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Abstract A semi-infinite tube is joined to a semi-infinite cone. Waves propagating in the tube towards the join

are partly reflected and partly radiated into the cone. The problem is to determine these wave fields. Two modal

expansions are used, one in the tube and one in the cone. However, their regions of convergence do not overlap: there

is a region D near the join where neither expansion converges. It is shown that the expansions can be connected by

judicious applications of Green’s theorem in D. The resulting equations are solved asymptotically, for long waves

or for narrow cones. Related two-dimensional problems are also solved. Applications to acoustics, electromagnetics

and hydrodynamics are considered.

Keywords Horns · Matched eigenfunction expansions · Waveguide junctions

1 Introduction

Suppose that we have a semi-infinite tube that is open at one end. The tube is rigid and has a circular cross-section.

If a sound wave propagates within the tube towards the end, it will be partly reflected back along the tube and partly

radiated out into the surrounding fluid. The problem of calculating the reflected and radiated fields can be solved

exactly, using the Wiener–Hopf technique; see [1] or [2, Sect. 3.4].

Suppose now that the tube is joined to a circular cone, a conical flange or horn; the tube and the cone have a

common centreline. As before, a wave propagates in the tube towards the tube–cone junction, and the problem is

to calculate the reflected and the radiated fields: we call this the horn-feed problem. (Note that it is assumed here

that there is no mean flow in the tube–cone structure.)

The horn-feed problem arises in various forms. As posed, it suggests a connection with idealised musical instru-

ments. Indeed, brass instruments have been modelled as joined conical frusta [3].

Electromagnetic horns have also been studied extensively. This work has been reviewed by Risser [4], Love [5],

Olver et al. [6] and Bird and Love [7]; see also [8] and [9, Sect. 5.24]. For high-frequency approximations, see [10]

and [11, Sects. 8.6, 8.7].

There are also analogous two-dimensional problems, where a waveguide joins a wedge-shaped region. Let us

describe such a problem in the context of small-amplitude water waves (see Sect. 3 for details). Thus, suppose that
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a semi-infinite channel is joined to a wedge-shaped ocean; both have rigid vertical walls, a common centreline,

and are filled with water of constant depth, h. An incident wave from one region is partly reflected back and partly

transmitted into the other region. For water waves, the most interesting problem is when the incident wave comes

from the ocean: we call this the ocean-inlet problem. However, in the context of acoustics or electromagnetism, the

opposite problem is most important: a channel mode is incident, and one wants to calculate the field transmitted

into the wedge. We also call this a horn-feed problem.

In this paper, we begin by describing a semi-analytical method for solving these two-dimensional problems.

Our method is a generalization of the method of matched eigenfunction expansions (MEE). Thus, we use modal

expansions in the channel and in the wedge. However, there is a region at the junction between the channel and the

wedge in which neither expansion is valid; the region is a segment of a circle, and is denoted by D below. In standard

applications of MEE, either D is absent or a third expansion is used in D. Here, we connect the two expansions

across D using certain applications of Green’s theorem in D.

Our method leads to infinite systems of linear algebraic equations. It could be developed into a numerical method

for solving horn-feed problems by appropriate truncation of the linear systems, but that is not the focus of this paper.

(For some remarks on possible numerical implementations, see Sect. 9.) Instead, we use the method to obtain var-

ious analytical approximations, for long waves or narrow wedges (Sect. 6). Having the option to truncate the

linear system at different levels means that approximations can be refined: we are not restricted to one-dimensional

approximations based on Webster-like ordinary differential equations (as described in Sect. 2).

Three-dimensional problems are treated in Sect. 8. Specifically, we consider axisymmetric waves in the tube–cone

geometry described earlier. (The axisymmetry constraint could be removed at the expense of using more compli-

cated special functions.) Again, low-frequency and narrow-cone approximations are extracted. Further applications

and generalizations are expected.

2 Previous work

The two-dimensional problems described in Sect. 1 can be reduced to solving the Helmholtz equation, (∇2+k2)u =
0, in a domain

−∞ < x < ∞, −b1(x) < y < b2(x),

where x and y are Cartesian coordinates, and the functions b1 and b2 are given; specifically, for the channel–wedge

geometry, we have

b1(x) = b2(x) =
{

b, x ≤ 0,

b + x tan α, x > 0,
(1)

where b and α are positive constants with 0 < α < 1
2
π (Fig. 1). Although we shall give a method for solving the

corresponding boundary-value problems exactly, it is of interest to consider various approximate methods.

