð3:5Þ

where vi is the characteristic function for Di: viðrÞ ¼ 1 when r 2 Di and viðrÞ ¼ 0 when r 62 Di. The approximation (3.4)

becomes

uðrÞ ’ uinðrÞ � k
2
m0

X

N

i¼1

Z

Di

G0ðr; r
0Þuinðr

0ÞdV 0 þ k
4
m2

0

X

N

i¼1

X

N

j¼1

Z

Di

G0ðr; r
0Þ

Z

Dj

G0ðr
0; r00Þuinðr

00ÞdV 00 dV 0: ð3:6Þ

Using

ðr2 þ k
2
Þ

Z

B

G0ðr; r
0Þf ðr0ÞdV 0 ¼

0; r 62 B;

�f ðrÞ; r 2 B;

(

we see that Eq. (3.6) correctly generates a solution of ðr2 þ k
2
Þu ¼ 0 outside the scatterers. On the other hand, if ui denotes

the field in Di, Eq. (3.6) implies that

ðr2 þ k
2
Þui ¼ k

2
m0uinðrÞ � k

4
m2

0

X

N

j¼1

Z

Dj

G0ðr; r
0Þuinðr

0ÞdV 0

for r 2 Di, whereas the exact solution satisfies ðr2 þ k
2
Þui ¼ k

2
m0ui.

We shall return to the formula (3.6) in Section 5, but first we consider scattering by one cylinder.
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4. Scattering by one cylinder: iterative solution

Let us specialise the second-order solution (3.6) to a single cylinder. We have

uðrÞ ’ uinðrÞ þm0I1ðrÞ þm2
0I2ðrÞ; ð4:1Þ

where

I1ðrÞ ¼ �k
2
Z

D0

G0ðr; r
0Þuinðr

0ÞdV 0; ð4:2Þ

I2ðrÞ ¼ �k
2
Z

D0

G0ðr; r
0ÞI1ðr

0ÞdV 0; ð4:3Þ

and D0 is the circular disc of radius a, centred at the origin. In this section, we will evaluate I1 and I2. These quantities will be

needed when we consider scattering by many circles (in Section 5). Also, as a check on our calculations, we verify that we

recover the small-m0 approximations to the exact solution given in Section 2.1.

4.1. Evaluation of I1

With r ¼ ðr; hÞ and r0 ¼ ðr0; h0Þ, we use Eq. (2.1) in Eq. (4.2) to give

I1ðr; hÞ ¼ �
X

1

n¼�1

inLnðr; hÞ; ð4:4Þ

where

Lnðr; hÞ ¼ k
2
Z a

0

Z 2p

0

G0ðr; r
0ÞJnðkr

0
Þeinh

0

r0dh0dr0: ð4:5Þ

We give separate evaluations of Lnðr; hÞ for r > a and r < a.

4.1.1. Exterior field

For r > a, we use

G0ðr; r
0Þ ¼

i

4

X

1

n¼�1

HnðkrÞJnðkr
0
Þeinðh�h0Þ; r > r0; ð4:6Þ

in Eq. (4.5). This gives

Lnðr; hÞ ¼ Cð1Þ
n HnðkrÞe

inh ð4:7Þ

with

Cð1Þ
n ¼

pi

2
k
2
Z a

0

J2nðkr
0
Þr0dr0 ¼

pi

4
ðkaÞ2JnðkaÞ; ð4:8Þ

where Jn is defined by Eq. (2.16). Here, we have used [12], 7.14.1(10), p. 90,
Z

wnðkrÞWnðkrÞrdr ¼
r2

4
f2wnðkrÞWnðkrÞ �wnþ1ðkrÞWn�1ðkrÞ �wn�1ðkrÞWnþ1ðkrÞg; ð4:9Þ

where wn and Wn are any two Bessel functions. In particular, we note that

2

a2

Z a

0

J2nðkrÞrdr ¼ JnðkaÞ; ð4:10Þ

a result that will be useful later.

The result (4.8) agrees with the exact solution (see Eq. (2.30)).

4.1.2. Interior field

For r < a, the calculation is more complicated. We obtain

Lnðr; hÞ ¼ ðpi=8ÞKð1Þ
n ðkrÞeinh; r < a ð4:11Þ

with

K
ð1Þ
n ðkrÞ ¼ 4k

2
HnðkrÞ

Z r

0

J2nðkr
0
Þr0dr0 þ 4k

2
JnðkrÞ

Z a

r

Hnðkr
0
ÞJnðkr

0
Þr0 dr0: ð4:12Þ

Use of Eq. (4.9) gives
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K
ð1Þ
n ðkrÞ ¼ 2ðkrÞ2HnðkrÞfJ

2
nðkrÞ � Jnþ1ðkrÞJn�1ðkrÞg � ðkrÞ2JnðkrÞf2JnðkrÞHnðkrÞ � Jnþ1ðkrÞHn�1ðkrÞ � Jn�1ðkrÞHnþ1ðkrÞg

þ ðkaÞ2JnðkrÞf2JnðkaÞHnðkaÞ � Jnþ1ðkaÞHn�1ðkaÞ � Jn�1ðkaÞHnþ1ðkaÞg:

Suppressing the argument kr, the first line of this formula become

ðkrÞ2½JnJnþ1Hn�1 þ JnJn�1Hnþ1 � 2HnJnþ1Jn�1�

¼ Jn½nJn � krJ
0
n�½nHn þ krH

0
n� þ Jn½nJn þ krJ

0
n�½nHn � krH

0
n� � 2Hn½nJn � krJ

0
n�½nJn þ krJ

0
n�

¼ 2ðkrÞ2J0n½J
0
nHn � JnH

0
n� ¼ �ð4i=pÞkrJ

0
nðkrÞ;

whereas the second line reduces to 2ðkaÞ2JnðkrÞdnðkaÞ with dn defined by Eq. (2.13). Hence,

K
ð1Þ
n ðkrÞ ¼ �ð4i=pÞkrJ

0
nðkrÞ þ 2ðkaÞ2JnðkrÞdnðkaÞ: ð4:13Þ

Combining Eqs. (4.1), (4.4), (4.11) and (4.13), we find agreement with the first-order approximation of the exact solution,

Eq. (2.19).

