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1. Introduction

The simplest model for wave propagation in a thin plate is based on Kirchhoff theory, which gives a partial differential
equation, (V*—k*)w=0, for the out-of-plane component of displacement, w. (Notation, formulation, and boundary conditions
will be described fully in Section 2.) More refined models are available, but we limit ourselves here to the Kirchhoff theory;
extensions to other models seem feasible.

Flexural waves in the plate will be scattered by inclusions, including the cases of holes (cavities) and defects, for example. We
are interested in describing the scattering by many small inclusions, arranged randomly.

Early work on scattering by one inclusion is discussed in the book by Pao and Mow [23, Section III.6]. Since then, several authors
have analysed scattering by one circular inclusion. For example, Norris and Vemula [22] gave results for the limiting cases of a rigid
inclusion and a cavity. Chou et al. [4] and Squire and Dixon [25] used similar methods but in the context of surfactant effects and ice
dynamics, respectively. Lee and Chen have given numerical results for scattering by two circular inclusions [13,14] and by three
circular cavities [15]. Evans and Porter [8] have discussed scattering by N point scatterers, located arbitrarily in an infinite plate.
Movchan et al. [21] have studied waves in a plate perforated by an infinite square array of identical circular holes. Matus and Emets
[19] have developed a T-matrix method for scattering by one non-circular inclusion in a plate.

The classical (deterministic) multiple scattering problem, with many identical circular inclusions in the plate, can be tackled by
combining separated solutions with addition theorems. We give such an exact treatment in Section 3.1: it serves as a starting point
for problems in which the inclusions are located randomly.

There is previous work on flexural waves in plates with various kinds of randomness. We mention Beran's paper [1] on random
density fluctuations and Weaver's paper [27] on plates with randomly attached sprung masses. Dixon and Squire [7] have used
several approaches, including a self-consistent approach in which the solution of a certain scattering problem, with one inclusion
embedded in the (unknown) effective medium [25], is employed.
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The literature on multiple scattering of acoustic waves by many inclusions (in both deterministic and random configurations)
is extensive. For a review, see [17]. The literature on acoustic scattering by random arrangements of identical circular scatterers is
reviewed in the paper by Linton and Martin [16]. That paper starts with a classical, exact multiple scattering theory (built using
separated solutions of the Helmholtz equation and appropriate addition theorems), as used earlier by, for example, Fikioris and
Waterman [9] and by Bose and Mal [3], and ends with an estimate for the effective acoustic wavenumber, K, in the random
medium,

(ke = (ka*— g0 + 22 [Teoto/2) L F0)7d0 + 0(6?) (1)
- I 3 (ka)2 /0 do '

In this formula, f(0) is the far-field pattern for scattering of a plane wave (with wavenumber k) by a single inclusion of radius a,
and ¢ is the fractional area occupied by the scatterers. Formula (1) has been shown to compare well with experiments [6]. It was
derived using the Lax quasi-crystalline approximation (QCA) [12], a heuristic closure assumption that has been shown to give
good theoretical results in certain situations [18,28]. See Parnell and Abrahams [24] for a comparison of Eq. (1) with other multiple
scattering theories in the low-frequency (homogenization) limit. The generalization of Eq. (1) to plane-strain elastodynamics was
given recently by Conoir and Norris [5].

In this paper, we develop a thin plate theory analogous to the acoustic theory given by Linton and Martin [16]. We derive the
following formula for the effective flexural wavenumber K (in (58)) below:

2
80" 190 + 0(6*). 2)

s 4 8¢ diro)p
(Ka)” = (ka)*— —¢f(0) + Wjocot(e /2) gglF(0)°d0 + 2 (ka?

Note that this is identical to Eq. (1) to O(¢$?) except for the additional term involving a second far-field pattern g(6): whereas
f(0) is generated by a plane wave, el**, g(0) is generated by an incident field, e~%, a field that has no physical interest in itself. As an
example, we calculate effective properties of a plate perforated by many small circular holes.

We also obtain reciprocity relations connecting coefficients in multipole expansions of the field scattered by a single inclusion.
These relations (see Eq. (A.6) below) hold for inclusions of all shapes and composition, and so they are of independent interest. We
use one of them in the derivation of our formula for K. Also, as pointed out by Conoir and Norris [5], when the inclusions are such
that f(8) # f(—6), [f(6)]? in Eq. (2) should be replaced by f(6)f(—6).

2. Flexural wave scattering by a single inclusion in a thin plate

We use a Cartesian coordinate system (x, y, z) where the xy plane is the plane of the thin plate and z is perpendicular to this.
Under the assumptions of the Kirchhoff thin plate theory, the amplitude of flexural waves W(x,y, t) normal to the plane of the plate
is described by

DV*V*W + phd’*W /ot* = q 3)

where q is the external forcing, p is the density, h is the thickness of the plate, the bending rigidity is given by D=Eh?/[12(1 —1?)],
E is Young's modulus and v is Poisson's ratio. _
Assuming time harmonic behaviour, W(x,y,t) =Re{w(x,y)e™ '}, and taking g =0, from Eq. (3) we have

(VA2 —kw = (V2 + ) (V> =k )w = 0 with k* = pho? /D. (4)

We consider the scattered field from an isolated circular inclusion with different material properties from the surrounding
plate (of infinite extent). As noted in Section 1, this problem has been considered before, but we summarize it here so as to define
notation for the main purpose of this article, which is the consideration of the multiple scattering problem.

