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Abstract

We extend the original Mullins theory of surface grooving due to a single interface
to multiple interacting grooves formed due to closely spaced flat interfaces. First, we
show that Mullins’ analysis for one groove can be simplified by using Fourier cosine
transforms instead of Laplace transforms. Second, we solve the corresponding problem
for an infinite periodic row of grooves. For both of these problems, symmetry consid-
erations ensure that the interface conditions reduce to boundary conditions. Third, we
solve the problem for two interacting grooves. Continuity requirements at the groove
roots require sliding at the interfaces or tilting of the groove roots. We adopt the latter
model. We find that the groove roots tilt until the surface curvature of the semi-infinite
profiles is eliminated.

1 Introduction

It is fifty years since the well-known paper by Mullins [6], entitled Theory of Thermal Groov-
ing , was published. He considered the following initial-value problem. A vertical flat grain
boundary meets a horizontal flat surface. Immediately, the grain boundary forms a groove
in the surface, with a known angle at the triple point. The groove becomes deeper with
time, and the problem is to calculate the evolution of the free surface. For background and
literature reviews, see [2], [4] and [3].

In fact, Mullins [6] gave two separate theories, one based on evaporation-condensation
kinetics and one based on surface diffusion. In this paper, we focus on the latter mechanism;
a similar and simpler analysis can be developed for evaporation-condensation kinetics.

Suppose that (in two dimensions) the surface profile is defined by a function y(x, t), where
x is the horizontal coordinate and t is time. Mullins [6] showed that the normal velocity of
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the surface, vn, is proportional to the Laplacian of the mean curvature, κ. In two dimensions,
this becomes

vn = B ∂2κ/∂s̃2, (1)

where s̃ is arclength along the surface. The parameter B = Dsγsω/(kBT ) is a constant: Ds is
the surface diffusivity, γs is the surface energy, ω is the atomic volume, kB is the Boltzmann
constant and T is the absolute temperature. Equation (1) can be written as a nonlinear,
fourth-order partial differential equation for y(x, t),

∂y

∂t
= −B

∂

∂x

{
X

∂

∂x

(
X3 ∂2y

∂x2

)}
, (2)

with X(x, t) = {1 + (∂y/∂x)2}−1/2.
In most crystalline systems, γs is much larger than typical interfacial energies γi. Then,

the small-slope approximation, κ ' ∂2y/∂x2 (X ' 1), may be used, giving a linear equation
for the evolution of the surface profile y(x, t) [6],

∂y

∂t
+ B

∂4y

∂x4
= 0. (3)

Mullins [6] solved (3) for a single groove, located at x = 0. By symmetry, a problem
posed in x > 0 can be formulated. Mullins solved this problem using Laplace transforms
with respect to t. This is a powerful method, and a natural choice for initial-value problems.
However, we shall show in Sec. 2 that it is much simpler to use a Fourier cosine transform
with respect to x.

Mullins’ solution has been used extensively to measure interfacial energies and surface
diffusivities. His solution has been generalized in various ways. One way is to incorporate
nonlinear effects, using (2). This was done by Robertson [8] and then by Broadbridge and
Tritscher [1, 9]. These papers consider the evolution of a single groove.

Here, we retain Mullins’ linear model, (3), but we consider systems involving more than
one groove. We do this because we expect that interactions between closely spaced grooves
could result in surface profiles that differ significantly from those predicted by Mullins’ one-
groove solution. Specifically, if we have two grooves, distance 2` apart, we ask: how do the
grooves interact, how does the interaction depend on `, and how far apart do the grooves have
to be before Mullins’ one-groove solution gives a good approximation? We treat this problem
in Sec. 4. In Sec. 3, we consider a simpler problem, in which the inherent asymmetry of the
two-groove problem is eliminated: thus, we solve the problem for an infinite, 2`-periodic row
of grooves.

For the two-groove problem, suppose the grooves are at x = ±`; evidently, the surface
profile y(x, t) is an even function of x, so that we can focus on the interface at x = `.