4.2. Evaluation of I2

As r0 < a in Eq. (4.3), we use Eq. (4.11) in Eq. (4.4) to give

I2ðrÞ ¼
pi

8
k
2
X

1

m¼�1

i
m

Z

G0ðr; r
0ÞKð1Þ

m ðkr
0
Þeimh0 dV 0:

Again, the calculations depend on whether r > a or r < a.

4.2.1. Exterior field

For r > a, we use Eq. (4.6). This gives

I2ðr; hÞ ¼ �
X

1

n¼�1

i
n
Cð2Þ
n HnðkrÞe

inh ð4:14Þ

with

Cð2Þ
n ¼

p2k
2

16

Z a

0

Jnðkr
0
ÞKð1Þ

n ðkr
0
Þr0dr0 ð4:15Þ

¼ ðpka=4Þ2fðkaÞ2dnðkaÞJnðkaÞ � ð2i=pÞJn�1ðkaÞJnþ1ðkaÞg; ð4:16Þ

for the evaluation of the integral, see Eq. (A.7).

The result (4.16) agrees with the exact solution, see Eq. (2.18).

4.2.2. Interior field

For r < a, we obtain

I2ðr; hÞ ¼
p

8i

� �2 X

1

n¼�1

inKð2Þ
n ðkrÞeinh; r < a ð4:17Þ

with

K
ð2Þ
n ðkrÞ ¼ 4k

2
HnðkrÞ

Z r

0

Jnðkr
0
ÞKð1Þ

n ðkr
0
Þr0dr0 þ 4k

2
JnðkrÞ

Z a

r

Hnðkr
0
ÞKð1Þ

n ðkr
0
Þr0 dr0:

Use of Eq. (4.13) gives

K
ð2Þ
n ðkrÞ ¼ 2ðkaÞ2dnðkaÞK

ð1Þ
n ðkrÞ � 8ði=pÞXn ð4:18Þ

with

Xn ¼ 2k
3
HnðkrÞ

Z r

0

JnðksÞJ
0
nðksÞs

2 dsþ 2k
3
JnðkrÞ

Z a

r

HnðksÞJ
0
nðksÞs

2ds:

To evaluate the remaining integrals, consider

I ¼

Z

s2
d

ds
½JnðksÞHnðksÞ�ds:

Integrating by parts and then using Eq. (4.9) gives

I ¼ ðs2=2ÞðJnþ1Hn�1 þ Jn�1Hnþ1Þ;

suppressing the argument ks. Alternatively, we have
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I ¼ k

Z

s2ðJnH
0
n þ J0nHnÞds ¼ 2k

Z

s2J0nHn dsþ
is2

p
;

using the Wronskian, Eq. (2.15). Hence

2k

Z

s2J0nðksÞHnðksÞds ¼
s2

2
Jnþ1Hn�1 þ Jn�1Hnþ1 �

2i

p

� �

¼ s2fJnHn � dnðksÞ � i=pg:

In particular, the real part of this formula gives

2k

Z

s2J0nðksÞJnðksÞds ¼ s2Jn�1ðksÞJnþ1ðksÞ: ð4:19Þ

Hence

Xn ¼ Xð1Þ
n þ Xð2Þ

n ; ð4:20Þ

Xð1Þ
n ¼ ðkrÞ2fJnðkrÞ½dnðkrÞ þ i=p� � HnðkrÞJnðkrÞg ¼ ðikr=pÞfJn�1ðkrÞ � Jnþ1ðkrÞ þ krJnðkrÞg; ð4:21Þ

Xð2Þ
n ¼ ðkaÞ2JnðkrÞ½JnðkaÞHnðkaÞ � dnðkaÞ � i=p� ¼ ðkaUn=2� n2i=pÞJnðkrÞ: ð4:22Þ

Un is defined by Eq. (2.14), Kð2Þ
n is given by Eq. (4.18), and then I2 is given by Eq. (4.17). When I2 is substituted in Eq. (4.1),

we find complete agreement with the second-order approximation to the exact solution, Eq. (2.19).

5. Scattering by N cylinders

Let us return to the second-order solution for scattering by N cylinders, given by Eq. (3.6). Introduce polar coordinates

ðr; hÞ centred at the origin and ðrj; hjÞ centred at rj ¼ ðxj; yjÞ, the centre of the jth scatterer.

5.1. First-order in m0

As in Section 4, using uin ¼ eikx ¼ eikxjeikrj cos hj , we obtain

�k
2
Z

Dj

G0ðr; r
0Þuinðr

0ÞdV 0 ¼ eikxj I1ðrj; hjÞ ð5:1Þ

with rj �j r� rj j, so that, to first-order in m0, Eq. (3.6) gives

uðrÞ ’ eikx þm0

X

N

j¼1

eikxj I1ðrj; hjÞ: ð5:2Þ

Next, we calculate the ensemble average of u; hui. At this stage, we can assume that the scatterers are independent (uncor-

related); they are also indistinguishable. The result is

huðrÞi ¼ eikx þm0n0

Z

BN

eikx1 I1ðr1; h1Þdx1 dy1; ð5:3Þ

where BN is the region occupied by the N circles and n0 is the number of circles per unit area, so that BN has area N=n0.

