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Waves around almost periodic arrangements
of scatterers: Analysis of positional disorder

P. A. Martina∗† and A. Maurelb

Much is known about the propagation of waves through periodic arrangements of identical scatterers, such as through
a photonic crystal. Here, we consider a simple realization: scalar waves through a regular two-dimensional array of
identical small circles. We are interested in the effect of random disorder: the circles remain identical, but their centres
are given small random displacements. We derive asymptotic approximations that can be used to quantify the effect
of positional disorder. Extension to more complicated problems seems feasible and is expected. Copyright © 2010 John
Wiley & Sons, Ltd.
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1. Introduction

Consider waves in a two-dimensional periodic structure. The structure is defined by a lattice: each cell in the lattice is a parallelogram,

each node in the lattice is a scatterer location. For scalar waves governed by the Helmholtz equation, (∇2 +k2)u=0, it is known

how to calculate the dispersion relation, connecting the wave-number k to the Bloch vector Q: solutions satisfy the Bloch condition

u(r+rj)=u(r) exp (iQ ·rj), for every lattice node rj .

By assumption, all scatterers in the periodic structure are identical. Evidently, the dispersion relation depends on the shape and

composition of the scatterers. Asymptotic approximations are also available when the scatterers are small.

The periodic problems outlined above have been studied extensively. One important application concerns photonic crystals [1].

Fabrication of such structures inevitably introduces imperfections, leading to nearly periodic geometries or other forms of disorder.

What are the effects of the disorder? There are publications on this question; the main result is that the band-gap phenomena

seen with periodic structures are robust to small amounts of random disorder. Representative publications include [2--9]. All these

papers include results from numerical simulations. Some [2, 4, 5, 7, 9] use a ‘supercell’ method, which means that a periodic medium

is constructed in which each period contains the same disordered arrangement of circular scatterers; evidently, such a periodic

medium is not a random medium, so it is unclear how to interpret the results. The other papers [3, 6, 8] use a finite number of

circular scatterers, 169 in [3], 38 in [6] and 1152 in [8]. One paper [5] also includes a simple method for estimating the effect of

disorder on k, but it assumes that the scatterers are penetrable and that the fields in the periodic medium are known.

In this paper, we propose an analytical method for estimating the effect of positional disorder on wave propagation. We use the

simplest possible model: identical, small, sound-soft circular scatterers, implying isotropic scattering. We calculate the ensemble-

averaged field, using the Lax quasi-crystalline approximation (QCA). This leads to an infinite, homogeneous system of linear algebraic

equations; setting the determinant to zero yields a method for calculating the allowable wavenumbers in the disordered structure.

Known results are recovered when the disorder is absent, and simple explicit approximations are obtained when the disorder is

small. Many extensions of the basic approach are anticipated.
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2. Periodic case: no scatterers

We start with an infinite two-dimensional lattice �. Lattice points rj ∈� are defined by

rj = j1a1 + j2a2, j1, j2 ∈Z, (1)

for given independent constant vectors a1, a2. Later, we shall distribute identical scatterers, with scatterer Cj located at (or near) rj .

The origin, O, is at r0. Let d =min{|a1|, |a2|}; it is the distance from O to the nearest lattice point.

Solutions are sought satisfying the Bloch condition,

u(r+rj)=u(r) exp (iQ ·rj), (2)

where Q= (q1, q2) is a constant vector and r= (x, y). Looking for solutions of the Helmholtz equation in the form

um(r)=exp (iQm ·r) with k2 =Q2
m and Qm =|Qm|,

we find that the Bloch condition is satisfied if Qm =Q+Lm for each

Lm =2�(m1b1 +m2b2), m1, m2 ∈Z,

with ai ·bj =�ij . The vector Lm is a reciprocal lattice vector; it satisfies

Lm ·rj =2�p for some p∈Z. (3)

Explicitly, let A=|a1 ×a2| be the area of one cell in the lattice. Then, we can take

b1 =2�A−1a2 ×a3 and b2 =2�A−1a3 ×a1 with a3 =A−1a1 ×a2.