One approach assumes that the breadth B(x) = b1(x) + b2(x) varies slowly with x and that the waves are such

that

u(x, y) ≃ U (x),

so that u does not vary significantly in the lateral direction. It follows that U satisfies

1

B

d

dx

(

B
dU

dx

)

+ k2U = 0, (2)

an ordinary differential equation known as Webster’s horn equation [12]; for derivations and generalizations, see

[13], [14, p. 360] and [15].

Strictly, Webster’s horn equation is not valid when B(x) has discontinuities in slope, as with (1). Nevertheless,

substitution of (1) for x > 0 in (2) gives

d2U

dx2
+ 1

x + b cot α

dU

dx
+ k2U = 0, (3)
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Fig. 1 The geometry of the

horn-feed problem. There

are two basic geometrical

parameters, b and α. We

also use x0 = b cot α,

rw = b csc α and

dimensionless wave-

numbers, K = kx0 and

κ = krw

which is Bessel’s equation of order zero with x + b cot α as the independent variable [16, p. 7]. Thus, with an

assumed time dependence of e−iωt , the outgoing solution of (3) is

U (x) = cw H
(1)
0 (k[x + x0]), x > 0,

where cw is a constant, x0 = b cot α and H
(1)
0 is a Hankel function. For x < 0, we suppose that there is a wave

incident upon the junction; hence, as B is constant,

U (x) = eikx + Rwe−ikx , x < 0,

where Rw is another constant, the reflection coefficient. Continuity of U and U ′ across x = 0 gives

1 + Rw = cw H
(1)
0 (kx0) and 1 − Rw = icw H

(1)
1 (kx0),

using H ′
0 = −H1. Hence

Rw = H
(1)
0 (K ) − iH

(1)
1 (K )

H
(1)
0 (K ) + iH

(1)
1 (K )

and cw = 2

H
(1)
0 (K ) + iH

(1)
1 (K )

, (4)

where K = kx0. We shall return to this solution in Sect. 6.

Equation 2 can be used for long waves on water of constant finite depth h. However, it is then customary to use

shallow-water theory, leading to

1

B

d

dx

(

B
dU

dx

)

+ ω2

gh
U = 0, (5)

where ω is the circular frequency and g is the acceleration due to gravity. Equation 5 is discussed by Lamb

[17, Sect. 186] and by LeBlond and Mysak [18, Eq. 28.28]. Applications of (5) to piecewise-linear B(x) were made

by Dean [16].

In the electromagnetic context, with the geometry (1), the waveguide x < 0 is joined to the sectoral horn x > 0

at the throat x = 0. Usually, the incident wave travels along the waveguide towards the throat, and the frequency

is chosen below the first cut-off so that only the fundamental duct mode can propagate in the waveguide. Thus,

the incident wave does not vary in the lateral direction. One can also determine modes in the horn; the outgoing

modes are defined by (10) below. In particular, the fundamental mode is simply H
(1)
0 (kr), giving a cylindrical mode

emanating from r = 0, a point on the centreline at x = −x0 = −b cot α. For small values of α (so that the wedge is
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“narrow”), one might argue that an incident fundamental duct mode is transmitted as a fundamental outgoing wedge

mode, with zero reflection. It was clearly recognised by Risser [4, pp. 354, 357] that this is an over-simplification

in many situations, but no rigorous solution was available so as to quantify the error. A similar remark was made

much later by Jones [9, p. 275]; see also the discussion of this and related problems by Lewin [19] and by Olver

et al. [6, Chap. 4].

Given two (infinite) modal expansions, one in the duct and one in the wedge, the problem is to relate them across

the throat region D. One could assume that both expansions are valid on x = 0 or on r = rw = b csc α, and then

match as usual. One could set up a boundary-integral equation around the boundary of D. Another possibility is to

make an approximation in D. For example, one might suppose that, in D, the Helmholtz equation can be replaced

by Laplace’s equation (implying that kb ≪ 1). This is essentially a form of matched asymptotic expansions. This

approach was used by Chester [20] to analyse the problem of acoustic waves in a circular tube meeting a conical

horn, and, as he notes, generalizes some calculations of Lord Rayleigh [21, Sect. 313]. Later, Chester [22] gave

another analysis for small α; he assumed that the modal expansion in the cone was convergent on x = 0, where he

matched to the modal expansion in the tube.