Assume that the (circular) scatterer of radius a, has domain S and assume that a polar coordinate system x =1 cos 6, y=r sin 6
is aligned with the centre of the scatterer. The amplitude of flexural waves is then governed by the following equations,

(VPV2—kYw =0, r>a, (5)
(VAV2—khw, =0, r<a, (6)

where k* = phw?/Dy and ki = p;hw?/D;, together with specified conditions on r=a and associated conditions as r— «. We note
that in the exterior region, the total displacement field is given by

W = Wi + W ™)
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where wj, is the (specified) incident wave and wy is the scattered field. The field wj, is regular in a neighbourhood of S; in general,
it has an expansion

Woe = 2 {Aa(ke) + Ay (k) e ®

where J,, is a Bessel function, I, is a modified Bessel function defined by I,,(x) =i~ "J,,(ix) with x real here, and the coefficients A’n
and Af,, are known. For example, if we have a plane wave propagating at an angle 6;,. to the positive x axis, then

Wiy = exp{ikrcos(0—0,,)}, A, =i"e ™ and AL =0. 9)
For a second example, which is unphysical but useful later, we take
Wi = exp{—krsind}, A, =0 and A, =1i" (10)

The scattered field outside S and the field inside S can be sought in the forms

o

Wo(r.0) = Y {AH,(kr) + B,K,(kr)}e™, r>a, (11)

Wir0) = X {Glalki) + Edy(kn}e™. r<a 12)

where H,=HS" is a Hankel function and K,, is a modified Bessel function defined by 2K,,(x) =mi" * 'H\"(ix) with x real here. The
coefficients A, By, C, and E,, are determined from Af, and A; using continuity conditions at r = a. According to Kirchhoff theory,
these conditions are those of continuity of displacement w, its normal derivative dw/dr, the bending moment M(w) and the
(Kirchhoff) shear force V(w), the latter two quantities being defined in polar coordinates by

w 10w 10%w
M(w) = _DiW_DiVi (rﬁr + r2662>’ (13)
B 9 _2 10 fow w
V(w) = —D,Ev W—Di(l—vi)r—zw <W—?), (14)

where D; and v; are the bending rigidity and Poisson ratio of the host (i=0) and inclusion (i=1).
Applying these continuity conditions leads to the system of equations

Ax = Ba, (15)

where

Hy(eo) Ki(eo) —Ju(er)  —In(er)

A Hi(eo) Kileo) —rJn(er) —KIh(ep)
“lsos o - |
I R
4 Jn(€o)  In(ep)
B Jaleo)  Ii(eo) A,
x=|"| B=- 0 o |-a= ]
n T I AL
En ™ T
.]" Iﬂ

Here, prime denotes differentiation with respect to the argument, = ky/k, eo = ka, ¢; = kia = Keg, and D = D,/Dy, is the ratio of
bending stiffnesses and we have used the following notation [22]

Sk, = M (1=v)Fe X, (6)—(1—v)eXp(e), (16)

n

Ty, =’ (1—v)X,(e)—[1°(1—1,) £ e )eX (&), (17)

n

in which the upper sign is taken when X, =], or Hp, and the lower sign is taken when X, =1, or K;. The differential equations
satisfied by the various Bessel functions have been used in order to simplify the expressions for Sx and T .
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The 4 x 4 system, Eq. (15), can be solved for A, B, C;, and E,.. Of importance later will be expressions for the coefficients A, and
B,,. These expressions can be written in the form

Ay = Tl A, + ThA,, B, = Ty A, + ThAl, (18)

where the (dimensionless) quantities Tjj are computable. The expressions in Eq. (18) can also be used for cavities and for rigid
inclusions (although the formulas for Tjj will be different).
It is shown in Appendix A that

(2i/mTy = Ty (19)

This relation is a consequence of reciprocity. It is a special case of general results that hold for scatterers of any shape and
composition.
In the far-field (kr — «), we can use

H,(2) ~ /2] (mz)(—i)"e ™ 4e” K. (z)~/n/(22)e %, z— .

These show that, physically, the first term in Eq. (11) is associated with the scattered field and the second term is the local,
evanescent field. Thus,

WO(T,9)~ /%eikr—in/4 Z (_i)nAneine as r—co,

n=—c

where A, is given by Eq. (18);. In particular, for an incident plane wave, given by Eq. (9), we have
Wy (r,0)~4/2 / (1kr)f (0—06;,.)exp(ikr—im / 4) as r—,

where the far-field pattern f is given by

fO = > The™. (20)

gO)= > The™. (21)
3%

3. Multiple scattering theory
3.1. Multiple scattering from N inclusions

We now consider an exact theory for multiple scattering of flexural waves when there are N identical circular inclusions
embedded in the thin plate.