In order to do explicit calculations, we now let N ! 1. One option would be for BN to become a slab, 0 < x < L, say. We

prefer to let BN become the half-plane x > 0, but then we have to take care with the convergence of various integrals as

x ! 1: we replace eikx1 by eijx1 , with Imj > 0, and then let j ! k at the end of the calculation.

Thus, in the limit N ! 1, the integral in Eq. (5.3) consists of an integral over the circular disc r1 < a ðr21 ¼ ðx1 � xÞ2 þ y21Þ

plus an integral over the remainder of the half-plane x1 > 0; we denote this region by disc0. We can assume here that x > a so

that the disc does not meet the line x1 ¼ 0.

Exact calculation gives (see Appendix A)
Z

r1<a

eikx1 I1ðr1; h1Þdx1dy1 ¼ �p
2a2eikxðkaÞ2HðkaÞ; ð5:4Þ

lim
j!k

Z

disc0
eijx1 I1ðr1; h1Þdx1dy1 ¼

pa2

4
eikxf1� 2ikxþ 4pðkaÞ2HðkaÞg; ð5:5Þ

where H is defined by Eq. (2.25). When these two expressions are added together, the terms in H cancel, and then Eq. (5.3)

gives

huðrÞi ¼ eikxf1þm0n0ðp=4Þa
2ð1� 2ikxÞg; x > a: ð5:6Þ

This should be compared with Eq. (1.4), huðrÞi ¼ AeiKx. Write

A ’ 1þm0A1 þm2
0A2 and K ’ kþm0k1 þm2

0k2;

so that K2 ’ k
2
þ 2m0kk1 þm2

0ðk
2
1 þ 2kk2Þ. Then,
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AeiKx ¼ eikxf1þm0ðA1 þ ik1xÞ þm2
0ðA2 þ ix½A1k1 þ k2� � k

2
1x

2=2Þg; ð5:7Þ

the terms involving m2
0 will be used later. Comparing Eqs. (5.6) and (5.7) gives A1 ¼ /=4 and k1 ¼ �k/=2, where we have

defined the area fraction occupied by the scatterers, /, by

/ ¼ n0pa
2:

Hence, A ’ 1þm0/=4 and K2 ’ k
2
ð1�m0/Þ, in agreement with the Foldy estimates, Eqs. (2.20) and (2.27), correct to

first-order in m0.

The idea of rewriting an expansion such as Eq. (5.6) in the form Eq. (1.4) is well established (see [4], §7.4.2, for

example).

5.2. Second-order in m0

At second-order in m0, we add the last term in Eq. (3.6) to the right-hand side of Eq. (5.2). Using Eq. (5.1), this term

becomes

�k
2
m2

0

X

N

i¼1

X

N

j¼1

eikxj
Z

Di

G0ðr; r
0ÞI1ðr

0
j; h

0
jÞdV

0 ¼ u2ðrÞ; ð5:8Þ

say; recall that rj; hj are polar coordinates centred at ðxj; yjÞ, the centre of the jth disc, Dj.

Evidently, the evaluation of the integrals in Eq. (5.8) will be different if i ¼ j or i 6¼ j, and so we write

u2 ¼ uð1Þ
2 þ uð2Þ

2 ; ð5:9Þ

where

uð1Þ
2 ðrÞ ¼ �k

2
m2

0

X

N

j¼1

eikxj
Z

Dj

G0ðr; r
0ÞI1ðr

0
j; h

0
jÞdV

0 ð5:10Þ

and uð2Þ
2 ¼ u2 � uð1Þ

2 .

5.2.1. Calculation of huð1Þ
2 i

From Eq. (4.3), we obtain

uð1Þ
2 ðrÞ ¼ m2

0

X

N

j¼1

eikxj I2ðrj; hjÞ;

where I2 is given by Eq. (4.14) for rj > a and by Eq. (4.17) for rj < a. Then, proceeding as in Section 5.1, we obtain

huð1Þ
2 ðrÞi ¼ eikxm2

0ð/=4ÞfP0ðkaÞ þ ð2ikx� 1ÞQ0ðkaÞg; x > a; ð5:11Þ

where P0ðkaÞ is given by Eq. (A.9) and Q0ðkaÞ ¼ pðkaÞ2HðkaÞ (see Appendix A for details of the calculation).

5.2.2. Calculation of huð2Þ
2 i

When i 6¼ j; r0j > a (as the scatterers are not allowed to overlap) and so we can use Eq. (4.7) in Eq. (4.4):
Z

Di

G0ðr; r
0ÞI1ðr

0
j; h

0
jÞdV

0 ¼ �
X

1

n¼�1

i
n
Cð1Þ
n

Z

Di

G0ðr; r
0ÞHnðkr

0
jÞe

inh0
j dV 0:

Here, r0j; h
0
j are the polar coordinates of the point at r0 with respect to the centre of Dj. So, to integrate over Di, we need

Graf’s addition theorem to express Hnðkr
0
jÞe

inh0
j in terms of Jmðkr

0
iÞe

imh0
i :

Hnðkr
0
jÞe

inh0
j ¼

X

1

m¼�1

Jmðkr
0
iÞHn�mðkRjiÞe

imh0
ieiðn�mÞaji ;

where xi � xj ¼ Rji cos aji and yi � yj ¼ Rji sin aji (see [6], Fig. 1 for a diagram showing notation). Hence,