3 Formulation

Let Oxyz be Cartesian coordinates, so that z = 0 is the mean free surface and z = −h is the rigid bottom. We

consider a symmetric configuration in which a semi-infinite channel is joined to a wedge-shaped ocean. The channel

has walls at y = ±b, x < 0. The wedge has walls at y = ±(b + x tan α), x > 0. Thus, the channel has width

2b, the wedge has angle 2α, and the positive x-axis points into the wedge; see Fig. 1. The channel walls meet the

wedge walls at (x, y) = (0,±b); denote these points by A±. We assume that 0 < α < 1
2
π ; α = 0 corresponds to

an infinite parallel-walled channel whereas α = 1
2
π corresponds to the ocean-inlet problem solved by Dalrymple

and Martin [23].

Throughout the water, the total potential can be expressed as

Re

{

u(x, y)
cosh k(h + z)

cosh kh
e−iωt

}

, (6)

where k is the unique positive root of the dispersion relation ω2 = gk tanh kh. Thus, the potential (6) satisfies the

boundary conditions on the bottom and on the free surface. It also satisfies the three-dimensional Laplace equation

if u solves the two-dimensional Helmholtz equation

∂2u

∂x2
+ ∂2u

∂y2
+ k2u = 0. (7)

In addition, u must have a vanishing normal derivative,

∂u

∂n
= 0, (8)

on the channel and wedge walls, and it will have to satisfy certain conditions at infinity; these will be specified later

when we have chosen the incident field.

Introduce plane polar coordinates (r, θ) centred at the tip of the wedge, (x, y) = (−b cot α, 0). Thus,

x + b cot α = r cos θ and y = r sin θ,

so that the wedge walls are given by θ = ±α. In the region

Dw ≡ {(x, y) : r > rw ≡ b csc α, |θ | < α},
we can write the total potential u ≡ uw as

uw =
∞
∑

n=0

ǫncnψn + ũw (9)
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where ǫ0 = 1, ǫn = 2 for n > 0,

ψn = H (1)
νn

(kr) cos νnθ with νn = nπ/α, (10)

and H
(1)
ν is a Hankel function. The potential ũw will be prescribed later (depending on the incident field) and the

coefficients cn, n = 0, 1, 2, . . ., are to be found. Each wedge mode ψn satisfies (7) within the wedge, (8) on the

wedge walls, and is outgoing as r → ∞.

In the channel

Dc ≡ {(x, y) : x < 0, |y| < b},

we can write u ≡ uc as

uc =
∞
∑

n=0

ǫnanχn + ũc (11)

where

χn = e−iβn x cos λn y with λn = nπ/b

and

βn =
{

√

k2 − λ2
n, 0 ≤ λn ≤ k,

i
√

λ2
n − k2, λn > k.

(12)

The potential ũc will be prescribed later and the coefficients an, n = 0, 1, 2, . . ., are to be found. Each duct mode χn

satisfies (7) within the channel and (8) on the channel walls. Each χn is an outgoing propagating wave as x → −∞,

or it decays exponentially as x → −∞.

For simplicity, we have assumed that all fields are symmetric about the centreline y = 0. This is not an essential

requirement; we could include antisymmetric wedge and duct modes, if needed.

The complete region filled with fluid is Dw ∪ Dc ∪ D, where D is a segment of a circle, defined by

D ≡ {(x, y) : x > 0, r < rw ≡ b csc α},

with corners at A±. These corners imply that we cannot use either modal expansion in D.

It remains to determine the coefficients an and cn by relating the two modal expansions across D. In previous

applications of such expansion methods, the geometry has been such that either D is absent (for example, two

channels of different widths) or a third modal expansion is used in D. Here, we note that the boundary of D, ∂D,

comprises two pieces, ∂D = ∂Dw ∪ ∂Dc, where ∂Dw is the circular arc r = rw, |θ | < α, and ∂Dc is the line

segment x = 0, |y| < b. We can use the modal expansions (9) and (11) on ∂Dw and ∂Dc, respectively. The crucial

observation for the success of our method (described in Sect. 4) is that ∂D does not include any pieces of the walls;

see the discussion at the end of Sect. 4. Thus, the method will fail if the channel and wedge do not have a common

centreline.

4 The matching method

Let ϕ and � be two non-singular solutions of (7) in D. Then, an application of Green’s theorem in D to ϕ and �

gives
∫

∂D

(

ϕ
∂�

∂n
− �

∂ϕ

∂n

)

ds = 0.

