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Scattering by a Cavity in an
Exponentially Graded Half-Space
An inhomogeneous half-space containing a cavity is bonded to a homogeneous half-
space. Waves are incident on the interface and the problem is to calculate the scattered
waves. For a circular cavity in an exponentially graded half-space, it is shown how to
solve the problem by constructing an appropriate set of multipole functions. These func-
tions are singular on the axis of the cavity, they satisfy the governing differential equation
in each half-space, and they satisfy the continuity conditions across the interface between
the two half-spaces. Seven recent publications are criticized: They do not take proper
account of the interface between the two half-spaces. �DOI: 10.1115/1.3086585�

1 Introduction

Consider two half-spaces, x�0 and x�0, welded together

along the interface at x=0. The left half-space �x�0� is homoge-

neous. The right half-space is inhomogeneous. If a wave is inci-
dent from the left, it will be partly reflected and partly transmitted
into the right half-space. We assume that these fields can be cal-
culated.

Suppose now that the right half-space contains a cavity or some
other defect �see Fig. 1�. How are the basic fields described above
modified by the presence of the cavity? In general, it is not easy to
answer this question, as the associated mathematical problem is
difficult, in general.

In some recent papers, Fang et al. claimed to solve a variety of
such problems. All concern “exponential grading,” meaning that

the material parameters are proportional to e−�x for x�0, where �
is a given constant. The papers concern antiplane shear waves
�1–4�, thermal waves �5,6�, and shear waves in a piezoelectric
material �7�. All of these papers assume that the effect of the
interface on the cavity can be found by introducing simple image
terms, as if the interface were a mirror or a rigid wall. Unfortu-
nately, this assumption is incorrect.

In this paper, we outline how the problems described above can
be solved. We do this in the context of antiplane shear waves with
exponential grading and a circular cavity. The main technical part
concerns the derivation of suitable multipole potentials; these re-
veal the complicated image system.

The study of problems involving scatterers near boundaries or
interfaces has a long history. For linear surface water waves inter-
acting with a submerged circular cylinder, see the famous paper
by Ursell �8�. For plane-strain elastic waves in a homogeneous
half-space with a buried circular cavity, see Ref. �9�. There are
also many papers on the scattering of electromagnetic waves by
objects near plane boundaries; see, for example, Ref. �10�.

Some problems involving objects near plane boundaries can be
solved using images. However, determining the strength and lo-
cation of the images may be difficult: Doing so will depend on the
governing differential equations and on the conditions to be satis-
fied on the plane boundary. For two interesting examples where
the location of the images is not obvious, we refer to Chap. 8 of
Ting’s book �11� �construction of static Green’s functions in an-
isotropic elasticity� and a paper by Stevenson �12� �construction
of Green’s function for the anisotropic Helmholtz equation in a
half-space�.

The basic scattering problem is formulated in Sec. 2. The
reflection-transmission problem �for which the cavity is absent� is

solved in Sec. 3. The solution of this problem gives the “incident”
field that will be scattered by the cavity. To solve the scattering
problem, we construct an appropriate set of multipole functions
�Sec. 4.1�. Each of these satisfies the governing differential equa-
tions and the interface conditions, and is singular at the center of
the circular cavity. Each multipole function is defined as a contour
integral of Sommerfeld type; for a careful discussion of similar
functions, see Refs. �13,9�. In Sec. 4.2, the multipole functions are
combined so as to satisfy the boundary condition on the cavity,
leading to an infinite linear system of algebraic equations. The
far-field behavior of the multipole functions is deduced in Sec.
4.3. Closing remarks are made in Sec. 5.

2 Formulation

We consider the antiplane deformations of two elastic half-

spaces, bonded together. In terms of Cartesian coordinates �x ,y�,
the half-space x�0 is homogeneous, the half-space x�0 is inho-

mogeneous �“graded”�, and the interface is at x=0. The homoge-

neous region has shear modulus �0 and density �0 �both con-

stants�. The inhomogeneous region has shear modulus ��x� and

density ��x� given by

��x� = �0e2�x and ��x� = �0e2�x �1�

where � is a constant. Thus, the material parameters are continu-
ous across the interface.

It is not our purpose here to discuss whether any real materials
can be well represented by the functional forms given in Eq. �1�.
Certainly, the choices in Eq. �1� do lead to some mathematical
simplifications and they have been used in the past; see, for ex-
ample, Refs. �14,15�.