We regard the vector Q as given, and then the calculations above give allowable values for k, namely Qm. If we write Qm =

Qm(cos�m, sin�m), we obtain

um(r)=exp {iQm(x cos�m +y sin�m)}, (4)

a plane wave with lattice wavenumber Qm propagating at an angle �m to the positive x-axis. In general, there may be Mm distinct

reciprocal lattice vectors Lm giving the same value for Qm =|Q+Lm|. In such a case, we shall denote the corresponding propagation

angles by �
j
m, j=1, 2,. . . , Mm. The number Mm will depend on Q, Qm and �; generically, we expect Mm =1, but larger values may

be possible. For example, McIver [10] considers a square lattice with Q as a multiple of a1, and he investigates cases with Mm as

large as 4.

3. Periodic case: circular scatterers

The Bloch solutions described above exist in the absence of scatterers. In order to represent arrays of scatterers, we begin by

defining (radiating) wave-functions,

�H
n (r)=Hn(kr)ein�, n∈Z,

with Hn ≡H(1)
n , x = r cos�, y = r sin� and r =|r|. Similarly,

�J
n(r)= Jn(kr)ein�, �Y

n (r)=Yn(kr)ein�, n∈Z.

Then, define

Gn(r)=
∑

rj∈�

�H
n (r−rj) exp (iQ ·rj). (5)

This is a wave-function with a singularity at each lattice point, rj . Moreover, it is easy to verify that Gn satisfies the Bloch condition (2).

Note that we could replace �H
n by �Y

n in (5). The only reason for using �H
n is to ensure that the Sommerfeld radiation condition

(assuming time dependence of e−i�t) is satisfied, but this condition is irrelevant for infinite arrays of scatterers. On the other hand,

we could not replace �H
n by �J

n because we know that non-trivial solutions in the presence of scatterers must have singularities

inside the scatterers.

We consider a periodic arrangement of circular cylinders, one at each lattice point. Each circle Cj has radius a. We look for solutions

in the form

u(r)=
∑

n
AnGn(r) (6)

where the sum is over all n∈Z and An are unknown coefficients. By construction, u satisfies the Helmholtz equation and the Bloch

condition. It remains to impose the boundary conditions on the cylinders. For simplicity, we assume that the cylinders are sound-soft,

which means that we impose a Dirichlet condition.
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3.1. Sound-soft cylinders

The boundary condition is

u(r)=0, r∈Cj , j ∈Z.

It is enough to apply the condition on the circle centred at the origin, r0. To do this, we begin with Graf’s addition theorem,

�H
m(r−rj)=

∑

n
Smn(−rj)�

J
n(r), r<|rj|,

where Smn(r)=�H
m−n(r). Hence, as �H

n (−r)= (−1)n�H
n (r),

Gm(r)=�H
m(r)+

∑

n
(−1)m+n�J

n(r)�H
m−n, 0<r<d, (7)

where

�H
n =�H

n (k; Q;�)=
′

∑

rj∈�

�H
n (rj) exp (iQ ·rj) (8)

and the prime on the summation indicates that the term with r0 =0 is omitted. Substitution of (7) in (6) gives

u(r)=
∑

m

{

Am�H
m(r)+�J

m(r)
∑

n
An(−1)m+n�H

n−m

}

near C0. Thus, u=0 on r =a combined with orthogonality of ein� gives

0=AmHm(ka)+Jm(ka)
∑

n
An(−1)m+n�H

n−m, m∈Z. (9)

This is an infinite homogeneous linear system. Setting its determinant to zero then determines k for a specified Q. Later, we shall

denote solutions of the periodic problem by kp.

3.2. Lattice sums

The quantity �H
n (k; Q;�), defined by (8), is known as a lattice sum. For square arrays, it is denoted by Sn(k) in [11, Equation (41)] and

by Sn(k, Q) in [12, Equation (3.81)]. The special case where the Bloch vector Q=0 has been studied extensively. For square arrays,

see [13, Equation (3.14)], [11, Equation (7)] and [14, Equation (1.5)].

As �H
n =�J

n + i�Y
n , we can write �H

n =�J
n + i�Y

n . It turns out that �J
n(k; Q;�)=−�n0, provided k is not a lattice wavenumber, k2 �=Q2

m.