Introduce plane polar coordinates (ρ, ϕ) so that ρ = 0 is the groove root and the two
sides of the groove approach the root along ϕ = ±ϕg, say. Thermodynamic equilibrium
requires that the groove angle, 2ϕg, is fixed. However, the line bisecting the groove (given
by ϕ = 0) need not be vertical: the groove-root system can tilt, or rotate, as t increases.
This tilting must be calculated as part of the solution. (A similar idea can by found in [7],
where the authors consider a single groove in a step-like surface.) To solve this problem, we
revert to Laplace transforms because we want to use the same method between the grooves
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(|x| < `) and beyond the grooves (|x| > `). The problem is solved exactly, and then various
properties of the solution are extracted.

2 Mullins revisited: one groove

Mullins determined the symmetric semi-infinite groove profile due to a single interface at
x = 0 by solving (3) in the quadrant x > 0, t > 0, subject to

∂y/∂x = θeq at x = 0, t > 0, (4)

∂3y/∂x3 = 0 at x = 0, t > 0, and (5)

y = 0 at t = 0, x > 0. (6)

The condition (4) imposes the energetic balance of the dihedral angles at the triple junctions;
θeq, a positive constant, is the equilibrium dihedral angle at the surface-interface junction
given by

2θeq = γi/γs. (7)

Thus, the groove profile at the root has a fixed slope for all time. Condition (5) ensures that
the contribution of grain boundary diffusion to the overall evolution is negligible compared
to surface diffusion. The initial condition (6) says that the surface evolves from a flat surface.
An immediate consequence of (3), (5) and (6) is mass conservation,∫ ∞

0

y(x, t) dx = 0 for all t ≥ 0. (8)

Mullins [6] solved the problem for y(x, t) using a Laplace transform with respect to t (see
Sec. 4.1 below). We give a simpler treatment, using a Fourier cosine transform with respect
to x. Thus, define

Yc(k, t) =

∫ ∞

0

y(x, t) cos kx dx.

Transforming (3) yields
∂Yc/∂t + Bk4Yc = −Bk2θeq, (9)

where we have used (4) and (5). Transforming the initial condition (6) gives Yc(k, 0) = 0,
and then we can easily solve (9):

Yc(k, t) = −θeqk
−2(1− e−k4Bt). (10)

(Note that Yc(0, t) = 0 in accordance with (8).) Inverting (10) gives

y(x, t) = −2θeq

π

∫ ∞

0

(
1− e−k4Bt

) cos kx

k2
dk. (11)

This is an explicit formula for the solution of Mullins’ problem. Also notice that the problem
has a single length scale, (Bt)1/4.
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In particular, we can evaluate the solution at x = 0:

y(0, t) = −2θeq

π

∫ ∞

0

(
1− e−k4Bt

) dk

k2

= −8θeqBt

π

∫ ∞

0

k2 e−k4Bt dk

= −2(θeq/π)(Bt)1/4Γ(3
4
); (12)

the second formula comes after an integration by parts and the last formula comes from the
substitution k4Bt = k′, say, and the definition of the gamma function,

Γ(z) =

∫ ∞

0

xz−1 e−x dx for Re (z) > 0. (13)

The expression (12) agrees with [6, eqn (30)] when one notes that Γ(3
4
) Γ(5

4
) = 2−3/2π.

Returning to (11), the substitutions k = w/(Bt)1/4 and u = x/(Bt)1/4 give

y(x, t) = θeq(Bt)1/4Z(u) (14)

where Mullins’ function Z is given explicitly by

Z(u) = − 2

π

∫ ∞

0

(
1− e−w4

)
cos (uw)

dw

w2
(15)

= Z(0) +
2

π

∫ ∞

0

{1− cos (uw)} dw

w2

+
2

π

∫ ∞

0

cos (uw)− 1

w2
e−w4

dw (16)

and Z(0) = −(2/π)Γ(3
4
). An integration by parts shows that the second term on the right-

hand side of (16) is equal to u. For the third term, we can insert the Maclaurin series for
cos (uw) and then integrate term by term, using (13). The final result is

Z(u) =
∞∑

n=0

anu
n (17)

where a0 = Z(0), a1 = 1, a2m+1 = 0 for m = 1, 2, 3, . . . and

a2m =
1

2π

(−1)m

(2m)!
Γ

(
2m− 1

4

)
, m = 0, 1, 2, . . . .