�k
2
Z

Di

G0ðr; r
0ÞI1ðr

0
j; h

0
jÞdV

0 ¼
X

m;n

i
n
Cð1Þ
n Hn�mðkRjiÞe

iðn�mÞajiLmðri; hiÞ;

where Ln is defined by Eq. (4.5) and we have used the short-hand notation

X

m;n

�
X

1

m¼�1

X

1

n¼�1

:

Thus, from Eqs. (5.8)–(5.10), we obtain

uð2Þ
2 ðrÞ ¼ m2

0

X

m;n

Cð1Þ
n XmnðrÞ ð5:12Þ
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with

Xmn ¼ i
n
X

N

i¼1

X

N

j ¼ 1
j 6¼ i

eikxjHn�mðkRjiÞe
iðn�mÞajiLmðri; hiÞ:

To compute the ensemble average of Xmn, we need a conditional probability. We use pðriÞ ¼ n0=N (as above) and

pðrjjriÞ ¼ ðn0=NÞHðRij � bÞ; ð5:13Þ

where H is the Heaviside unit function and b is the ‘‘hole radius”; we take bP 2a to ensure that the circular scatterers do not

overlap during the averaging. Then, as the scatterers are indistinguishable, we obtain

hXmni ¼ inn2
0

N � 1

N

Z

BN

Lmðr1; h1Þ

Z

BN

HðR21 � bÞeikx2Hn�mðkR21Þe
iðn�mÞa21dV2 dV1:

As before, we replace eikx2 by eijx2 with Imj > 0, we let N ! 1 so that BN becomes the half-plane x > 0, we evaluate the

integrals and then we let j ! k. To begin, we note that the inner integral is very similar to Eq. (A.1); we take its value as

2

ik
ð�iÞn�m ðjþ kÞeikx1 þ pikeijx1Nn�mðjbÞ

k
2
� j2

ð5:14Þ

withNn defined by Eq. (A.3). This result is exact when x1 > b but it is an approximation when 0 < x1 < b (see the discussion

below Eq. (A.2)). Using Eq. (5.14) for all x1 > 0, we obtain

hXmni ¼
2n2

0

ikðk
2
� j2Þ

fðjþ kÞLmðkÞ þ pikNn�mðjbÞLmðjÞg;

where

LmðjÞ ¼ i
m

Z

x1>0

eijx1Lmðr1; h1Þdx1dy1 ¼
2Cð1Þ

m

k
2
� j2

jþ k

ik
eikx þ peijxNmðjaÞ

� �

þ
p2

4
ie

ijx

Z a

0

Jmðjr1ÞK
ð1Þ
m ðkr1Þr1 dr1: ð5:15Þ

Here, we have used Eqs. (4.7) and (4.11), and made calculations similar to Eqs. (A.2) and (A.6). Letting j ! k, we obtain

lim
j!k

hXmni ¼ n2
0k

�2
if½1þ piðkbÞ2dn�mðkbÞ�LmðkÞ � 2kL0

mðkÞg; ð5:16Þ

where we have used NmðkbÞ ¼ 2i=p and N0
mðkbÞ ¼ kbdmðkbÞ. Letting j ! k in Eq. (5.15) gives

LmðkÞ ¼ k
�2
eikxfpð0Þ

m þ ð2ikx� 1Þpð1Þ
m g; ð5:17Þ

where

pð0Þ
m ¼

1

2
pðkaÞ2Jm�1ðkaÞJmþ1ðkaÞ; pð1Þ

m ¼ �iCð1Þ
m

and we have used Eq. (A.7). Differentiating Eq. (5.15) with respect to j gives
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1
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φ
0

Fig. 1. The function /0ðkaÞ: when b ¼ 2a, the imaginary part of the effective wavenumber, K i , is positive for 0 6 / < /0ðkaÞ.
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L0
mðjÞ ¼

4jCð1Þ
m

ðk
2
� j2Þ2

jþ k

ik
eikx þ peijxNmðjaÞ

� �

þ
2Cð1Þ

m

k
2
� j2

eikx

ik
þ peijx½ixNmðjaÞ þ aN0

mðjaÞ�

� �

þ
p2

4
ie

ijx

Z a

0

½ixJmðjr1Þ

þ r1J
0
mðjr1Þ�K

ð1Þ
m ðkr1Þr1dr1:

In the limit j ! k, we find (after some calculation)

2kL0
mðkÞ ¼ k

�2
eikxfqð0Þ

m þ ð2ikx� 1Þqð1Þ
m þ ðkxÞ2qð2Þ

m g; ð5:18Þ

where qð1Þ
m ¼ iCð1Þ

m þ pð0Þ
m ; qð2Þ

m ¼ 2iCð1Þ
m and

qð0Þ
m ¼ pðkaÞ2Cð1Þ

m ½dmðkaÞ �N00
mðkaÞ� þ pð0Þ

m þ
ip2

2
k
3
Z a

0

J0mðkrÞK
ð1Þ
m ðkrÞr2 dr;

here, we have used Eqs. (4.8) and (A.7). Simplification gives

qð0Þ
m ¼ 2pðkaÞ2Cð1Þ

m fdmðkaÞ � JmðkaÞHmðkaÞ þ ði=pÞ½1�m2=ðkaÞ2�g þ ½1þ piðkaÞ2dmðkaÞ�p
ð0Þ
m þ 2p

Z ka

0

½J0mðxÞ�
2x3 dx: ð5:19Þ

Substituting Eqs. (5.17) and (5.18) in Eq. (5.16) gives

lim
j!k

hXmni ¼ in2
0k

�4
eikxfPð0Þ

mn þ ð2ikx� 1ÞPð1Þ
mn � ðkxÞ2qð2Þ

m g;

where PðjÞ
mn ¼ ½1þ piðkbÞ2dn�mðkbÞ�p

ðjÞ
m � qðjÞ

m ; j ¼ 0;1.