This result was proved by Berry [13, Equation (A.7)] for Q=0 and by Chin et al. [11, Equation (45)] for Q �=0. The proofs are for

square arrays, but they extend to arbitrary lattices. Consequently, (9) reduces to

0=AmYm(ka)+Jm(ka)
∑

n
An(−1)m+n�Y

n−m, m∈Z, k2 �=Q2
m. (10)

This is exactly what we would have obtained if we had started with �Y
n in (5) instead of �H

n .

There are many expressions for the lattice sums. We are interested especially in their singularities. We start with a standard

integral representation,

H(1)
0 (kr)=

1

i�2

∫ ∫

eiL·r dL

L2 −k2 − i	
. (11)

Here, L=|L| and we let 	→0+ at the end of the calculation. Equation (11) is in [13] (put l =0 in Equation (B.1)), [11] (middle of p.

4592, without 	) and [15, Equation (2.9.39)]. Then, from (5), we have

G0(r) =
∑

rj∈�

�H
0 (r−rj) exp (iQ ·rj)

=
1

i�2

∑

rj∈�

∫ ∫

eiL·(r−rj)

L2 −k2 − i	
eiQ·rj dL

=
1

i�2

∫ ∫

eiL·r

L2 −k2 − i	

∑

rj∈�

e−i(L−Q)·rj dL

=
4

iA

∫ ∫

eiL·r

L2 −k2 − i	

∑

m
�(L−Q−Lm) dL

=
4

iA

∑

m

eiQm·r

Q2
m −k2

. (12)

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 2215–2224
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Here, we have used (A1), we have let 	→0+, Qm =Q+Lm, Qm =|Qm| and Lm is a reciprocal lattice vector. For square lattices, the

formula (12) is in [11, Equation (39)].

Putting Qm =Qm(cos�m, sin�m),

eiQm·r =eiQmr cos (�m−�) =
∑

n
inJn(Qmr)ein(�m−�)

and then (12) gives

G0(r)=
4

iA

∑

n
ine−in� ∑

m

Jn(Qmr)ein�m

Q2
m −k2

.

Also from (5), we have

G0(r)=�H
0 (r)+

∑

n
(−1)n�J

−n(r)�H
n =H0(kr)+

∑

n
e−in�Jn(kr)�H

n

for 0<r<d. Comparing these two expressions for G0(r) gives

H0(kr)+J0(kr)�H
0 =

4

iA

∑

m

J0(Qmr)

Q2
m −k2

and, for n �=0,

Jn(kr)�H
n =

4

iA
in

∑

m

Jn(Qmr)ein�m

Q2
m −k2

.

These formulas are in [11, Equation (48)]. They show that

�H
n ≃

2in+1

AQm(k−Qm)

Mm
∑

j=1

exp (in�
j
m) when k ≃Qm; (13)

recall that there are Mm vectors Qm with the same magnitude Qm (see the discussion following (4)). The approximation is slightly

different when k ≃−Qm, but we shall be interested in positive k and Qm.

3.3. Small circular scatterers

The homogeneous system (9) is exact. However, we know that small sound-soft cylinders scatter isotropically [16, §8.2.5], so that

approximations can be made. Thus, for 0<ka≪1, we can put An =�n0, whence (6) reduces to

u(r)=G0(r)=
∑

rj∈�

�H
0 (r−rj)e

iQ·rj (14)

and (9) reduces to

0=H0(ka)+J0(ka)�H
0 (k; Q;�) (15)

or, equivalently,

0=Y0(ka)+J0(ka)�Y
0 (k; Q;�). (16)

This is [17, Equation (18.28)] and [12, Equation (3.160)]. From (13), we obtain

�H
0 ≃

2iMm

AQm(k−Qm)
when k ≃Qm, (17)

so that (15), J0(ka)≃1 and H0(ka)≃ iY0(Qma) give

Qm −k ≃
2Mm

AQmY0(Qma)
, (18)

which gives an estimate for the wavenumber (k =kp) in the presence of scatterers, regarded as a correction to the wavenumber

for a particular lattice wave (Qm). Note that the approximation (18) was obtained assuming that ka≃Qma≪1, but nothing was

assumed about the size of kd.