The ratio test shows that the series (17) is absolutely convergent for all u. Also, (8) gives∫∞
0

Z(u) du = 0.
Mullins [6] obtained the first 15 coefficients in (17) by substituting (14) and (17) in (3),

as in the method of Frobenius. Our solution shows that (17) converges rapidly for moderate
values of u. Thus, the physics of surface evolution is captured by the first few terms of the
power series (17). For large u (that is, during the early stages of evolution away from the
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groove), we can integrate (15) by parts; this shows that Z(u) decays faster than u−n for
every positive integer n: Z(u) decays exponentially as u →∞.

We note that our method for solving the Mullins problem generalizes to physical sit-
uations where the energetic equilibrium at the groove root is time dependent. Examples
include changes in interfacial (including surface) energy, interface structure transitions and
asymmetrical kinetics in the two phases abutting the interface. In general, suppose that the
angle at the groove root, θeq, is replaced by a prescribed function of t, θ(t). Then, (9) would
have θ(t) instead of θeq on the right-hand side, giving

Yc(k, t) = −Bk2e−k4Bt

∫ t

0

θ(τ) ek4Bτ dτ.

Inverting the cosine transform and interchanging the order of integration then gives

y(x, t) = −2B

π

∫ t

0

θ(τ)

∫ ∞

0

k2 cos kx e−k4B(t−τ) dk dτ. (18)

The formulas (11) and (18) can also be obtained using Laplace transforms, but the calcula-
tions are much more complicated; see Sec. 4.1.

Evaluating (18) at x = 0, using (13) again, gives

y(0, t) = −(2π)−1Γ(3
4
) B1/4

∫ t

0

θ(τ)(t− τ)−3/4dτ. (19)

If θ has a Maclaurin expansion, θ(t) =
∑

n=0 θ(n)(0) tn/n!, the integral can be evaluated to
give

y(0, t) = −(Bt/4)1/4
∑
n=0

θ(n)(0) tn

Γ(n + 5
4
)
;

this reduces to (12) when θ(t) ≡ θeq = θ(0).

3 Multi-groove systems: periodic surface profile

In this section, we consider an infinite, 2`-periodic row of grooves. For this problem, we can
exploit symmetry across each interface and then solve for y within each period.

It is convenient to move the origin so that it is halfway between two adjacent grooves.
Then, we consider the following problem for y(x, t): solve (3) for −` < x < ` and t > 0,
subject to

∂y/∂x = θeq at x = −`, t > 0, (20)

∂y/∂x = −θeq at x = `, t > 0, (21)

∂3y/∂x3 = 0 at x = −` and at x = `, t > 0, and (22)

y = 0 at t = 0, −` < x < `. (23)

Evidently, the solution of this problem is an even function of x, y(−x, t) = y(x, t).
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The finite range for x suggests the method of separation of variables. To make this
method work, we require homogeneous boundary conditions at x = ±`. This is achieved by
writing

y(x, t) = y0(x) + v(x, t),

where
y0(x) = 1

2
θeq(`

2 − x2)/`;

this function satisfies (3) and (20)–(22), so that v must satisfy (3) together with

∂v/∂x = 0 at x = −` and at x = `, t > 0, (24)

∂3v/∂x3 = 0 at x = −` and at x = `, t > 0, and (25)

v = −y0 at t = 0, −` < x < `. (26)

The problem for v is readily solved, giving

v(x, t) = θeq`

∞∑
n=0

bn e−Btλ4
n cos λnx,

where λn = nπ/` and the coefficients bn are found by imposing the initial condition (26);
we find b0 = −1