Taking the outward normal, we obtain

A(ϕ,�) = B(ϕ,�) (13)
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where

A(ϕ,�) =
b

∫

−b

(

ϕ
∂�

∂x
− �

∂ϕ

∂x

)

x=0

dy,

B(ϕ,�) =
α

∫

−α

(

ϕ
∂�

∂r
− �

∂ϕ

∂r

)

r=rw

rw dθ.

If we replace ϕ in (13) by the total potential u, we can then use (11) in A and (9) in B to give

∞
∑

n=0

ǫnan An(�) +
∞
∑

n=0

ǫncn Bn(�) = F(�) (14)

where

An(�) = A(χn,�) = −A(�, χn),

Bn(�) = −B(ψn,�) = B(�,ψn),

F(�) = B(ũw,�) − A(ũc,�).

Equation 14 holds for all admissible �, that is, for all regular solutions of the Helmholtz equation in D. We make

two choices for �,

� = e+iβm x cos λm y = χ∗
m and � = H (2)

νm
(kr) cos νmθ = ψ∗

m,

where m ≥ 0 is an integer. These equations define χ∗
m and ψ∗

m , respectively. Note that ψ∗
m is the complex conjugate

of ψm for all m. However, χ∗
m is the complex conjugate of χm only for propagating modes, where βm is real.

Orthogonality of {cos λn y} over |y| ≤ b implies that

ǫn An(χ∗
m) = 4ibβmδmn,

where δi j is the Kronecker delta. Similarly, orthogonality of {cos νnθ} over |θ | ≤ α, together with the Wronskian

for Bessel functions, gives

ǫn Bn(ψ∗
m) = 8i(α/π)δmn .

Thus, (14) gives

4ibβm am +
∞
∑

n=0

ǫn Bn(χ∗
m) cn = F(χ∗

m), (15)

8i(α/π) cm +
∞
∑

n=0

ǫn An(ψ∗
m) an = F(ψ∗

m) (16)

for m = 0, 1, 2, . . ., which is an infinite system of linear algebraic equations for an and cn, n = 0, 1, 2, . . ..

In general, the remaining integrals in (15) and (16) must be evaluated numerically. Note that, from (13), we have

An(ψ∗
m) = A(χn, ψ∗

m) = B(χn, ψ∗
m),

Bn(χ∗
m) = B(χ∗

m, ψn) = A(χ∗
m, ψn),

so that we can write all integrals over the circular arc ∂Dw or over the line segment ∂Dc, as convenient.

In the calculations above, we made two choices for �, namely χ∗
m and ψ∗

m . Other choices could be made. For

example, as An(ψm) = 0, ψ∗
m could be replaced by 2Jνm (kr) cos νmθ in (16).

Notice that if ∂D had included a piece of the walls (as would have happened if the channel and wedge did not

have a common centreline), we would have been obliged to use functions � that satisfy ∂�/∂n = 0 on that piece

of the walls. Although such functions are easily constructed, we would lose orthogonality over other pieces of ∂D.
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5 The two-dimensional horn-feed problem

For this problem, the incident field is a duct mode. The simplest problem is when the fundamental mode is chosen,

whence

ũw ≡ 0 and ũc = eikx = χ∗
0 .

Thus

F(�) = −A(ũc,�) = −B(ũc,�).

In particular, F(χ∗
m) = A(χ∗

m, χ∗
0 ) = 0.

Let us make a statement on energy conservation for the horn-feed problem. Thus, an application of Green’s

theorem gives

b
∫

−b

(

uc
∂uc

∂x
− uc

∂uc

∂x

)

dy =
α

∫

−α

(

uw
∂uw

∂r
− uw

∂uw

∂r

)

r dθ, (17)

where the overbar denotes complex conjugation. Evaluate the left-hand side of (17) at any negative value of x , using

the expansion (11) (with ũc = eikx ) and orthogonality of {cos λn y}. Evaluate the right-hand side of (17) at any

value of r > rw, using the expansion (9) (with ũw = 0), orthogonality of {cos νnθ} and the Wronskian for Bessel

functions. The result is

1 −
Np−1
∑

n=0

ǫn

βn

k
|an|2 = 2α

πkb

∞
∑

n=0

ǫn|cn|2, (18)

where Np is the number of propagating duct modes. The identity (18) expresses energy conservation for the horn-feed

problem.