For small hard cylinders (ka≪1), the scattering is not isotropic, so that dipole terms are needed. McIver [10] has given results

similar to (18), using matched asymptotic expansions, for cylinders of arbitrary cross-section. Similar methods for soft cylinders are

developed in [18].
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3.4. Foldy’s deterministic method

Foldy’s method starts by assuming isotropic scattering, so it is appropriate for small soft scatterers [16, Section 8.3]. It begins by

supposing that we can write

u(r)=
∑

rj∈�

Bj�
H
0 (r−rj)=Bi�

H
0 (r−ri)+ue

i (r), (19)

where

ue
i (r)=u(r)−Bi�

H
0 (r−ri)=

∑

j �=i

Bj�
H
0 (r−rj). (20)

The quantity ue
n(r) is the ‘external’ or ‘exciting’ field; it is the field incident on the nth scatterer in the presence of all the other

scatterers. Next, suppose that Bn =gue
n(rn), where g is the scattering coefficient. Thus, the strength of the field scattered by the nth

cylinder is proportional to the external field acting on that cylinder. All our scatterers are identical, so we use the same scattering

coefficient for each. Then, evaluating (20) at r=ri gives

ue
i (ri)=g

∑

j �=i

ue
j (rj)�

H
0 (ri −rj), ri ∈�, (21)

a homogeneous linear system for the numbers ue
j

(rj). Looking for a solution in the form

ue
j (r)=exp (iQ ·r),

the system (21) reduces to

1=g
∑

j �=i

eiQ·(rj−ri)�H
0 (ri −rj).

As ri −rj is a lattice point, we can write this as a single equation,

1=g�H
0 (k; Q;�), (22)

where �H
0 is a lattice sum. Also, u(r)=gG0(r).

Comparison of (22) with (15) suggests that we take

g=−J0(ka) / H0(ka). (23)

For a related approach, we could begin with

u(r,�)=G0(r)=H0(kr)+
∑

n
e−in�Jn(kr)�H

n .

Then, applying the boundary condition ‘on average’,
∫ �
−� u(a,�) d�=0, gives (15) again.

Returning to (22), if we denote a solution by k =kp, and use the approximation (17), we obtain the estimate

kp −Qm ≃
2igMm

AQm
. (24)

If we approximate g, as given by (23), for small ka, we have g∼ i / Y0(ka), and then (24) reduces to (18) once we use ka≃Qma.

4. Positional disorder

We introduce perturbations of the periodic arrangement of identical circular cylinders. One option would be to randomly perturb

the radius of each circular scatterer. Here, we randomly perturb the location of each cylinder. Thus, we suppose that the centre

of the nth circle is displaced from rn to r′n with |rn −r′n|<	d, where 0<	≪1: each small disc, Dn, of radius 	d and centre rn ∈�,

contains exactly one scatterer, centred at r′n.

For simplicity, we use the Foldy deterministic model, (19) and (21); for a configuration �
′
N of N cylinders, it gives

u(r)=g
∑

r′
j∈�

′
N

ue
j (r′j )�

H
0 (r−r′j ) (25)

where

ue
i (r′i )=g

∑

j �=i

ue
j (r′j )�

H
0 (r′i −r′j ), r′i ∈�

′
N. (26)

The sum in (25) has N terms and the sum in (26) has N−1 terms.

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 2215–2224
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Next, we compute the ensemble average 〈u〉. Suppose that BN is the region occupied by the N identical circles. We find that (see

[16, Section 8.6.2], for example)

〈u(r)〉 = gN

∫

BN

p(r′)vN(r′)�H
0 (r−r′) dr′, (27)

vN(r) = g(N−1)

∫

BN

p(r′|r)v
(1)
N (r′)�H

0 (r−r′) dr′, (28)

and so on, with further equations in a familiar hierarchy, each one involving more information on the statistics of the distribution

of the scatterers. (The probability p(r) and the conditional probability p(r′|r) will be defined below, in (29) and (32), respectively; the

function vN(r′1) is a conditional average of ue
1). This hierarchy is usually broken with a closure assumption.

At the lowest level, we may try using the Foldy closure assumption, 〈u〉=vN , and then (27) becomes an integral equation for

〈u〉. However, it turns out that this integral equation does not yield a useful result as it cannot recover the known solution for the

periodic case.