For time-harmonic motions, with suppressed time-dependence

e−i�t, the governing equation is

��xz

�x
+

��yz

�y
+ u�2��x� = 0

where u�x ,y� is the antiplane component of displacement and the

stress components are given by

�xz = ��x�
�u

�x
and �yz = ��x�

�u

�y

Thus, in the homogeneous region, where we write u0 instead of u,
we obtain the two-dimensional Helmholtz equation

��2 + k0
2�u0 = 0 with k0

2 = �0�2/�0 �2�

In the inhomogeneous region, we obtain

�
2u + 2�

�u

�x
+ k0

2u = 0

This equation is satisfied by writing
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u�x,y� = e−�xw�x,y�

where w satisfies a different two-dimensional Helmholtz equation

��2 + k2�w = 0 with k2 = k0
2 − �2 �3�

For simplicity, we assume that k0
2��2 and write k= +�k0

2−�2.
The interface conditions require that the displacements and nor-

mal stresses be continuous, so that

u0�0,y� = u�0,y� = w�0,y� �4�

� �u0

�x
�

x=0

= � �u

�x
�

x=0

= � �w

�x
�

x=0

− �w�0,y� �5�

3 Incident Field

Suppose that a plane wave is incident on the interface from the
homogeneous side. This wave is given by

uin�x,y� = eik0�x cos �0+y sin �0�

where �0 is the angle of incidence, ��0��	 /2; �0=0 gives normal

incidence. There will be a reflected wave ure and a transmitted

wave utr. Evidently,

ure�x,y� = Reik0�−x cos �0+y sin �0�, x � 0 �6�

utr�x,y� = Te−�xeik�x cos �+y sin ��, x � 0 �7�

where R, T, and � are to be found. Writing u0=uin+ure and u

=utr, Eq. �4� gives

1 + R = T and k0 sin �0 = k sin �

Then, Eq. �5� gives

�1 − R�ik0 cos �0 = T�ik cos � − ��

Solving for R gives

R =
k0 cos �0 − k cos � − i�

k0 cos �0 + k cos � + i�
=

− i�

k0 cos �0 + k cos �

and then T=1+R.

For a simple check, put �=0; we obtain k=k0, �=�0, R=0,

and T=1, as expected.

4 Scattering by a Buried Cavity

Next, we investigate how the wavefields of Sec. 3 are modified

if there is a cavity in the inhomogeneous half-space, x�0. See
Fig. 1.

We suppose that the cavity’s cross section is circular, with
boundary

�x − b�2 + y2 = a2 with 0 � a � b

We also introduce polar coordinates, �r ,
�, so that

x = b + r cos 
 and y = r sin 
 �8�

Thus, the cavity’s boundary is given by r=a, and the boundary
condition is

�u

�r
= 0 on r = a �9�

where u is the total field in the inhomogeneous half-space.
To solve such a scattering problem, we write

u0 = uin + ure + v0, x � 0

u = utr + v, x � 0, r � a

where v0 solves Eq. �2�, v=we−�x, and w solves Eq. �3�. Also, v0

must satisfy the Sommerfeld radiation condition and v must decay

with x.

4.1 Multipole Functions. To represent the scattered field, we

introduce functions �n of the form

�n = �e−�x	Hn
�1��kr�ein
 + �n
 , x � 0


n, x � 0
�

where H
n

�1�
is a Hankel function and n is an arbitrary integer. We

require that �n solves Eq. �3� and 
n solves Eq. �2�. In addition,

�n and 
n are to be chosen so that �n satisfies the interface
conditions, Eqs. �4� and �5�.

The use of polar coordinates is convenient for handling the
circular cavity but it is inconvenient when trying to impose the

conditions at x=0. Therefore, we convert from polar coordinates
to Cartesian coordinates using an integral representation; see the
Appendix for details. In particular, if we insert Eq. �8� in Eq. �A4�,
we obtain the integral representation

Hn
�1��kr�ein
 =

�− 1�n

	i
�

−�

�+	i

ek�b−x�sinh �−iky cosh �e−n�d�

for x � b, �y� � � �10�

Notice that this formula is valid on the interface x=0. The contour
of integration in Eq. �10� is also described in the Appendix.