Next, we sum over m. From Eqs. (2.21) and (4.8), we have

X

1

m¼�1

Cð1Þ
m ¼

pi

4
ðkaÞ2: ð5:20Þ

Hence, using Eq. (2.23), we obtain

X

1

m¼�1

Pð1Þ
mn ¼

p

2
ðkaÞ2 þ pðkbÞ2

X

1

m¼�1

Cð1Þ
m dn�mðkbÞ:

Then, from Eq. (5.12), we find that

huð2Þ
2 ðrÞi ¼ eikxm2

0ð/
2=4ÞfP1 þ ð2ikx� 1ÞQ1 þ ðkxÞ2R1g; ð5:21Þ

where

P1 ¼
4i

p2ðkaÞ4

X

m;n

Cð1Þ
n Pð0Þ

mn ¼
ðkbÞ2

iðkaÞ2

X

m;n

pð0Þ
m JnðkaÞdn�mðkbÞ þ

1

pðkaÞ2

X

1

m¼�1

qð0Þ
m ; ð5:22Þ

Q1 ¼
4i

p2ðkaÞ4

X

m;n

Cð1Þ
n Pð1Þ

mn ¼ �
1

2
þ
4i

p

ðkbÞ2

ðkaÞ4

X

m;n

Cð1Þ
m Cð1Þ

n dn�mðkbÞ; ð5:23Þ

R1 ¼ �
4i

p2ðkaÞ4

X

m;n

Cð1Þ
n qð2Þ

m ¼ �
1

2
:

We add Eqs. (5.11) and (5.21) to the right-hand side of Eq. (5.6), giving the approximation

huðrÞi ¼ eikxf1þm0ð/=4Þð1þm0½P0 � Q0� þm0/½P1 � Q1�Þ � ikxm0ð/=2Þð1�m0Q0 �m0/Q1Þ � ðkxÞ2m2
0/

2=8g: ð5:24Þ

When this is compared with Eq. (5.7), we find that A1 ¼ /=4 and k1 ¼ �k/=2, as before, the terms in x2 agree,

A2 ¼ ðP0 � Q0 þ /½P1 � Q1�Þ/=4 and k2=k ¼ Q0/=2þ ð4Q1 þ 1Þ/2=8:

Hence, we obtain the approximation

K2=k
2
’ 1�m0/þm2

0/Q0 þm2
0/

2ðQ1 þ 1=2Þ:

The last term implies that d2 in Eq. (1.2) is given by

d2 ’ k
2
m2

0ðpa
2Þ2ðQ1 þ 1=2Þ ¼ 4pim2

0b
2
X

m;n

Cð1Þ
m Cð1Þ

n dn�mðkbÞ;

where we have used Eq. (5.23). Then, using Eq. (4.8), we find precise agreement with Eq. (2.31). We also find the

approximation

A ’ 1þm0/=4þm2
0ðP0 � Q0Þ/=4þm2

0ðP1 � Q1Þ/
2=4: ð5:25Þ

The term involving m2
0/ in Eq. (5.25) differs from the Foldy approximation, Eq. (2.27), by the presence of P0. This quantity

came from an exact calculation of huð1Þ
2 i (see Eq. (5.11)). Specifically, P0 came from a certain integral over the interior of a

typical scatterer (see Eq. (A.8)). We have checked that P0 does not vanish identically (see Eq. (A.10)).
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5.3. Comparison with ‘‘point scatterers”

Similar results have been obtained by Maurel [5] for uncorrelated configurations of ‘‘point scatterers”. For the determin-

istic problem, the governing partial differential equation is

ðr2 þ k
2
Þu ¼ k

2
m0pa

2uðrÞ
X

N

i¼1

dðr� riÞ;

where d is the Dirac delta function. The factor pa2 ensures agreement with the right-hand side of Eq. (3.5):
R

uvidV ’ pa2uðriÞ

when Di is small. Maurel [5] found the approximation

huðrÞi ¼ eikxf1þm0ð/=4Þ½1�m0Qþm0/=2� � ikxm0ð/=2Þ½1�m0Qþm0/=2� � ðkxÞ2m2
0/

2=8g; ð5:26Þ

where QðkaÞ ¼ pði=4ÞðkaÞ2H0ðkaÞ.

From (5.26), the estimates

A ’1þm0/=4�m2
0ð/=4ÞQþm2

0/
2=8;

K=k ’1�m0/=2þm2
0ð/=2ÞQ�m2

0/
2=8

follow; squaring the last formula gives K2=k
2
’ 1�m0/þm2

0/Q, with no term in m2
0/

2.

Intuitively, the point-scatterer limit should correspond to ka ! 0. If we compare Eqs. (5.24) and (5.26), we see that we

will have agreement if

P0 � Q0 � �Q; P1 � Q1 �
1

2
; Q0 � Q and Q1 � �

1

2
: ð5:27Þ

The third of these follows quickly from the definition of Q0, whereas the first follows from the fact that P0 is smaller than

Q0 as ka ! 0 (see Eq. (A.11)). The second and fourth of (5.27) involve P1 and Q1, and these depend on kb as well as ka. From

Eq. (5.23), we find that

Q1 þ 1=2 � �pði=4ÞðkbÞ2d0ðkbÞ as ka ! 0;

the limiting value vanishes when kb ! 0, which is the appropriate limit for uncorrelated scatterers. Finally, consider P1, de-

fined by Eq. (5.22) as a double-sum term plus a single-sum term. In the double sum, the dominant contributions come from