At the next level, we may use the Lax quasi-crystalline approximation (QCA), vN =v(1)
N , and then (28) becomes an integral equation

for vN. Once vN has been found, 〈u〉 can be calculated from the formula (27). This is the approach adopted here. In fact, it is known

that: QCA is optimal in a certain variational sense [19, 20]; QCA gives analytical results in agreement with independent calculations

for random arrangements of weak scatterers [21]; and QCA gives good agreement with direct numerical simulations [22]. Note that

our geometrical configuration is almost periodic: it can truly be described as quasi-crystalline!

To proceed, we must specify the probability p(r′) and the conditional probability p(r′|r), and then we shall let N→∞.

Recall that the centre of the nth circle is allowed to move from the lattice point at rn to a neighbouring point at r′n inside a small

disc of radius R=	d, Dn. Introduce a top-hat function, �R(r), with �R(r)=0 for r =|r|>R and �R(r)=1 for r<R. Then, we take

p(r′)=
1

N�R2

∑

rj∈�N

�R(r′−rj). (29)

Thus, the probability of finding a scatterer centred at r′ outside all N small discs is zero, whereas it is a certain constant inside any

one of the discs; the constant is chosen so that
∫

p(r) dr=1. Notice that the sum in (25) is over the actual scatterer centres (in the

finite, perturbed lattice, �
′
N), whereas the sum in (29) is over the corresponding finite, periodic lattice �N .

Using (29) in (27) gives

〈u(r)〉=
g

�R2

∫

BN

vN(r′)
∑

rj∈�N

�R(r′−rj)�
H
0 (r−r′) dr′.

Let N→∞ so that BN becomes the whole plane. Then, writing v ≡v∞, we obtain

〈u(r)〉=
g

�R2

∑

rj∈�

∫

Dj

v(r′)�H
0 (r−r′) dr′. (30)

Equation (30) shows that 〈u〉 can be written as an acoustic volume potential. This observation has several consequences. First,

an application of (∇2 +k2) to (30) gives

(∇2 +k2)〈u(r)〉=

{

0, r �∈Di ,

[4ig / (�R2)]v(r), r∈Di ,
i∈Z.

Thus, 〈u〉 solves a certain problem for a periodic lattice of circular scatterers, each of (small) radius R=	d. A second consequence is

that 〈u〉 and its normal (radial) derivative are both continuous across the boundary of each Di . However, as we do not (yet) know

v, we do not know the partial differential equation satisfied by 〈u〉 inside each Di .

4.1. Calculation of v

Equation (30) also shows that we require v(r) for r∈Di , i∈Z. If we seek solutions v satisfying the Bloch condition,

v(r+rj)=v(r) exp (iQ ·rj), r∈D0, j∈Z, (31)

then it follows that 〈u〉 also satisfies the Bloch condition.

To find v, we turn to (28). Suppose there is a scatterer at r′i ∈�
′
N . Then, we take

p(r′|r′i )=
1

(N−1)�R2

∑

j �=i

�R(r′−rj), (32)

where the sum is over the N lattice points except the one at the centre of the disc in which r′i lies, Di . Then, (28) gives

vN(r′i )=
g

�R2

∑

j �=i

∫

BN

�R(r′−rj)vN(r′)�H
0 (r′i −r′) dr′, r′i ∈Di .

2
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Let N→∞ and write v ≡v∞, whence

v(r′i )=
g

�R2

∑

j �=i

∫

Dj

v(r′)�H
0 (r′i −r′) dr′, r′i ∈Di .

This equation shows that (∇2 +k2)v =0 inside each Di .

Next, put r′i =ri +s and r′ =rj +s′:

v(ri +s)=
g

�R2

∑

j �=i

∫

D0

v(rj +s′)�H
0 (s′−s+rj −ri) ds′, s∈D0, i∈Z.