3
and bn = 2(−1)n/(nπ)2 for n = 1, 2, . . .. Hence, our final expression for the

surface profile, valid for −` < x < ` and t > 0, is

y(x, t) =
θeq`

6
− θeqx

2

2`
+

2θeq`

π2

∞∑
n=1

(−1)n

n2
e−ξn4

cos
nπx

`
, (27)

where ξ = Bt(π/`)4 is a dimensionless quantity.
The competition between the two length scales, ` and (Bt)1/4, leads to the following

observations. As t →∞, ` is the sole length scale in the solution and (unlike the self-similar
profile for the single groove) we have an explicit formula for the finite-` surface profile,

lim
t→∞

y(x, t) = 1
6
θeq(`− 3x2/`) ≡ y∞(x), (28)

say. The limiting profile, y∞(x), is a simple quadratic, with extrema proportional to `:
maxima evolve to a height of θeq`/6 above the initial flat surface (y = 0), while the minima
evolve to a depth θeq`/3 below y = 0. Increasing ` increases the extent of the extrema, until
` ≈ (Bt)1/4. The evolution is then given by Mullins’ solution. Thus, the spacing between the
interfaces may be seen as a tool that could be used to control the height and depth of the
modified surface profile. The ratio of the depth of the groove to the distance between the
maxima is independent of ` and equal to 4/θeq, compared to 4.73/θeq for the single groove

[6, eqn (19)]. Finally, notice that
∫ `

−`
y∞(x) dx = 0, as expected from mass conservation.

As a special case of (27), we can determine the evolution of the surface at the groove
roots (x = ±`):

y(±`, t) = −θeq`

3
+

2θeq`

π2

∞∑
n=1

1

n2
e−ξn4

. (29)
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For large `, we expect to recover Mullins’ solution, given by (12). In this limit, ξ → 0, and
so the series in (29) tends to

∑∞
n=1 n−2 = π2/6, so that the leading contribution from the

series precisely cancels the term −θeq`/3 on the right-hand side of (29). Thus, to take the
limit ` → ∞, we need more information about the behaviour of the series in (29). This is
provided by the following theorem.

Theorem 1 Define a function f(ξ) for ξ > 0 by

f(ξ) =
∞∑

n=1

1

n2
e−ξn4

. (30)

Then
f(ξ) ∼ 1

6
π2 − Γ(3

4
) ξ1/4 + E(ξ) as ξ → 0, (31)

where the error E(ξ) is exponentially small.

This theorem is proved in an appendix, using Mellin transforms [5]. When it is applied to
(29), we obtain exactly the Mullins solution (12) in the limit ` →∞; moreover, we see that
the difference between the two solutions is exponentially small, meaning that the Mullins
solution gives a remarkably good approximation to the finite-` solution at the interface.

Note that wWe have not determined the exact form (or even the sign) of E(ξ) for all ξ.
However, it is easy to see that E(ξ) > 0 for ξ > 3.25. For, defining E(ξ) by equality in (31),
we obtain E(ξ) > Γ(3/4) ξ1/4 − π2/6, as f(ξ) > 0; setting the right-hand side to zero gives
ξ > 3.25.

In order to determine the minimum interfacial spacing ` above which we can safely
employ Mullins’ solution, we use well known material parameters. Using values for Ag near
its melting point, B = 10−26 m4 sec−1 [6], and the fact that the leading term in the error
E(ξ) decays exponentially with increasing ` such that ξ ≤ 0.1 is a reasonable approximation
for application of Mullins’ solution, we obtain ` ≥ 10t1/4 nm. Since 99% of the evolution at
the groove takes place in a matter of hours [6], the single groove solution can be safely used
for multilayer surface profiles with layer thickness greater than 100 nm.

4 Multi-groove systems: two grooves

In this section, we consider a symmetric bi-groove configuration with two identical interfaces.
The groove system consists of a layer a of thickness 2` sandwiched between two semi-infinite
layers b. Each groove has a known angle (dictated by thermodynamics at the triple point)
but the line bisecting each groove need not be vertical: were we to assume this, we would find
sliding discontinuities along the interfaces. Thus, we allow each groove-root system to tilt,
and we have to calculate the amount of tilt (as a function of time) as part of the problem’s
solution.