6 The horn-feed problem: approximations

Suppose we have one reflected propagating mode in the channel (so that kb < π ), we neglect the evanescent modes

in the channel and we take just one cylindrical mode in the wedge. Thus, we write

uc = eikx + Re−ikx , uw = c0 H
(1)
0 (kr), (19)

where R ≡ a0 is the reflection coefficient. Energy conservation, (18), reduces to

1 − |R|2 = 2α

πkb
|c0|2. (20)

Taking m = 0 in (15) and (16) gives

4ikbR + c0 B0(χ
∗
0 ) = 0, 8i(α/π)c0 + R A0(ψ

∗
0 ) = F(ψ∗

0 ),

whence

R = A0(ψ
∗
0 )

F(ψ∗
0 )

�
, c0 = −4ikb

F(ψ∗
0 )

�
, � = 32kb

α

π
+ |A0(ψ

∗
0 )|2, (21)

where we have used

B0(χ
∗
0 ) = A(χ∗

0 , ψ0) = A(χ0, ψ
∗
0 ) = A0(ψ

∗
0 ).
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6.1 Fixed α, small kb

For fixed geometry and long waves, we can approximate further. As α is fixed, it is convenient to write the coefficients

in (21) in terms of integrals at r = rw across the wedge. Thus, as χ0 = e−ik(r cos θ−x0),

A0(ψ
∗
0 ) = B(χ0, ψ

∗
0 ) = eikx0

α
∫

−α

e−ikrw cos θ

(

∂ψ∗
0

∂r
+ ikψ∗

0 cos θ

)

r=rw

rw dθ

= −κ
(

H
(2)
1 (κ) E(κ) + H

(2)
0 (κ) E ′(κ)

)

eiκ cos α,

F(ψ∗
0 ) = −B(χ∗

0 , ψ∗
0 ) = κ

(

H
(2)
1 (κ) E(κ) + H

(2)
0 (κ) E

′(κ)
)

e−iκ cos α,

where κ = krw = kb csc α, x0 = b cot α = rw cos α is the distance from the wedge tip to the throat and

E(κ) =
α

∫

−α

eiκ cos θ dθ.

As α is fixed and kb is small, κ = krw ≪ 1. Therefore, we can use standard small-argument approximations

for the Hankel functions, H
(2)
0 (κ) = −(2i/π) log κ + O(1) and H

(2)
1 (κ) = (2i/π)κ−1 + O(κ log κ), together with

E(κ) = 2α + O(κ), E ′(κ) = 2i sin α + O(κ) and e±iκ cos α = 1 + O(κ) as κ → 0. Hence, as κ sin α = kb,

A0(ψ
∗
0 ) ∼ F(ψ∗

0 ) ∼ 4i(α/π){1 − i(kb/α) log κ}.
Thus, � ∼ (4α/π)2{1 + 2kbπ/α},
R ∼ −1 + 2i(kb/α) log κ and c0 ∼ π(kb/α){1 − i(kb/α) log κ}.
The expression for R shows that, in the limit kb → 0, the incident wave in the duct is reflected as if the duct were

closed with u = 0 on x = 0. The next term is reminiscent of the known exact solution (obtained by the Wiener–Hopf

technique) for an open-ended channel (formally, put α = π ). Indeed, if we suppose that kb is small in that exact

solution, we find that the reflection coefficient is given, asymptotically, by

Rπ ∼ −1 + 2i(kb/π) log (kb) as kb → 0;

see [24, p. 28] or [2, p. 110].

We can also compare R and c0 with the corresponding results obtained by solving Webster’s horn equation, Rw

and cw. Thus, using small-argument approximations for the Hankel functions in (4), we obtain

Rw ∼ −1 + 2ikx0 log (kx0) and cw ∼ πkx0{1 − ikx0 log (kx0)}.
Thus, all three estimates compare well.

Note that if |R| is of interest, it can be calculated readily from (20) and the estimate for c0.

6.2 Small α, fixed kb

Evidently, the approximations obtained in Sect. 6.1 are inappropriate for small α. In this case, it is convenient to

write the coefficients in (21) in terms of integrals at x = 0 across the throat. Thus,

A0(ψ
∗
0 ) = A(χ0, ψ

∗
0 ) =

b
∫

−b

(

∂ψ∗
0

∂x
+ ikψ∗

0

)

x=0

dy,

F(ψ∗
0 ) = −A(χ∗

0 , ψ∗
0 ) = −

b
∫

−b

(

∂ψ∗
0

∂x
− ikψ∗

0

)

x=0

dy.
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We have ∂ f (r)/∂x = f ′(r) cos θ and

r = r0(y) =
√

x2
0 + y2 and cos θ = x0/r0(y) on x = 0.

Thus,

1

k

(

∂ψ∗
0

∂x
± ikψ∗

0

)

x=0

= − x0

r0
H

(2)
1 (kr0) ± iH

(2)
0 (kr0).