To begin with, the inclusions occupy a finite domain D, (x,y) €[0,L] x [ — H,H], within an unbounded infinite plate. The area of D
is denoted by |D|. There are ng inclusions per unit area so that N = ng|D|. The fractional area occupied by the inclusions is
denoted by

¢ = nyna’ 0<p<1).

Later, we let D expand to fill a half-space H by letting L — e« and H — e whilst letting N — < with ng held fixed (Fig. 1).

The inclusions are located at p; = (p;,q;),j=1,2,...,N with local polar coordinate system (r;,6;) relating to the local Cartesian
system x;=r;jcos 0, y;=r;sin 0j, see Fig. 2.

Suppose that the incident field which excites scattering from the N inclusions is a plane wave propagating at an arbitrary angle
Oinc to the x axis. Thus, wiyc is given by Eq. (9) and it can be written in the form

o

Winc(rjvej) = ]jn;w in]n(,<0)ein(9j—9inc) (22)

local to the jth inclusion, where I; = el® + £%) o=k cos 0 and B=k sin ;. (In [16], I is denoted by I, (Italics in the latter);
here, we use I,, to denote modified Bessel functions.)



W,J. Parnell, PA. Martin / Wave Motion 48 (2011) 161-175 165

R e

Fig. 1. Inclusions reside inside a domain D in an otherwise uniform and unbounded thin plate. We consider the limit where L,H — <, whilst letting the number of
inclusions N — e with the volume fraction ¢ held fixed.

The total field in x>0, outside all the inclusions, is given by

=1 n=—w

N o . . .
W=+ 2 2 {AZHy(kry) + BiW,Ky (k) b, >, (23)
J

where the constants Z, and W,, have been added for convenience and will be defined shortly. Inside the jth inclusion, the field is w4,
where

w= 3 {C,{]n(lclrj) + E{;In(k]rj)}ei"e], r<a

n=—c

With the benefit of Graf's addition theorem, we can write down w in the vicinity of the sth inclusion:

wir6) = ¥ {1 (krg)e ™" 4 AZ,H, (k) + By WK, (kr) fe™ (24)

<A{12n m;ﬂ Hn_m(kst)ei("fm)efﬂ]m(lcrs)eim65 +BW, m;w Kn_m(kst)ei("*m)efslm(krs)eime’> ,

Ys
Y
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X

Fig. 2. Geometry of the location of inclusions and their local coordinate systems.
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where with reference to Fig. 2, R = |R;s| = |p;—Ps| and 0;s is the angle subtended between the x; axis and the sth inclusion (note
that 6 =m+ ;). Rewrite Eq. (24) as

w(rs, b;) = m;w {Afﬂ]m(/ﬂ’s) + Binlm(krs) + AianHm(krs) + BinWme(krs)}eimgs

for rs>a, where (compare with Eq. (8), in which the roles of Ajm and Afn are played here by 4}, and B3, respectively)

. N o . .
A, = 1M M Z] n; ALZyHy (kR )&%, (25)
P=e-n
Jj#s
N L . .
= _m(kRi e
By= Y X BWK, n(kRye" ™" 26
j=1 n="=
Jj#s

Comparison with the solution for scattering by one inclusion, Eq. (18), gives

A Zn = THA, + T5Byy, BaW,, = T A5 + Ty By, (27)
To simplify these equations, we choose

Z, =—TY and W, = —T5,. (28)
Furthermore, we define

Q,=T4/T; and P,=Ty5/T3, (29)

so that Eq. (27) gives A3, + A}, + QmBj, = 0 and B, + A}, + PnB;, = 0. Writing these out explicitly, using Egs. (25) and (26),
we obtain

N o . . . .
A + r {A@Z,,Hn_m(kst) + QmB’,,W,,Kn_m(kst)}e‘(”_’m"fs = —,i"e "M, (30)
s
N © . . . .
But+ 2 % {AZHy m(kRy)) + PrBy W,k (kRy) pe! ™™™ = —Lie ™M, (31)
Jj#s

These equations hold for s=1,2,...,N and for all integers m.
3.2. Averaging: random distribution of inclusions in a half-space

Let us introduce a probability density function, defining the statistics of the random distribution of inclusions [20,26]. This is
written as

P(P1.Py; - PN) =P(Ps)P(P1.Py: - PPN | Ds): (32)
where J indicates that p; is not present. Similarly,
P(P1 P2, B - PIDs) =P(D}[P)P(P1: - B s - B, - PN D)D),

where p(p;| p;) denotes the probability density of finding an inclusion at p;<D given that there is already one located at p;&D. We
define the following ensemble average of a function f(x,y; p;, P2, ---, Py)»