J0 � 1, pð0Þ
0 � ðp=8ÞðkaÞ4 and pð0Þ

�1 � pð0Þ
0 =2 as ka ! 0. Hence, asymptotically, the double-sum term is

�iðp=8ÞðkaÞ2ðkbÞ2½d0ðkbÞ þ d1ðkbÞ� ! 0 as ka ! 0:

Making use of Eqs. (5.19), (5.20),

X

1

m¼�1

pð0Þ
m ¼ 0 and

X

1

m¼�1

½J0mðxÞ�
2 ¼

1

2
;

the single-sum term in Eq. (5.22),

1

pðkaÞ2

X

1

m¼�1

qð0Þ
m ¼ �

1

4
ðkaÞ2 þ

X

1

m¼�1

fJmðkaÞcmðkaÞ þ idmðkaÞp
ð0Þ
m g; ð5:28Þ

exactly, where cmðxÞ ¼ ðip=2Þx2½dmðxÞ � JmðxÞHmðxÞ� þm2=2. We have c0ðxÞ � x2=2; d0ðxÞ � H0ðxÞ; cmðxÞ �j m j þm2=2 and

x2dmðxÞ � 2i j m j =p for m 6¼ 0, so that the largest terms in Eq. (5.28) are OððkaÞ2Þ as ka ! 0. Thus, all of Eq. (5.27) hold in

the limit ka ! 0, provided kb ! 0 too. It follows that we recover the point-scatterer results if we allow the scatterers to

shrink ðka ! 0Þ and to become uncorrelated.

6. Numerical results and summary

In this section, we give some quantitative illustrations of the analytical results above. However, let us first summarise the

various theories. We distinguish between Foldy-type theories and iterative theories.

6.1. Foldy-type theories

The simplest is ‘‘basic” Foldy theory: it predicts that K2 ¼ k
2
� 4in0f ð0Þ and that A is given by Eq. (1.5); it is first order in

n0; it assumes that the scatterers are statistically independent (possible overlaps are ignored at first-order); it uses the for-

ward-scattered far-field pattern for one scatterer, f ð0Þ, calculated (exactly) taking proper account of the interior wavefield

and density differences, if present; and it makes essential use of the Foldy closure assumption.

As a special case, we have ‘‘weak Foldy”. This occurs when the scattering from each individual scatterer is weak, meaning

that each scatterer is penetrable with a sound-speed that is close to that in the exterior; this closeness is measured by the

small parameter, m0. (For simplicity, we do not permit density differences here.) The ‘‘weak-Foldy” results are given in Sec-

tion 2.2. Thus, K2 is given by Eq. (2.26). Also,
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jAj ¼ 1þm0/=4�m2
0ð/=4ÞReQ0 ð6:1Þ

(when uin ¼ eikx) and K i=k ¼ m2
0ð/=2ÞImQ0, where K i ¼ ImK;/ ¼ n0pa2 is the filling fraction or area fraction occupied by the

scatterers, Q0ðkaÞ ¼ pðkaÞ2H and HðkaÞ is given by Eq. (2.25) or Eq. (B.1). Note that

K i

k
¼ m2

0/ðkaÞ
2 p

8

X

1

n¼�1

J2
nðkaÞ; ð6:2Þ

which is positive, implying attenuation with x.

Going beyond Foldy, we can seek corrections proportional to n2
0. This is more difficult because pair-correlations must be

used in order to prevent finite-sized scatterers from overlapping during averaging. The ‘‘Linton–Martin” correction to basic

Foldy for K is n2
0d2 with d2 given by Eq. (2.28). It was derived using the Lax quasicrystalline approximation as closure assump-

tion. Again, as with basic Foldy, there is a weak version; it gives a term in n2
0m

2
0 , see Section 2.3, especially Eq. (2.31). The

Linton–Martin theory does not give any estimate for A.

Note that Foldy and Linton–Martin theories do not assume explicitly that ka is small. However, letting ka ! 0 gives re-

sults for very small scatterers, and these can be compared with results for so-called ‘‘point scatterers”; this was done in Sec-

tion 5.3. In particular, the point-scatterer limit gives

jAj ¼ 1þm0/=4�m2
0ð/=4ÞReQþm2

0/
2=8 ð6:3Þ

and K i=k ¼ m2
0ð/=2ÞImQ, where Q ¼ pði=4ÞðkaÞ2H0ðkaÞ so that

ReQ ¼ �ðp=4ÞðkaÞ2Y0ðkaÞ � �ð1=2ÞðkaÞ2 log ka; ð6:4Þ

ImQ ¼ ðp=4ÞðkaÞ2J0ðkaÞ � ðp=4ÞðkaÞ2: ð6:5Þ

6.2. Iterative theories

In this paper, we began with the Lippmann–Schwinger equation, which we solved by iteration for weak scattering. At

both first and second-order in m0, we obtained exactly the same expressions for K as those obtained by ‘‘weak Foldy” and

‘‘weak Linton–Martin”. No closure assumptions were used. However, there is one difference in the result for A:

jAj ¼ 1þm0/=4�m2
0ð/=4ÞReðQ0 � P0Þ þm2

0ð/
2=4ÞReðP1 � Q1Þ: ð6:6Þ

Thus, the term P0 is absent from Eq. (6.1). Also,

K i

k
¼ m2

0/ðkaÞ
2 p

8

X

1

n¼�1

J2
nðkaÞ � /ðb=aÞ2

X

m;n

JmðkaÞJnðkaÞJn�mðkbÞ

( )

; ð6:7Þ

this expression can become negative (see Section 6.3). Eqs. (6.6) and (6.7) do reduce to the point-scatterer limits when both

ka and kb ! 0.