Then, using (31) and noting that rj −ri locates another lattice point, we obtain

v(s)=
g

�R2

∑

rj∈�

′
eiQ·rj

∫

D0

v(s′)�H
0 (s′−s+rj) ds′, s∈D0. (33)

As |rj|>2R�|s|+|s′|, we can use the two-centre expansion of �H
0 in the form [16, Theorem 2.14]

�H
0 (s′−s+rj)=

∑

n

∑

p
(−1)p�H

n−p(rj)�
J
−n(s′)�J

p(s),

and then (33) gives

v(s)=g
∑

n

∑

p
(−1)pVn�H

n−p�J
p(s), s∈D0, (34)

where �H
n is a lattice sum (defined by (8)) and

Vn =
1

�R2

∫

D0

v(s)�J
−n(s) ds.

Multiplying (34) by �J
−m(s) and integrating over D0 gives

Vm =g
∑

n

∑

p
Vn�H

n−p�mp, m∈Z, (35)

where

�mp =
(−1)p

�R2

∫

D0

�J
−m(s)�J

p(s) ds=�mpJm(kR)

and

Jm =J−m =
2

R2

∫ R

0
J2

m(ks)s ds= J2
m(kR)−Jm−1(kR)Jm+1(kR), (36)

using [23, Equation 5.54(2)]. Hence, (35) reduces to

Vm =gJm(kR)
∑

n
Vn�H

n−m(k; Q;�), m∈Z. (37)

This is an infinite homogeneous system of linear algebraic equations for Vn. Setting its determinant to zero yields the dispersion

relation connecting k to Q.

It is perhaps worth noting that, at this stage, we have not used the fact that 	 is small, apart from requiring that the discs Dn do

not overlap (	< 1
2 ). However, when 	 is small, we can approximate (37); see Section 4.3.

4.2. Calculation of 〈u〉

Once v(r) has been found for r∈D0, we can calculate 〈u(r)〉 everywhere. Of most interest, perhaps, is 〈u(r)〉 inside D0. From (30)

and (31), we have

〈u(r)〉=
g

�R2

∑

rj∈�

eiQ·rj

∫

D0

v(s′)�H
0 (s′−r+rj) ds′.

Then, if r∈D0, comparison with (33) shows that

〈u(r)〉=v(r)+
g

�R2

∫

D0

v(s′)�H
0 (s′−r) ds′, r∈D0.

The remaining integral can be evaluated explicitly, using Graf’s addition theorem, but we do not need the result here.

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 2215–2224
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4.3. Approximations for small disorder

For very small disorder, we can approximate the function Jm(kR) occurring in (37). Immediately, we see from (36) that Jm(0)=�0m,

so that (37) reduces correctly to (22) in the absence of disorder. Let us now refine this approximation. We have

J0(kR)∼1−(kR)2 / 4, J1(kR)=J−1(kR)∼ (kR)2 / 8 as kR=	kd →0,

all other Jm being asymptotically smaller. Then, (37) shows that we should retain V0 and V±1, and that these quantities satisfy

V0 = gJ0{V0�H
0 +V1�H

1 +V−1�H
−1}, (38)

V1 = gJ1{V0�H
−1 +V1�H

0 +V−1�H
−2}, (39)

V−1 = gJ1{V0�H
1 +V1�H

2 +V−1�H
0 }. (40)

To leading order, (39) and (40) show that V±1 ≃gJ1V0�H
∓1, and then (38) gives

1 = gJ0{�H
0 +2gJ1�H

1 �H
−1}≃gJ0�H

0 +2g2J1�H
1 �H

−1

≃ g�H
0 (k)+	2(g / 4)(kd)2{−�H

0 (k)+g�H
1 (k)�H

−1(k)}. (41)

To leading order in 	, this equation gives 1=g�H
0 (k), as expected. Denote the solution of this equation by kp, so that �H

0 (kp)=g−1.

Let �′
0(k)= (d / dk)�H

0 (k) and put

k =kp +	2
, (42)

so that �H
0 (k)≃g−1 +	2
�′

0(kp). Then, the terms in 	2 from (41) give

0=4
�′
0(kp)+(kpd)2{−g−1 +g�H

1 (kp)�H
−1(kp)}. (43)

This gives an estimate for 
, which then gives an estimate of k−kp; see (42).