(N)s=[ oS- JoPB1.P2: oo B oo By ) f APy .. AP .. dDY, (33)

which is the average with the sth inclusion fixed [16,26]. Similarly, we can define (f);;, the average taken with both the sth and jth
inclusions fixed.
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We are going to take the ensemble average of Egs. (30) and (31) with the sth inclusion fixed; we start with Eq. (30). Noting the
indistinguishability of inclusions in the j sum after taking this average, we find that

(An)s + (N=1) 32 ] Dp(pj|p$)<Aj,'1>SjZan_m(kst)ei(nfm)ﬂjsdpj
E (34)
+Qu(N=1) 30 po(p,-|ps)<Bf1>Sjwn1<n7m(kst)eun_m)e,-s dp, = —Li"e "

where D is the region in which inclusions reside. Next we invoke the Lax quasi-crystalline closure approximation (QCA) [12],
which amounts to taking

(), = (), nt (o), = (5

and for notational convenience we set s =1 and j= 2. We also make a simple choice for p(p,|p;): we choose the hole-correction
pair-correlation function [9],

_ [IDI7"=ny/N, Ry=b,
p(p2|P1) {07 Ry <b,

where b is the radius of the so-called exclusion zone, with b = 2a classically. Finally, we let N— « and we let D expand to fill a half-
space H, but we keep no, the number of inclusions per unit area, fixed. The result is

<Ar]n> + 1y Z Eﬁ {< >ZHn m(KRyy) + < > WoQuKi - m(kR21)} - "% dp,dg, = _llimeiimeim» (35)

n=—o

where 7 is the half-space p, >0 and the circle on the integral sign indicates that the hole centred at p, = p;, of radius b, has to be
cut out of the half-space. A similar calculation, starting from Eq. (31), leads to

<B}n> iy Y $,, {< >ZH,1 m(kRy1) + <Bﬁ>2WanKn,m(kR21)}e““"””ﬂdpquz: —I, M Mfinc (36)

n=—o

Egs. (35) and (36) provide a system of integral equations which we must solve in order to derive information about the
effective wave which propagates through the random medium. At the end of the calculations to follow, we shall let kb — 0, leading
to Eq. (2). As I; =ei(@P1 R4 we try

Ay, =" X, (py), (B, =i"e" Y, (p,), (37)

where 3=k sin iy Eq. (35) reduces to

o

Xn(pr) + 10 3 (=", € X (02) 200 (P21, Gr) + Ya02)WaQuln-i (P2 6o Yoy = —€*7e ™™, (38)

where av=k cos 0, we have used 6,; = 61, — 1, we have written p,; = p, — p; and 21 = ¢> — q1, and we have defined ¢, and y, as
follows: with X=R cos © and Y=R sin 6,

Un(X,Y) = H,(kR)e™ and y,(X,Y) = K, (kR)e™.
Next, following [16], we suppose that for sufficiently large p; (p1>/, say) we can write
X, (p) = Fpe ™e™ and Y, (p) = G,e ™™,
with coefficients F,, and G,;,, where
N=Kcosgo and (= Ksin@ = ksinf,.

(Note that A2 — o> = K? — k2.) From the form of Eq. (37), we therefore identify K as an effective wavenumber and we now show
how it may be derived.
If p1>7+b, Eq. (38) becomes

o

Foe ™™ g 3 ()" [ K (D1 p)dDy + noe™ Y ()" My, = —e e, (39)

n=— n=—o

where Myn = FyiZaMy—m + G Wi QmMy—m and

Kin(01,D2) = Xp(02)ZnLn—m(P21) + Yn(D2)W,Qpy 2"n—m(p21)'
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Here we have defined the integrals

LX) = [~ . X.v)e™dy, LX) = [ _x.(X.v)e""ay, (40)
and

M, = $¥(y1, Qo1 )Wy (21 421 ) AP, dg,. (41)

M, = $W(Pa1.G21)%n (P21 921 )dpodds. (42)

where ¥(X,Y) =™ 5" The integrals in Eqs. (41) and (42) are over the half-plane p,>~/ with the disc Ry; <b removed.
The integrals L, and M, were evaluated in [16]. The integrals L, and M, can be evaluated similarly. From ([16], Eq. (66)), w
have

Ly(py—py) = (2/ i'e™ie® PP p s p
hence

10(171
)

L) n mJ‘O n n m pZI)dPZ _C e

nf—oo

where C,, is a constant. . .
Next, consider L,(X), an even function of X; we require L,(X) for X<0. We start with Lo(x). We have I;(0) =
2J-0K0 ky)cos By dy = m/+y (using ([10], Eq. 6.671(14))) where

Y=\

As (V2 —k?)Ko(kr) =0 with r= (x*>+y?)/2, we have
L) =KLx—[" e "‘y Ko (kr)dy = v Lo(x),

after two integrations by parts. Then, as io(x)—>0 when |x| — «, we obtain Ly(x) = Ce~I*| for some constant C. Hence, using
Lo(0) =1 /",

LX) = (m/v)e”™ and LX) = yIy(X) for X<0.