In order to solve the resulting mathematical problems, it is convenient to use a common
technique in the region between the two grooves and in the two semi-infinite regions on
either side: we use Laplace transforms, as used originally by Mullins [6]. First, we solve a
generalization of the Mullins problem (Sec. 4.1) and a generalization of the periodic-groove
problem (Sec. 4.2) in which the angle θeq is replaced by angles that can vary with time in a
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prescribed manner. These two solutions are then patched together properly, so as to solve
the two-groove problem (Sec. 4.3).

To begin, we define the Laplace transform of y with respect to t,

Y (x, s) =

∫ ∞

0

y(x, t) e−st dt.

Transforming (3) gives
∂4Y/∂x4 + (s/B)Y = 0, (32)

having used the initial condition y(x, 0) = 0. We now solve (32), subject to various condi-
tions.

4.1 A generalized Mullins problem

Suppose that we generalize the Mullins problem so that the slope at x = 0 varies with time.
Thus, we replace (4) with

∂y/∂x = θ(t) at x = 0, t > 0,

where θ(t) is a given function with Laplace transform Θ(s). Then, we want to solve (32) for
x > 0, subject to

∂Y /∂x = Θ(s) and ∂3Y /∂x3 = 0 at x = 0, (33)

with Y → 0 as x →∞. The substitution Y = eλx in (32) leads to

λ4 + (s/B) = 0, (34)

an equation for λ. In general, the transform variable s could be complex, but, for now, it is
sufficient to suppose that s is real and positive. Writing λ = Λ eiϕ, we obtain

Λ = (s/B)1/4 and ϕ = (2n + 1)π/4, n = 0,±1,±2, . . . . (35)

We pick two values of ϕ, ϕ1 and ϕ2, that give two different values of λ, λ1 and λ2, respectively,
with Re (λ) < 0 (to ensure decay as x → ∞). We take ϕ1 = 3π/4 and ϕ2 = −3π/4, giving
λ1 = (i− 1)Λ/

√
2 and λ2 = λ1, the complex conjugate of λ1. Thus, we have

Y (x, s) = A(s) eλ1x + B(s) eλ2x,

where A and B are determined using the boundary conditions (33), giving

Y (x, s) =
Θ(s)

λ1λ2

λ3
1 eλ2x − λ3

2 eλ1x

λ2
1 − λ2

2

.

Substituting for λ1 and λ2, we obtain

Y (x, s) = Θ(s) V (x, s), (36)

where
V (x, s) = (B/s)1/4 exp (−Xs1/4) sin (Xs1/4 − 1

4
π) (37)
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and X = x(4B)−1/4. In the special case that θ(t) = θeq (so that Θ = θeq/s), the formula
for Y reduces to [6, eqn (29)]. Note also that we have mass conservation for any θ(t):∫∞

0
Y (x, s) dx = 0. In particular, when x = 0, (36) and (37) give

Y (0, s) = −[B/(4s)]1/4 Θ(s). (38)

In order to invert for y(x, t), we consider complex s = S eiσ with S ≥ 0 and −π < σ < π.
Then, our formulas for Y and V are valid in the whole complex s-plane, cut along the
negative real s-axis. It is easier to work with V rather than Y (even for constant θ) because
V is less singular at the branch point, s = 0. The Bromwich inversion contour can then be
deformed around the cut; standard calculations give

v(x, t) = −2B

π

∫ ∞

0

k2 cos kx e−k4Bt dk,

where the substitution S = k4B was used. Hence, the convolution theorem gives

y(x, t) =

∫ t

0

θ(t− τ) v(x, τ) dτ,

in agreement with (18). When θ(t) = θeq, we can integrate with respect to τ ; the result
is (11).

4.2 A generalized periodic problem

Let us generalize the periodic problem of Sec. 3 so that the slopes at x = ±` vary with time.
Thus, we replace (20) and (21) by

∂y/∂x = ∓θ(t) at x = ±`, t > 0.