The form of Eq. �10� suggests using a similar integral represen-

tation for �n, and so we write

�n�x,y� =
�− 1�n

	i
�

−�

�+	i

A���ekx sinh �e−iky cosh �+kb sinh �−n�d�, x � 0

�11�

where A��� is to be found; �n solves Eq. �3� automatically for any

reasonable choice of A.

We shall also need a similar integral representation for 
n�x ,y�
in x�0, where the wavenumber is k0. However, in order to match

solutions across the interface at x=0, we shall require the same

dependence on y as in Eq. �11�. Thus, we consider


n�x,y� =
�− 1�n

	i
�

−�

�+	i

B���ex����e−iky cosh �+kb sinh �−n�d�, x � 0

�12�

where B��� is to be found,

���� = �k2 cosh2 � − k0
2�1/2 = �k2 sinh2 � − �2�1/2

and the square root is taken so that Re ��0 on the contour.
Notice that Eq. �2� is satisfied automatically for any reasonable

choice of B.
We are now ready to enforce the interface conditions. Continu-

ity of �n across x=0 gives 1+A=B whereas continuity of ��n /�x
gives

x

y

O
�

b θ

Fig. 1 The scattering problem. The half-plane on the left of x

=0 is homogeneous. The other half-plane is inhomogeneous.
The circular cavity has radius a. A plane wave is incident from
the left.
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− k sinh � − � + �k sinh � − ��A��� = ����B���

Hence

A��� =
k sinh � + � + �

k sinh � − � − �
�13�

and

B��� =
2k sinh �

k sinh � − � − �
�14�

These formulas complete the construction of the multipole func-

tions �n.

Note that when �=0, k=k0, ����=−k sinh �, A=0, B=1, and


n=H
n

�1��kr�ein
, as expected.

4.2 Imposing the Boundary Condition. In the homogeneous
half-space, we write

u0 = uin + ure + 

n

cn�n

where �n denotes summation over all integers n. Similarly, in the
graded half-space, we write

u�r,
� = utr + 

n

cn�n

Then, by construction, the governing partial differential equations

and the interface conditions along x=0 are all satisfied. It remains

to determine the coefficients cn using the boundary condition on

r=a, Eq. �9�; this gives



n

cn� ��n

�r
�

r=a

= − � �utr

�r
�

r=a

�15�

To proceed, we write both sides of this equation as Fourier series

in 
. For the right-hand side, we have

utr = e−�x
Tbeikr cos�
−�� = e−�x

Tb

m

imJm�kr�eim�
−��

where Tb=T exp�ikb cos �� and Jn is a Bessel function. Also, we

have the expansion

e−�x = e−�b

s

�− 1�sIs��r�eis


where In is a modified Bessel function. Hence,

utr�r,
� = e−�b

m

�− 1�mUm�r�eim


where

Um�r� = Tb

s

�− i�sIm−s��r�Js�kr�e−is�

In a similar way, we obtain

�n�r,
� = 

m

�− 1�mfm
n Jm�kr�eim
, 0 � r � b

with

fm
n =

�− 1�n

	i
�

−�

�+	i

A���e2kb sinh �e−�m+n��d�

Hence

�n�r,
� = e−�b

m

�− 1�mVm
n �r�eim


where

Vm
n �r� = �− 1�nIm−n��r�Hn

�1��kr� + 

s

fs
nIm−s��r�Js�kr� �16�

Thus, Eq. �15� and orthogonality of 	eim

 give



n

cnVm
n��a� = − Um� �a�, all m �17�

which is a linear system of algebraic equations for the coefficients

cn.

4.3 Far-Field Behavior of �
n
. We should expect cylindrical

waves in the homogeneous half-space. These arise from the far-

field behavior of 
n�x ,y�, for x�0. Thus, put

x = − R cos �, y = R sin �, ��� � 	/2

Then, making the substitution k cosh �=k0 cosh s in Eq. �12�
gives �=−k0 sinh s and


n =
1

	i
�

−�

�+	i

Bn�k0 cosh s;��ek0R sinh�s−i��ds, ��� � 	/2

�18�

where

Bn��;�� =
2��2 − k0

2�1/2 exp	− b��2 − k2�1/2


��2 − k2�1/2 + � + ��2 − k0
2�1/2 � � + ��2 − k2�1/2

�− k�
�n

the square roots being defined to have non-negative real parts.

The formula for 
n, Eq. �18�, is convenient for estimating 
n

when k0R�1, as we can use the saddle-point method ��16�, Chap.