For L, with n>0, we use

i d
= [T (— + lay> Y1 (X, Y)dY.

Then, as in [16], we obtain kL, = —L/_,—pL,_, whence

LX) = (m/v)(=1)"(B + )"k "™

Similarly, for n<0, we obtain Zn(X) = (m/v)(B—y) "k"e* . Hence,

i n—m (7 ~ ~  _
ny X (=" [0 YVa(02)WaQu Ly (p21)dp; = Crie ™™

n=—

where C,, is a constant. .
The double integrals M,, and M, are evaluated using Green's theorem. We have

M, =M, + M. and M, = M, + M,

where My, and 1\71; come from integrations along the line p, =/, and ME and I\7If1 come from integrations around the circle Ry; = b.
From ([16], Eq. (67)), we have

M, = cpe @ ™MPrand ME = 2nmi" (kK2 —K?) e A, (KD),

where Cj, is a constant and A,,(Kb) = kbH},(kb)J,(Kb)—KbH, (kb)J;,(Kb).
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For M,, we note that WV 2y, — y, VW= (k¥ + K*)¥ y, so that

(2 + KM, = Eﬁ(qfvzxm—xmvz\l')dpzd% = _[s (\Pagm ~m %\P>d5

where S consists of the line p, = # (this gives 1\71;) and the circle R,; = b centred at p, = p; (this gives 1\715’,,), and the normal vector
on S points out of the half-space domain. On p, =/, 0/0n= — d/dp, and so we have

0y, . 0¥
- p2:/<\1,ap Xnap )d‘b

NC—p) (i 0y, sinaq, 0y, .
= —eMN TP [T QlPn {cosa n_ 12 A iy, ] dg
J._°° Z0R; Ry Doy, - ?

NZ—py) [ i k .
= _el)\(/ p]),"_melﬁq21 |:_§(Xn—l + Xn+])_1)\Xn:| dqz

o=/
= N (Tua (=) + Ly =) + WLyl =p)|.
using — 2K, (x) =K, — 1(x) + Ky, + 1(x), — (2n/x)K,(x) =K, — 1(x) — K, + 1(x) and Eq. (40). Hence,
M, = e" ™" for some constant C,.

The contribution from the circle R,y =b is

_ 2m [ iKRcos(O— ﬂp%_ d 1I(Rcos(e—(p)
fo {e R Ingge R:bbde
=b] f)"e"“""“@‘@ e"®[iKK,, (kb)cos(©—)—kK} (kb)) dO
= —2mi"e"™ N/, (Kb)

where N, n(Kb) = kbK} (kb)J,(Kb)—KbK, (kb)J;,(Kb). Hence
Mo = —2mi"(k* + K*) e A7, (Kb).
Next, we substitute our results in Eq. (39), giving
—elPreTMle — p o7iMOeNT |0 @1 L G a7

+ nOei)\p1 Z (_i)n—me—imp [FnZann(pl) + GanQmémn(pl )]

n=—w

where
Bun(p1) = Ch_ '@ NP1 4 2ni"*’"(1<2—1<2)*1e“"*"1>*°/\/n,m(1<b)

Bon(py) = Co e ™ YR oM 4 k2)TeTMeRr (k).

Eq. (43) contains terms that are proportional to e/®t, terms that are proportional to e™ and terms that are proportional to
e~¥1: all should balance. Collecting the terms that are proportional to e gives

2mn,
K—K2n

21'm0Q,,1

e T, G, W, N, (Kb) = 0. (44)

Fp + i FyZyN y—m(Kb)—

(If the second sum is omitted, Eq. (44) reduces to ([16], Eq. (71)), as derived for an analogous acoustic problem.) A similar
calculation, starting with Eq. (36), leads to

2mng
k2 —K2nZ

2mnyP,,

Gy
+ k? + K?n=

Z F,Z,N . (Kb)— Z G,W,N,_,(Kb) = 0. (45)

Egs. (44) and (45) hold for all integers m. They provide an infinite homogeneous system of linear algebraic equations for F,, and
Gnm. The existence of a non-trivial solution to this system will determine the effective wavenumber K.

It is worth noting that Egs. (44) and (45) do not depend on # or 6;,,.. This may be regarded as a check: we would not expect the
effective wavenumber to depend on the angle of incidence or on distance from the boundary. Indeed, Eqgs. (44) and (45) could
have been derived by assuming that ~ = 0 and 6;,c = 0 from the outset. Further information can be obtained by balancing the other
exponential terms in Eq. (43), but this information will not be needed here.
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3.3. Approximate determination of K for small ¢

In [16], the expansion K? = k? + 6,1 + 6,n% + - was used, and then expressions for ; and 6, were sought. Here, we prefer to
work with dimensionless quantities, so we write

(Ka)* = (ka)* + Ky + Kp” + - (46)
where ¢ =na®ng, Kk = 8,/m and K, = 8,/(ra)?. Let B=b/a. From [16], we have

Ny(Kb) = (2i /1) + (¢/2)B*1d, (kb) + O(¢7),
where d(x) = Ja(X)Ha(x) + [1— (1/X)*]Jo(x)Hn(). Similarly,

Na(Kb) = Wy (kb) + (&/2)B’K dy (kb) + 0(6°),

where d,(x) = Jy(X)Ky(x) + [1—(n/%)*]],(X)K,(x) and

W, (X) = X[K5 (%)), (%) =K, (%)]7 (%)) v
Hence
1
whereas
kzzin?a N, (Kb) = ‘bﬁwn(kb) +0(¢%). o

Substituting Eqs. (48) and (49) in Eq. (44), neglecting the second-order terms, we obtain

= 4 4i
Fot Y Fnzn(+¢{‘”2
P

inK, TiKk?