6.3. Numerical results

The various theories described above give numerical predictions that are close, at least for small values of / and ka. Rather

than plot curves that are almost superimposed, we give a few numerical values. In Table 1, we give values of j A j at ka ¼ 1 for

three values of / and three values of m0. In each case, the top value is the Foldy prediction (Eq. (6.1)), the middle value is the

iterative point-scatterer result (Eq. (6.3) with the approximation (6.4)) and the bottom value is the iterative finite-size result

(Eq. (6.6) with hole radius b ¼ 2a). Corresponding results for ImK=k are given in Table 2: the Foldy prediction is Eq. (6.2), the

Table 1

Computed values of j A j at ka ¼ 1 for three values of / and three values of m0

m0 ¼ 0:1 m0 ¼ 0:5 m0 ¼ 0:9

/ ¼ 0:1 1.0025 1.0118 1.0202

1.0025 1.0128 1.0235

1.0025 1.0126 1.0227

/ ¼ 0:2 1.0049 1.0236 1.0404

1.0051 1.0262 1.0491

1.0050 1.0260 1.0481

/ ¼ 0:4 1.0099 1.0472 1.0808

1.0102 1.0550 1.1062

1.0102 1.0553 1.1071

In each case, the top value is the Foldy prediction, the middle value is the iterative point-scatterer result, and the bottom value is the iterative finite-size

result (for which b ¼ 2a).
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iterative point-scatterer result is given just below Eq. (6.3) and the iterative finite-size result is Eq. (6.7), again with b ¼ 2a.

We notice that the last of these, which is presumably more accurate, predicts weaker attenuation, especially as / and m0 get

larger.

The iterative finite-size prediction for ImK , Eq. (6.7), fails for values of / that are sufficiently large. To see this, write Eq.

(6.7) as

K i=k ¼ m2
0/ðkaÞ

2ðp=8ÞUðka; b=a;/Þ:

Evidently, Uðka; b=a;0Þ > 0. It turns out that U remains positive for a range of /. In Fig. 1, we take b ¼ 2a and plot /0ðkaÞ,

where Uðka;2;/Þ > 0 for 0 6 / < /0ðkaÞ and Uðka;2;/0Þ ¼ 0. The two horizontal asymptotes in the figure can be predicted.

Thus, /0ðkaÞ � ða=bÞ2 as ka ! 0 whereas, when b ¼ 2a, /0ðkaÞ �
5
48
p2½Cð3=4Þ��4 as ka ! 1 [13]. The figure shows that we

cannot use Eq. (6.7) for filling fractions that are too large.
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Appendix A. Evaluation of some integrals

A.1. Evaluation of (5.5)

From Eqs. (4.4) and (4.7), we have
Z

disc0
eijx1 I1 dx1dy1 ¼�

X

1

n¼�1

i
n
Cð1Þ
n

Z

disc0
Hnðkr1Þe

inh1eijx1 dx1 dy1 ðA:1Þ

¼
2i

k

X

1

n¼�1

Cð1Þ
n

ðjþ kÞeikx þ pikeijxNnðjaÞ

k
2
� j2

; ðA:2Þ

where Imj > 0 and

NnðjaÞ ¼ kaH
0
nðkaÞJnðjaÞ � jaHnðkaÞJ

0
nðjaÞ: ðA:3Þ

Here, we have evaluated the integral on the right-hand side of (A.1) as on p. 3419 of [6]; the result is exact when x > a.

Recall that the region disc0 consists of that part of the half-plane x1 > 0 that is outside the circle r21 � ðx1 � xÞ2 þ y21 ¼ a2. The

method of evaluation in [6] uses Green’s theorem to reduce the double integral to the sum of an integral along x1 ¼ 0 and an

integral around the circle r1 ¼ a. When 0 < x < a, this circle cuts the y1-axis, and then Eq. (A.2) should be regarded as an

approximation. More precisely, we have
Z

disc0
Hnðkr1Þe

inh1eijx1 dx1 dy1 ¼
2

ik
ð�iÞn

ðjþ kÞeikx þ pikeijxNnðjaÞ

k
2
� j2

þ EnðxÞ;

where EnðxÞ ¼ 0 for xP a,

EnðxÞ ¼

Z

D

Hnðkr1Þe
inh1eijx1 dx1 dy1 for 0 < x < a

and D is the segment of the disc r1 < a with x1 < 0.

Table 2

Computed values of ImK=k at ka ¼ 1 for three values of / and three values of m0

m0 ¼ 0:1 m0 ¼ 0:5 m0 ¼ 0:9

/ ¼ 0:1 2:4721� 10�4 6:1802� 10�3 2:0024� 10�2

3:9270� 10�4 9:8175� 10�3 3:1809� 10�2

1:9587� 10�4 4:8966� 10�3 1:5865� 10�2

/ ¼ 0:2 4:9441� 10�4 12:3603� 10�3 4:0047� 10�2

7:8540� 10�4 19:6350� 10�3 6:3617� 10�2

2:8905� 10�4 7:2262� 10�3 2:3413� 10�2

/ ¼ 0:4 9:8882� 10�4 24:7206� 10�3 8:0095� 10�2

15:7080� 10�4 39:2699� 10�3 12:7235� 10�2

1:6737� 10�4 4:1843� 10�3 1:3557� 10�2

In each case, the top value is the Foldy prediction, the middle value is the iterative point-scatterer result, and the bottom value is the iterative finite-size

result (for which b ¼ 2a).
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Now, we let j ! k. Put j ¼ kþ ie with e > 0. We have eijx ’ ð1� exÞeikx; k
2
� j2 ’ �2iek and NnðjaÞ ’ 2i=pþ ieka

2
dnðkaÞ,

with dn defined by Eq. (2.13). Hence, in the limit e ! 0þ, the right-hand side of Eq. (A.2) becomes

eikx

ik
2

X

1

n¼�1

Cð1Þ
n f1� 2ikxþ piðkaÞ2dnðkaÞg: ðA:4Þ

Finally, use of Eqs. (2.21), (2.25) and (4.8) gives the result (5.5).