We can approximate further. From (13), we have

�H
0 (k)≃

2iMm

AQm(k−Qm)
, �H

±1(k)≃
∓2T±

m

AQm(k−Qm)
with T±

m =
Mm
∑

j=1

exp (±i�
j
m),

when k ≃Qm. If we also use the estimates (17) and (24), we find that


≃
gMm(kpd)2

2iAQm

(

1−
T+

m T−
m

M2
m

)

. (44)

This estimate yields 
=0 when Mm =1 showing that, generically, k−kp =o(	2) as 	→0: recall that the present analysis is based on

isotropic scattering. When Mm =2, (44) gives


≃
g(kpd)2

2iAQm
(1−cos (�1

m −�2
m)) (Mm =2).

5. Discussion and conclusion

We have given a method for estimating the effect of positional disorder on wave propagation when the original periodic structure

consists of identical small soft circular scatterers located at the nodes of a regular lattice of parallelograms. This represents a first

step as, clearly, much can be done to improve, verify and generalize the basic approach. To begin, the results could be compared

with direct (Monte Carlo) numerical simulations; see [22]. In our analysis, we used the Lax QCA as a closure assumption: it should

be possible to provide an independent check, at least for weak scatterers (penetrable scatterers with an interior wavenumber that

is close to the exterior wavenumber, k); see [21]. Our analysis also assumed isotropic scattering. It is expected that this assumption

can be removed, using appropriate multipole expansions, much as was done in [24] and elsewhere for related problems. This

extension would permit other boundary conditions on the scatterers; the scatterers would not have to be small, and other shapes

could be handled using T-matrix methods [16]. Extensions to three dimensions and to vector problems (such as electromagnetic

and elastodynamic problems) are also feasible. We are currently working on some of these aspects of positional disorder in periodic

structures.

2
2

2
2
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Appendix A

In Section 3.2, we used the following formula:

∑

j

e−ir·rj =
(2�)2

A

∑

m
�(r−Lm). (A1)

To test this formula, multiply by f (x, y) and integrate over all x and y, i.e. integrate over r. On the right, we get

∑

m

∫

f (x, y)�(r−Lm) dr=
∑

m
f (Lm

x , Lm
y )

where Lm =Lm
x i+Lm

y j. On the left, we get

∑

j

∫

f (x, y) exp {−i[x(i·rj)+y(j·rj)]}dx dy. (A2)

Expand the exponent, using (1) and al =al
x i+al

yj, l =1, 2:

x(i·rj)+y(j·rj)= j1(xa1
x +ya1

y )+ j2(xa2
x +ya2

y ).

This suggests using the Poisson summation formula,

∞
∑

m=−∞

∫ ∞

−∞
f (u)e−imu du=2�

∞
∑

m=−∞
f (2m�).

So, change variables in (A2) from x, y to x′,y′, with x′ =xa1
x +ya1

y and y′ =xa2
x +ya2

y ; inverting gives x = (x′a2
y −y′a1

y ) / � and y =

(y′a1
x −x′a2

x ) / � with �=a1
x a2

y −a2
x a1

y . Note that |�|=|a1 ×a2|=A. Also, dx dy =|J|dx′ dy′ where J is the Jacobian,

J=

∣

∣

∣

∣

∣

�x / �x′
�y / �x′

�x / �y′
�y / �y′

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a2
y / � −a2

x / �

−a1
y / � a1

x / �

∣

∣

∣

∣

∣

∣

=
1

�
.

Hence, (A2) becomes

∑

j1 ,j2

∫

f

(

x′a2
y −y′a1

y

�
,

y′a1
x −x′a2

x

�

)

e−i(j1x′+j2y′) dx′ dy′

A
=

(2�)2

A

∑

n1 ,n2

f

(

2�

�
(n1a2

y −n2a1
y ),

2�

�
(n2a1

x −n1a2
x )

)

.

To conclude, we check that the arguments of f on the right-hand side are the components of a reciprocal lattice vector, Lm, by

checking (3). Thus, using (1), we compute

2�

�
(n1a2

y −n2a1
y )(j1a1

x + j2a2
x )+

2�

�
(n2a1

x −n1a2
x )(j1a1

y + j2a2
y )=2�(j1n1 + j2n2),

which is (3) with p= j1n1 + j2n2.
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