Bzdn_macb)])—(bamn T Gw, ) —o (50)

Eq. (45) leads to a very similar equation, with exactly the same sums, but with the leading F, replaced by G, and with Q,
replaced by Py,.
At leading order in ¢, Eq. (50) gives

4i
™= R FaZ,, (51)
so that all the F,, are equal. Then, if we write F,,=F, Eq. (51) gives
4 & 4i
k=1 ¥ Zy=—f0) (52)

where f is the far-field pattern; see Eqs. (20) and (28). This result is exactly the same as the Foldy approximation for acoustic
problems; see ([16], Eq. (77)). In addition, from Eq. (45), we obtain G,,, =F, to leading order.
At next order, we can write

F,=F + ¢F, and G, =F + ¢G,,.

Then, the O(¢) terms in Eq. (50) are

o

Py g (A pldin g ~ Wom(kb) _
Fut ¥ Z < ] +FLK% B dnm(kb)D FQn 2 W, = 0. (53)

Put

S¢= Y zd, (kb and SY = Y W,w, ,(kb).

n=— n=—w
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Then, rewrite Eq. (53), using Eq. (52):

F 2 . F w o 4i i ~ _FK2
PSS = e T ZaFa— Tk (54)
The right-hand side of Eq. (54) does not depend on m; denote it by F. Thus
S x Fry 4O A 27 F w]_ FKy
F= H—K]nzz_m Z,F, W= H—K]nzz_w Z, {F + FB’S, + ka? Q.S o (55)
The terms in F cancel (using Eq. (52)), and then a factor of F/k; cancels leaving
4 > 1 w
o= Y Z|B’S, + a2 &S
_dip s s 274 (kb) + A zoww (kb) (56)
T n e e n“sYs—n n(ka)zn:m s n~<¥nVsWs—n .
If we perform a similar analysis starting from Eq. (45), we arrive at
G,,—FB*St,—F(ka) *P,SY = F, (57)

instead of Eq. (54). As F (defined by the right-hand side of Eq. (54)) does not involve Cm, we cannot back-substitute as we did with
Eq. (55), so nothing is gained beyond a formula for G,,,.

Returning to our formula (56) for the second-order correction, k,, we notice that the first double-sum is exactly the same as in
the acoustic case; see (|16], Eq. (80)). It involves Z, and so it may be expressed in terms of the far-field pattern for plane-wave
incidence on one inclusion, f(0).

The second double-sum in Eq. (56) involves both Z,,Q , = — T{5 and W,,= — T3} = — (2i/m)T{5 (see Egs. (19), (28) and (29)). The
quantity T, also occurs in a far-field pattern but not for plane-wave incidence: it appears in the far-field pattern g, defined by
Eq. (21), corresponding to the incident field given by Eq. (10).

Let us approximate s, by approximating d,(kb) and w,(kb) for small kb. We have x?d,,(x) ~ 2i|n|/m as x — 0, and this leads to an
expression for the first double-sum in (56) as a certain integral of f; see ([16], p. 3420) and Eq. (58). For w,,(kb), defined by Eq. (47),
we find that w,(x)~—1 as x— 0 so that the second double-sum in Eq. (56) splits into the product of two single-sums:

Y Y 2,0, Ww,(kby=— 2 g0)]"

n=—owo s=—
Combining these results, we obtain the approximation

2 o 4i 84 n d 3 8> 2 3
(Ka)” = (ka)"——&f(0) + Wfocot(ﬂﬂ)@[f(@)] do + W[gw)] + 0(¢"). (58)

Apart from the term involving the far-field pattern g(0), this formula is reminiscent of the well known Lloyd-Berry formula for
acoustics and its two-dimensional form given in Eq. (1).

4. Low-frequency results for cavities

For scattering by a cavity, we need the lower left 2 x 2 block in Eq. (15); dropping the redundant superscript 0, we have

(51-1,, Sk, ) (A;av> = — <S]n S, ) <‘A{1 > (59)
1) g ) =\ )\ g

Hence,
1
AT =[S, T, =S, T, | 40 + [S, T, =S, T, | An (60)
ABR = [s," Ty S, T]JA],, + {s," Ty —Su, TIH]A;, (61)

where A, = Sy Tk, — Sk, Tn,. These equations are exact.
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For low frequencies (ka<1), we obtain the following approximations:

av_imka)? oy N pev (kg
0 4(1—V) (V‘AO AO)’ BO 2(]—7/) ('AO V'Ao)7
in(ka)*
fluﬁ ((] + V)~A’il_2A'il>7
ka)*
Sleﬁ(ZAjﬂ_(] + V)A’il)v

in(1-v)(ka)*" 2
2213 + v)(n—1)1(n—2)!