8�. There is one relevant saddle point at s=s0 where s0= i� 1

2
	

+��. As cosh s0=−sin � and sinh�s0+ i��= i, the standard argu-

ment gives


n �
1

	i
Bn�− k0 sin �;��eik0R� exp	 1

2
ik0R�s − s0�2
ds �19�

�� 2

	k0R
ei�k0R−	/4�

Bn�− k0 sin �;�� as R → � �20�

where the contour of integration in Eq. �19� passes through the
saddle point.

When �=0, we obtain Bn�−k0 sin � ;0�= ineik0b cos �e−in�.

Then, Eq. �20� agrees with the known far-field expansion of H
n

�1�

��kr�ein
, when one takes into account that 
�	−� and r�R

+b cos � as R→�.

4.4 Near-Field Behavior of �
n
. As the expression for �n,

Eq. �11�, is similar to Eq. �10�, it is reasonable to ask if �n cor-
responds to a simple image term. To see that it does not, let us
define polar coordinates centered at the mirror-image point,

�x ,y�= �−b ,0�: x=−b+r� cos 
�, y=r� sin 
�. Then, calculations

similar to those described in the Appendix show that

Hn
�1��kr��ein�	−
�� =

�− 1�n

	i
�

−�

�+	i

ekx sinh �e−iky cosh �+kb sinh �−n�d�

�21�

for �
���	 /2. The integral on the right-hand side of Eq. �21�
should be compared with the integral defining �n, Eq. �11�. For

them to be equal, the function A���, defined by Eq. �13�, would

have to be constant: It is not, and it is not well approximated by a

nonzero constant. Thus, it is not justified to replace �n with a
simple image term: We notice that Fang et al. �2� used image

terms similar to those on the left-hand side of Eq. �21�, with 	
−
� replaced with 
�.
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5 Discussion

We have outlined how to solve the scattering problem for a
cavity buried in a graded half-space; the result is the infinite linear
algebraic system, Eq. �17�. The system matrix is very compli-

cated: One has to calculate �d /dr�Vm
n �r� at r=a, where Vm

n is de-

fined by Eq. �16� as an infinite series of special functions with
coefficients given as contour integrals. In principle, the system
matrix could be computed but it is unclear whether this is a worth-
while exercise, given the limitations of the underlying model, with
both shear modulus and density varying exponentially; see Eq.
�1�. However, it may be possible to extract asymptotic results
from the exact system of equations for small cavities or for cavi-
ties that are far from the interface: This remains for future work.

Appendix: Integral Representations

As explained in Sec. 4.1, we need to convert from polar coor-
dinates to Cartesian coordinates in order to apply the interface

conditions at x=0. This is done using certain integral formulas.
Thus, from Ref. �17� �p. 178, Eq. �2��, we have the integral rep-
resentation

Hn
�1��kr� =

1

	i
�

−�

�+	i

ekr sinh w−nwdw �A1�

The integration is along any contour in the complex w-plane,

starting at w=−� and ending at w=	i+�. When w=�+ i�, where

� and � are real, �ekr sinh w�=ekr sinh � cos �. Thus, we can generalize
Eq. �A1� to

Hn
�1��kr� =

1

	i
�

−�+i�1

�+i�2

ekr sinh w−nwdw �A2�

where the constants �1 and �2 must satisfy

−
1

2
	 � �1 �

1

2
	 and

1

2
	 � �2 �

3

2
	

In other words, we have some flexibility in our choice of contour,
flexibility that we shall exploit shortly.

Put w=�+ i�
−	�. Then Eq. �A2� becomes

Hn
�1��kr�ein
 =

�− 1�n

	i
�

−�+i�1

�+i�2

e−kr�sinh � cos 
+i cosh � sin 
�e−n�d�

�A3�

where the constants �1 and �2 must satisfy

−
1

2
	 � �1 + 
 − 	 �

1

2
	 and

1

2
	 � �2 + 
 − 	 �

3

2
	

In particular, the choices �1=0 and �2=	 show that

Hn
�1��kr�ein
 =

�− 1�n

	i
�

−�

�+	i

e−kr�sinh � cos 
+i cosh � sin 
�e−n�d�

for
1

2
	 � 
 �

3

2
	 �A4�

This is the integral representation that we use in Sec. 4.1.
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