Taking the Laplace transform with respect to t, we obtain (32); we seek a solution that is
an even function of x and that satisfies

∂Y /∂x = −Θ(s) and ∂3Y /∂x3 = 0 at x = `. (39)

The substitution Y = cos λx in (32) leads to (34) with solutions λ = Λ eiϕ given by (35). We
pick two values of ϕ, ϕ1 and ϕ2, that give two different values of λ, λ1 and λ2, respectively,
with λ1 6= −λ2 (because cos λx is even in λ). We take ϕ1 = π/4 and ϕ2 = −π/4, giving
λ1 = (1 + i)Λ/

√
2 and λ2 = λ1. Thus, we have

Y (x, s) = A(s) cos λ1x + B(s) cos λ2x,

where A and B are determined using the boundary conditions (39), giving

Y (x, s) =
Θ(s)

λ2
1 − λ2

2

{
λ2

1 cos λ2x

λ2 sin λ2`
− λ2

2 cos λ1x

λ1 sin λ1`

}
.

Using the definitions of λ1 and λ2, we obtain (36) with

V (x, s) =
cos λ1x

2λ1 sin λ1`
+

cos λ2x

2λ2 sin λ2`
.
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This function is analytic in the complex s-plane apart from simple poles at s = −B(nπ/`)4,

n = 1, 2, . . .. Again, we can check that mass is conserved for any θ(t):
∫ `

−`
Y (x, s) dx = 0.

Later, we shall require the solution at x = `; it is given by

Y (`, s) = Θ(s)
`

Ω

sin Ω− sinh Ω

cosh Ω− cos Ω
with Ω = `(4s/B)1/4. (40)

4.3 Two grooves

We consider two grooves, one at x = ` and one at x = −`. We are going to patch together
two semi-infinite solutions (Mullins problem) with one cell of the periodic solution. If we did
this using constant slopes at the interfaces, we would find that y(x, t) would be discontinuous
at the interfaces. The problem is symmetric about x = 0, so consider the interface at x = `.
On the right-hand side of this interface, we have

∂y/∂x = θR(t) at x = ` for t > 0,

and just to the left, we have

∂y/∂x = −θL(t) at x = ` for t > 0,

where θR and θL are unknown functions of t; if they were known, we could calculate y(x, t)
for x > ` using (a shifted version of) the generalized Mullins solution (Sec. 4.1), and we
could calculate y(x, t) for |x| < ` using the generalized periodic solution (Sec. 4.2).

Now, two conditions have to be satisfied. First, y must be continuous across x = `, so
that

y(`−, t) = y(`+, t). (41)

Second, there is the thermodynamic condition

θR(t) + θL(t) = γi/γs ≡ 2θeq; (42)

this reduces to (7) when θR = θL. These two conditions are easy to impose in the Laplace-
transform domain. Thus, using (38) and (40), (41) gives

ΘR(s) =
sinh Ω− sin Ω

cosh Ω− cos Ω
ΘL(s),

whereas (42) immediately gives ΘR(s) + ΘL(s) = 2θeq/s. These two equations can now be
solved for ΘR and ΘL. We choose to focus on ΘR, given by

ΘR(s) =
2θeq

s

sinh Ω− sin Ω

F (Ω)
with F (Ω) = eΩ − cos Ω− sin Ω, (43)

where Ω = `(4s/B)1/4. Once ΘR(s) has been inverted for θR(t), θL(t) is given by (42).
From (43), we find that F has the expansion

F (Ω) = 2Ω2

∞∑
n=0

(
Ω4n

(4n + 2)!
+

Ω4n+1

(4n + 3)!

)
= Ω2(Σ0 + ΩΣ1),
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say, where

Σj(s) = 2
∞∑

n=0

Ω4n

(4n + 2 + j)!
= 2

∞∑
n=0

(4/B)n`4n

(4n + 2 + j)!
sn, j = 0, 1. (44)

Notice that Σ0 and Σ1 are even functions of Ω and analytic functions of s. Explicitly, we
have Σ0 = (cosh Ω− cos Ω)/Ω2 and Σ1 = (sinh Ω− sin Ω)/Ω3. Hence

ΘR(s) =
2θeq

s

ΩΣ1

Σ0 + ΩΣ1

.