(1—v)(ka)*"~2
22-2(3 4 p)(n—1)!1(n—2)!

(Ao + AL, 122,

cav
A~

A, + A, n=2.

cav
Bin ~—

In particular,

cav i‘l'[(l _V)

+2 Nm (ka)z(Ajiz + A’i2):

403 1 (0 Wy + ),

We note that A5, BS™, A, and B occur at leading order, O((ka)?), all other contributions being smaller. (Compare with
acoustic/SH wave scattering from a cavity, where the monopole (n=0) and dipole (n=1) modes give the leading order
contributions.) Norris and Vemula [22] also found that A§" and A$Y gave the main contribution (for plane-wave incidence).
However, although we agree with their expression for A§", we disagree with their expressions for A< and AS*%; we computed
these formulae both by hand and with a symbol manipulation package.

Comparison with Eq. (18), gives

0 _ imv(ka)> ° —in(ka)* .o _ (ka)? © _ —v(ka)>
N7 40—v)’ 27 4d-v) 21T 20—v) 2T 201-v)’
42 w2 _ in(1-v) 2 o2 a2 (1-1) 2

Tﬂ T]Z 8(3 T V) (ka) ) TZ] - TZZ - 4(3 + V) (ka) .

These satisfy the reciprocity relation, Eq. (19). Then, to leading order, we find that the far-field patterns are

£0) = iZ"(ka)2 <% ) —cos 20), (62)
g(0) = izn(ka)z(—llj + 31 :;cos 29). (63)

These approximations can be used in Eq. (58) to estimate the effective wavenumber, K. We have

oo 1+ v+ 2P 2 24 3v-17
£(0) = in(ka) 103+ 8O =ik g q e

The first of these gives the dilute (Foldy) approximation (linear in ¢)

ﬁzl Lol v+ 21%)
k? A1-v3B+v)

At second order in ¢, we must evaluate the integral in Eq. (58); using

[cot(8/2)sin20d0 =, [ cot(6/2)sin20cos20d0 =

N A

and the approximation for f(6), Eq. (62), we find that

8 o d 2.0 2(1 +v)(1+ 3v)
g Jocor(0/2) gy F0)do= (ka0 DL 30
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When this is substituted in Eq. (58), together with the expression for g(0), Eq. (64), we obtain an estimate for the coefficient K,
in Eq. (46):

Ky _ (1+v)(1+3v) (24 3v-1%)>

(ka? 3 +v)? 2(1-v2(3 + v)?

The effective density, p,, and the effective bending stiffness, D,, are related to the effective wavenumber K by

K*  p.D 2K,¢
- = 1
k¥  pDs * (ka)? *

(ka)* ~ (ka)?

2
ATEE 2'{2}»2 (65)

2(1 +v + 217
1-»(3E +7v)

(1 +v)(1 + 3v)
(1-v)(3 + v)?

2
=1+ o— ¢

Finally, as it is well known that p./p=1— ¢ in the quasistatic limit, we can estimate the effective bending stiffness, D./D.
5. Conclusions

In this paper we have studied the multiple scattering of flexural waves by inclusions in thin plates. Reciprocity relations for a
single inclusion have been established, connecting coefficients in circular multipole expansions. These relations are applicable
regardless of the shape or composition of the inclusion. Using one of these relations and an approach analogous to that used by
Linton and Martin [16] we derived an expression for the square of the effective wavenumber in the inhomogeneous plate region;
this expression is of a similar form to the Lloyd-Berry expression associated with acoustics [16]. In the present case however,
the expression involves two far-field scattering patterns, f(6) and g(6), associated with scattering from a single inclusion. The
pattern f(0) is associated with an incident plane wave el¥*: it is the pattern which usually arises in Lloyd-Berry expressions.
However, the pattern g(0) is of no physical interest in itself, being associated with an incident wave of the form e=%,

In order to show the applicability of the theory, we considered the low-frequency limit of the effective wavenumber for an
inhomogeneous plate consisting of circular cylindrical cavities randomly distributed inside a homogeneous plate phase. It was
shown how estimates for the effective density and effective bending stiffness can be derived.

Such theories can be useful in various contexts, for example the non-destructive evaluation of composite plates and the
measurement of sea-ice thickness.

Appendix A. Proof of reciprocity relations

Consider scattering by a single scatterer S with (smooth) boundary I’; S could be an inclusion, a cavity, or a fixed rigid object. In this appendix, it is not assumed
that S is circular. Surround S by a circle C.