In a similar way, using Eqs. (4.14), (4.16) and (2.23), we obtain

lim
j!k

Z

disc0
eijx1 I2dx1dy1 ¼

eikx

ik
2

X

1

n¼�1

Cð2Þ
n f1� 2ikxþ piðkaÞ2dnðkaÞg

¼ �
p2a2

4
ðkaÞ2eikxð1� 2ikxÞHðkaÞ þ pa2eikx

X

1

n¼�1

dnðkaÞC
ð2Þ
n : ðA:5Þ

A.2. Evaluation of (5.4)

Next, we consider the integral over the disc,
Z

r1<a

eikx1 I1ðr1; h1Þdx1dy1 ¼
p2

4i
eikx

X

1

n¼�1

Z a

0

K
ð1Þ
n JnðkrÞrdr; ðA:6Þ

where we have used x1 ¼ x� r1 cos h1, Eqs. (2.1), (4.4) and (4.11), and integrated over h1. Substituting Eq. (4.13), and then

using Eqs. (4.10) and (4.19), we obtain
Z a

0

K
ð1Þ
n ðkrÞJnðkrÞrdr ¼ a2ðkaÞ2dnðkaÞJnðkaÞ �

2ia2

p
Jn�1ðkaÞJnþ1ðkaÞ: ðA:7Þ

Finally, making use of Eq. (2.23), we obtain Eq. (5.4).

Similarly, using Eq. (4.17),
Z

r1<a

eikx1 I2ðr1; h1Þdx1dy1 ¼ �
p3

32
eikx

X

1

n¼�1

Z a

0

K
ð2Þ
n JnðkrÞrdr ¼ �pa2eikx

X

1

n¼�1

dnðkaÞC
ð2Þ
n þ

p2i

4k
2
eikx

X

1

n¼�1

FnðkaÞ; ðA:8Þ

where we have used Eqs. (4.15) and (4.18),

FnðkaÞ ¼ k
2
Z a

0

XnðrÞJnðkrÞrdr

and XnðrÞ is given by Eq. (4.20).

Adding Eqs. (A.5) and (A.8), the sums containing Cð2Þ
n cancel leaving

lim
j!k

Z

x1>0

eijx1 I2 dx1 dy1 ¼
p

4
a2eikxfP0ðkaÞ þ ð2ikx� 1ÞQ0ðkaÞg

for x > a, where

P0ðkaÞ ¼
pi

ðkaÞ2

X

1

n¼�1

FnðkaÞ and Q0ðkaÞ ¼ pðkaÞ2HðkaÞ:

The expression for P0 simplifies a little. From Eq. (4.20), Xn ¼ Xð1Þ
n þ Xð2Þ

n , with Xð1Þ
n and Xð2Þ

n given by Eqs. (4.21) and (4.22),

respectively. We have

k
2
Z a

0

r
X

1

n¼�1

Xð1Þ
n JnðkrÞdr ¼ k

4
Z a

0

r
ir2

p
dr ¼

i

4p
ðkaÞ4;

k
2
Z a

0

Xð2Þ
n JnðkrÞrdr ¼

1

2
ðkaÞ4JnðkaÞ½JnðkaÞHnðkaÞ � dnðkaÞ � i=p�;

k
2
X

1

n¼�1

Z a

0

Xð2Þ
n JnðkrÞrdr ¼

1

2
ðkaÞ4

X

1

n¼�1

JnJnHn þ 4iH�
i

p

" #

:

Hence

P0ðkaÞ ¼ ðkaÞ2
1

4
� 2pHðkaÞ þ

pi

2

X

1

n¼�1

JnðkaÞJnðkaÞHnðkaÞ

" #

: ðA:9Þ

Notice that
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ImP0 ¼
p

2
ðkaÞ2

X

1

n¼�1

JnðkaÞJn�1ðkaÞJnþ1ðkaÞ �
p

8
ðkaÞ4 ðA:10Þ

as ka ! 0, implying that P0 does not vanish identically. In fact, a more detailed calculation shows that

P0ðkaÞ �
1

4
ðkaÞ4 log ka as ka ! 0: ðA:11Þ

Appendix B. An integral representation for HðkaÞ

We give an integral representation for HðkaÞ, defined by Eq. (2.25); it is

HðkaÞ ¼
1

jD0j
2

Z

D0

Z

D0

eik�ðr�r0ÞG0ðr; r
0ÞdV dV 0; ðB:1Þ

where j D0 j¼ pa2 is the area of the disc D0 and k is a constant vector with j k j¼ k. To see this, we put k ¼ ðk cos a; k sin aÞ and

then we find that
Z

D0

eik�rG0ðr; r
0ÞdV ¼

pi

8k
2

X

1

n¼�1

i
n
K

ð1Þ
n ðkr

0
Þeinða�h0Þ;

where we have used Eqs. (2.1), (4.6) and (4.12). (This calculation is similar to that in Section 4.1.2.)

Then, using Eq. (4.15), the right-hand side of Eq. (B.1) becomes

4i

p2ðkaÞ4

X

1

n¼�1

Cð2Þ
n ;

this reduces to HðkaÞ, once Eqs. (4.16) and (2.23) are used.
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