This function is analytic in the whole complex s-plane, cut along the negative real s-axis.
Deforming the Bromwich contour around the cut gives

θR(t) =
θeq

π

∫ ∞

0

G(S) e−St dS, (45)

where

G(S) = − i

S

{
(1 + i)S1/4Λ1

Λ0 + (1 + i)S1/4Λ1

− (1− i)S1/4Λ1

Λ0 + (1− i)S1/4Λ1

}
=

2

S

Λ0Λ1S
1/4

Λ2
0 + 2Λ0Λ1S1/4 + 2Λ2

1S
1/2

,

Λ0(S) = Σ0(−S) and Λ1(S) = `B−1/4Σ1(−S).
Let us examine the behaviour of θR(t) for large times. For small S, the expansions (44)

give Λ0 ∼ 1, Λ1 ∼ 1
3
`B−1/4 and

G(S) ∼ 2
3
`B−1/4S−3/4 as S → 0.

Then, Watson’s lemma applied to (45) gives

θR(t) ∼ 2
3
(θeq/π)Γ(1

4
) `(Bt)−1/4 as t →∞.

Thus,
θR → 0 and θL → 2θeq as t →∞. (46)

As expected, the groove root tilts until the semi-infinite surface profiles eliminate their
curvature altogether.

Let us study the time dependence of the groove root. At the interfaces, the groove depth
can be calculated using either the generalized Mullins solution or the generalized periodic
solution, because of the enforced continuity, (41). From (38), we obtain

Y (`, s) = − `

Ω
ΘR(s) = −2θeq`

3s
+

2θeq`

3s

Σ0 − 3Σ1 + ΩΣ1

Σ0 + ΩΣ1

.

The second term on the right-hand side can be treated as before; it leads to a contribution
to y(`, t) that decays as (Bt)−1/4 as t →∞. Hence

y(`, t) = −2
3
θeq` + 2

9
(θeq/π)Γ(1

4
) `2(Bt)−1/4 + O(t−1/2) as t →∞.
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5 Conclusions

We have extended Mullins’ linear theory of thermal surface grooving to periodic systems of
grooves and to a pair of grooves. For periodic systems, we found the limiting profile and we
showed that the Mullins solution gives a remarkably good approximation.

The two-groove system introduces asymmetry. We resolve potential discontinuities at
the interfaces by allowing the groove-root systems to tilt by a time-dependent amount that
we calculate. Note that, in reality, the groove roots may also move relative to each other;
further investigation may reveal whether this possibility is important or not.

Our methods should also be useful for analysing surface grooving at interfaces between
different materials. Again, the grooving will be asymmetric. For one study (both theoretical
and experimental) of such a problem, see [7].
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Appendix: Proof of Theorem 1

Take the Mellin transform of (30), defined by

f̃(z) =

∫ ∞

0

f(ξ) ξz−1 dξ.

f̃(z) is an analytic function of the complex variable z for Re (z) > 0. Explicitly, we find that

f̃(z) =
∞∑

n=1

1

n2

∫ ∞

0

ξz−1 e−ξn4

dξ = Γ(z) ζ(4z + 2), (A.1)

where Γ(z) is defined by (13) and ζ(z) is the Riemann zeta function, defined by

ζ(z) =
∞∑

n=1

1

nz
for Re (z) > 1.

Equation (A.1) gives the analytic continuation of f̃(z) into Re (z) ≤ 0. The inversion formula
gives

f(ξ) =
1

2πi

∫ c+i∞

c−i∞
f̃(z) ξ−z dz with c > 0.

Moving the inversion contour to the left, we pick up residue contributions at the poles of f̃(z).
It is known that Γ(z) has simple poles at z = −N , N = 0, 1, 2, . . .. It is also known that

ζ(z) has a simple pole at z = 1 and satisfies ζ(−2n) = 0, n = 1, 2, . . .. Hence, f̃(z) has just
two simple poles, one at z = 0 with residue ζ(2) = π2/6, and one at z = −1

4
with residue

1
4
Γ(−1

4
) = −Γ(3

4
). The result (31) follows. Further details of the method used here can be

found in [5].
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