Outside S, w satisfies (V* —k*)w =0 (in the absence of body forces). Take a second flexural field, W. Reciprocity gives (see, for example, ([11], p. 258) or ([2],
p. 235))

JRw. Wyds = [ R(w, W)ds,
where
ow ELW

R(W. W) = WV(W) — WV (W) ~M(W) 5 + M(w) 5.

M(w) is the bending moment and V(w) is the Kirchhoff shear. We suppose that w and W satisfy the same boundary conditions on I', and that these ensure that
er(w, W)ds = 0. (If I has corners, additional corner conditions must be imposed.) Hence, if C has radius r,

fé"R(w, w)de = 0 for any (sufficiently large)r. (A.1)

We use this relation to prove the reciprocity relation, Eq. (19).
At C, the field w(r,6) has the expansion

w(r,0) = i {AgH (kr) + B, (kr) + ALJ, (kr) + AL (kr)ye™.

For the bending moment, defined by Eq. (13), we have

D = .
M(w) = —,TZHZZ_M {AnSH, + B.Sk, + A]nS],, + A'rxsln}eme

and for the Kirchhoff shear, defined by Eq. (14), we have

in6

D =
V(w) = —r—3”:24 (A Ty, + BTy, + AT, + AT, Je
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In these formulas, Sy and Ty are defined by Egs. (16) and (17), respectively, with ;=1 and ¢; = kr therein. For W, we choose similar expansions with carets on
the various coefficients and with e~ instead of e, Then

WV (W) — WV (w)}db = 72:'—3[’ i P, (kr) (A2)

where

Py = AuHy + Bk, + Ay + ALIAT, + BTy +ANT, + AT, ]
—AHy + BK, + A, + ALJATy, + BT, + AT, + AT, |
= [A B, —A,B,[H, T, —K, Ty | + [Apdy—A, A,]H,T;, —J, Ty,
+ (A AL A, AH, T, ~1,Ty, ] + [ByAh— B ALK, Ty, —JuTic |
+ Budn— By ALK, Ty, —LTie, ] + [4h A=A AL, T, 1, T, .

Similarly

21 W kel
I, {%%M(W)—%"M(w)}de = —Z;TTD";w (kr)Q, (kr) (A3)

where
Q= [AuBy—AByH; Sk, —Kn Sy, ) + [Ay A —Ay AL LS, TSy ]
e o
+ AnAn—An AL LS, — 1Sy ]| + [BoA— B ALIKLS), TSk ]

+ [Ba Ay — By A (K3 S, — 1Sk | + (AL A — AL AL S, — 1S, -

To simplify notation, put x= kr, a=n*(1—v), B=a+x* and y=a—x% Let .7, denote J, or H,, and let Z, denote I, or K;,. Then

Sg, = YT~ (1-V)xT,, Sy, = BL,—(1=V)XZ,,
T; = aJ,—PxJy, T;, = oZ,—YXI,
Hence

TnTr, =TTy, = XT:87,—TiS7,] = PrTn Ty —VXT Iy

Thus, in the combination P,,(kr) — krQ,(kr) (required in Eq. (A.1)), all terms involving mixed combinations of Z,, and .7, will cancel. For the remaining terms,
we have

H T —Ju Ty, = 2iB/m, KT, —1Tg, = =,
X[HyS), —JnSu,] = 2iv/m, XK S, —IhSk,| = =B,

using the Wronskians J,H,, —J,H, = 2i/ (x) and KI;, — Kjl, = 1/x. Noting that 3 —y=2x?, we find that
Py (k) —=krQy (kr) = 2(kr)* {[A AL —A, A)(21 / T0) + (B, A, — B, AL},

Next, we use formulas relating A, and B, to .A{1 and AL, and the corresponding formulas for W,

Ay =TIV Ay + T A, By = T Ay + T3 Ay, (A4)
Ay =T, + T A, B, =T34, + T A, (AS5)

where summation over all integer values of m is implied. (For circular scatterers, Tj™ = Tj}&,y, (no sum) and then Eq. (A.4) reduces to Eq. (18).) These relations
give
A=Ay Ay = (TN =TI A, Ay + TSR A — A AL,
By =By Ay = (T35 T3 A Al = T3 (A Ay — A A,
whence P, (kr) — krQ ,(kr) = 2(kr)?A,, where
Ny = 21/ M —TH)AA, + (T35 —T5) AL A,
+ [/ M T3 (A A~ A A
Then, combining Egs. (A.1), (A.2) and (A.3) gives A,=0.
As the coefficients AL, .Z\J,, ;li, and A, are all arbitrary (they correspond to different incident fields), we infer
M =T1 Ty =Ty, Q/m=Ty" (A6)

The third of these simplifies to Eq. (19) for circular scatterers.

We note that Matus and Emets [19] have given similar reciprocity formulas but their proof is incomplete. They use the far-field pattern f only, so that their
vector b(6) is not completely arbitrary: see their Eq. (23). Indeed, their proof shows that the block T;; is symmetric (the first of Eq. (A.6)) but it gives no
information on the other three blocks; see their Egs. (20) and (24).
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