Suppose now that α is small so that x0/b is large. We use standard large-argument asymptotic approximations

for the Hankel functions,

H
(2)
0 (z) ∼

(

1 + i

8z

)

E(z), H
(2)
1 (z) ∼

(

i + 3

8z

)

E(z),

with E(z) =
√

2/(π z) exp {−i(z − π/4)}. To justify using these approximations, z = kr0 ∼ kx0 must be large,

implying that kb must be bounded away from zero. Then,
(

∂ψ∗
0

∂x
− ikψ∗

0

)

x=0

∼ −2ik E(kx0),

(

∂ψ∗
0

∂x
+ ikψ∗

0

)

x=0

∼ − E(kx0)

2x0
.

Hence F(ψ∗
0 ) ∼ 4ikbE(kx0) and A(ψ∗

0 ) ∼ −(b/x0)E(kx0). Then, as x0 ≃ b/α for small α, we obtain � ∼
32kbα/π ,

R ∼ − iα

4kb
and c0 ∼ πkb

2α
E(kx0). (22)

Thus, |c0|2 ∼ 1
2
πkb/α so that energy is conserved to leading order: the right-hand side of (20) approaches unity as

α → 0 whereas |R|2 = O(α2).

The corresponding estimates based on (4) are

Rw ∼ − i tan α

4kb
and cw ∼ πkb

2 tan α
E(kx0).

These agree with (22) as α → 0; the estimates for the reflection coefficient also agree with those found by Rice

[25], Leonard and Yen [26] and Riblet [27].

The wave transmitted into the wedge is

c0 H
(1)
0 (kr) ∼ α−1

√

(b/x0)(b/r) eik(r−x0) ∼ eikx as α → 0.

This is as expected: when α → 0, the wedge reduces to a continuation of the channel, implying zero reflection and

the unchanged propagation of the incident wave.

6.3 Refined approximations

One merit of our approach is that it can be used to develop improved approximations. For example, suppose we

augment the approximation (19) with an additional mode in the wedge:

uc = eikx + R̃e−ikx , uw = c̃0 H
(1)
0 (kr) + 2c̃1 H (1)

ν1
(kr) cos ν1θ. (23)

Here, ν1 = π/α. Equations 15 and 16 give

4ikbR̃ + c̃0 B0 + 2c̃1 B1 = 0,

8i(α/π)c̃0 + R̃ A00 = F0,

8i(α/π)c̃1 + R̃ A01 = F1.

Here, we have used a shorthand notation: A00 = A0(ψ
∗
0 ), A01 = A0(ψ

∗
1 ), B0 = B0(χ

∗
0 ), B1 = B1(χ

∗
0 ), F0 =

F(ψ∗
0 ) and F1 = F(ψ∗

1 ). Solving gives

R̃ = R� + 2B1 F1

� + 2B1 A01
,

8iα

π
c̃1 = F1� − A01 B0 F0

� + 2B1 A01
,

8iα

π
c̃0 = 8i(α/π)c0� + 2B1(F0 A01 − F1 A00)

� + 2B1 A01
,

with R, c0 and � defined by (21). In particular,
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c̃1

c̃0
= F1� − A01 B0 F0

8i(α/π)c0� + 2B1(F0 A01 − F1 A00)
. (24)

Let us estimate this ratio for small kb and fixed α. From results in Sect. 6.1, we have � ∼ γ 2, F0 ∼ B0 ∼
−A00 ∼ iγ and c0 ∼ 4(κ/γ ) sin α with γ = 4α/π and κ = krw Hence, (24) reduces to

c̃1

c̃0
∼ γ (F1 + A01)

8iκγ sin α + 2iB1(F1 + A01)
. (25)

Next, we find that

A01 = B(χ0, ψ
∗
1 ) = κ

(

�′(κ)E1(κ) − �(κ)E ′
1(κ)

)

eiκ cos α,

F1 = −B(χ∗
0 , ψ∗

1 ) = −κ
{

�′(κ)E1(κ) − �(κ)E ′
1(κ)

}

e−iκ cos α

and B1 = A01, where

�(κ) = H (2)
ν1

(κ) and E1(κ) =
α

∫

−α

eiκ cos θ cos ν1θ dθ.

Then, we use �(κ) ∼ i�0κ
−ν1 and E1(κ) ∼ iE0κ as κ → 0, where �0 = π−12ν1Ŵ(ν1) and E0 = 2(ν2

1 −1)−1 sin α

are both real. Hence, F1 ∼ (ν1 + 1)E0�0κ
1−ν1 as κ → 0, with exactly the same estimate holding for both A01 and

B1. Then, inspection of the denominator in (25) shows that the first term is O(κ) and the second is O(κ2−2ν1); the

second is dominant because ν1 = π/α > 1. Hence, (25) reduces further to

c̃1

c̃0
∼ γ

2iB1
∼ γ κν1−1

2i(ν1 + 1)E0�0
; (26)

this justifies neglecting c̃1 compared to c̃0 when κ → 0.

7 The ocean-inlet problem

For this problem, the incident field is uinc = e−ikx = χ0. We assume that, in the absence of the channel, the total

potential in the wedge-shaped ocean is given by uinc + uref , where uref is the known reflected field. The calculation

of uref is a classical problem, first solved by Macdonald in 1902. The relevant formulae and references are given by

Bowman and Senior [28, Sect. 6.2.2]. Thus, one can write the total potential as a contour integral (which is conve-

nient for large r ) or as an eigenfunction expansion. For the latter, we set ν = 2α/π,� = π − α, ρ = r, φ = π − θ

and φ0 = π in [28, Eq. 6.40] to give

uinc + uref = π

α

∞
∑

n=0

ǫn e−iπνn/2ψ̂n

where

ψ̂n = Jνn (kr) cos νnθ with νn = nπ/α,

is a regular wedge mode (it is the real part of the outgoing wedge mode ψn , defined by (10)). When α = π/N , with

N an integer, the solution simplifies. For example,

uref = eikx + 2 cos ky when α = 1
4
π and

uref = 2 exp
(

1
2

ikx
)

cos
(

1
2

√
3ky

)

when α = 1
3
π .

Now, when the channel is present, we take

ũw = uinc + uref and ũc ≡ 0,

whence F(�) = B(ũw,�) = A(ũw,�). In particular, making use of the Wronskian for Bessel functions gives

F(ψ∗
m) = −4i exp{− 1

2
iπνm},

whereas the expression for F(χ∗
m) does not simplify (except for special choices of α).

In principle, we can now solve the ocean-inlet problem, using (15) and (16), and we can develop approximate

solutions as in Sect. 6.
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8 The three-dimensional horn-feed problem

We consider a circular tube joined to a cone. The geometry is axisymmetric: we take the x-axis as the axis of symme-

try. Introduce cylindrical polar coordinates, ̺, φ and x . The tube is ̺ = b, x < 0. The cone is ̺ = b+x tan α, x > 0.

A wave propagates in the tube towards the join at x = 0, and the problem is to find the reflected and radiated fields.

For simplicity, we assume that the incident wave, uinc, is axisymmetric and so the reflected and radiated fields

are also axisymmetric: there is no dependence on the angle φ.

In the tube (x < 0, 0 ≤ ̺ < b), we can write

u = uinc +
∞
∑

n=0

anχn with χn = e−iβn x J0(λn̺), (27)

where βn is defined by (12), λ0 = 0 and λnb = j1,n , the nth positive zero of the Bessel function J1. In partic-

ular, χ0 = e−ikx . Each mode χn is an axisymmetric solution of the three-dimensional Helmholtz equation; each

mode satisfies ∂χn/∂̺ = 0 on the wall ̺ = b; and each mode either propagates towards x = −∞ or it decays

exponentially as x → −∞. We also have orthogonality [29, Eq. 11.4.5]:

b
∫

0

J0(λm̺)J0(λn̺)̺ d̺ = 1

2
b2 J 2

0 (λnb)δmn . (28)

In the cone, we use spherical polar coordinates, r and θ , with x + b cot α = r cos θ , so that the cone’s surface is

at θ = α. Then, inside the cone (r > rw = b csc α, 0 ≤ θ < α), we can write [30]

u =
∞
∑

n=0

cnψn with ψn = h(1)
νn

(kr)Pνn (cos θ), (29)

where h
(1)
ν (z) =

√
π/(2z)H

(1)
ν+1/2(z), Pν(z) is a Legendre function and the (real) quantities νn are defined by

P ′
νn

(cos α) = 0. In particular, ν0 = 0 and ψ0 = h
(1)
0 (kr) = eikr/(ikr). Each mode ψn is an axisymmetric solution

of the three-dimensional Helmholtz equation; each mode satisfies ∂ψn/∂θ = 0 on the wall θ = α; and each mode

gives an outgoing wave as r → ∞. We also have orthogonality [30, Eq. 18.267]:

α
∫

0

Pνm (cos θ)Pνn (cos θ) sin θ dθ = pnδmn, (30)

with p0 = 1 − cos α and

pn = − sin α

2νn + 1

∂2 Pq(cos α)

∂q ∂α

∣

∣

∣

∣

q=νn

Pνn (cos α).

Let us now adapt the matching method of Sect. 4 to the axisymmetric horn-feed problem. First, Green’s theorem

in the throat region D (bounded by the disc ̺ < b at x = 0 and the spherical cap, r = rw, 0 ≤ θ < α) gives (13)

with A and B defined by

A(ϕ,�) = 1

b

b
∫

0

(

ϕ
∂�

∂x
− �

∂ϕ

∂x

)

x=0

̺ d̺,

B(ϕ,�) = 1

b

α
∫

0

(

ϕ
∂�

∂r
− �

∂ϕ

∂r

)

r=rw

r2
w sin θ dθ.

Next, we replace ϕ in (13) by the total potential u, using (27) in A and (29) in B to give

∞
∑

n=0

an An(�) +
∞
∑

n=0

cn Bn(�) = F(�) (31)
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where An(�) = A(χn,�), Bn(�) = −B(ψn,�) and F(�) = A(�, uinc). Equation 31 holds for all regular

solutions � of the Helmholtz equation in D. As in Sect. 4, we make two choices for �,

� = e+iβm x J0(λm̺) = χ∗
m and � = ψm = ψ∗

m,

where m ≥ 0 is an integer. These equations define χ∗
m and ψ∗

m . Using these in (31), together with the orthogonality

relations, (28) and (30), and the Wronskian for h
(1)
ν , gives

ibβm J 2
0 (λmb) am +

∞
∑

n=0

Bn(χ
∗
m) cn = F(χ∗

m), (32)

2i

kb
pm cm +

∞
∑

n=0

An(ψ∗
m) an = F(ψ∗

m) (33)

for m = 0, 1, 2, . . ., which is an infinite system of linear algebraic equations for an and cn, n = 0, 1, 2, . . .. Also,

for the simplest horn-feed problem, we have uinc = eikx = χ∗
0 , whence F(χ∗

m) = 0.

Let us approximate, as in Sect. 6. Thus, write u = eikx + Re−ikx in the tube (so that a0 = R) and u = c0h
(1)
0 (kr)

in the cone. Then, taking m = 0 in (32) and (33) gives

ikbR + c0 B0(χ
∗
0 ) = 0, [2i/(kb)]p0c0 + R A0(ψ

∗
0 ) = F(ψ∗

0 ),

which can be solved for R and c0. For example, as B0(χ
∗
0 ) = A0(ψ

∗
0 ),

R = F(ψ∗
0 )A0(ψ

∗
0 )

{

2p0 + |A0(ψ
∗
0 )|2

}−1
.

Unlike in two dimensions, the integrals here can be evaluated exactly. We find that

A0(ψ
∗
0 ) = B(χ0, ψ

∗
0 ) = p0

ikb
e−iκ ,

F(ψ∗
0 ) = B(ψ∗

0 , χ∗
0 ) = e−iκ

ikb
{1 + cos α − 2eiκp0},

where κ = krw = kb csc α and p0 = 1 − cos α. Hence,

R = 1 + cos α − 2eiκp0

p0 + 2(kb)2
. (34)

For fixed α and small kb, (34) gives

R ∼ −1 − 2ikb csc α. (35)

On the other hand, for small α and fixed kb, p0 ∼ α2/2, κp0 ∼ kbα/2 and (34) gives

R ∼ − iα

2kb
. (36)

Let us compare these results with those obtained by solving Webster’s horn equation. For a horn of cross-sectional

area S(x), this equation is U ′′ +(S′/S)U ′ +k2U = 0. Within the cone, S(x) = π(x +x0)
2, so the outgoing solution

is U (x) = cwh
(1)
0 (k[x + x0]) [12]. In the tube, U (x) = eikx + Rwe−ikx . Continuity conditions at x = 0 then give

Rw = h
(1)
0 (K ) − ih

(1)
1 (K )

h
(1)
0 (K ) + ih

(1)
1 (K )

= 1

2iK − 1
,

where K = kx0 = κ cos α. We have Rw ∼ −1 − 2ikb cot α as K → 0, which should be compared with (35).

Similarly, Rw ∼ (2ikb)−1 tan α as K → ∞, which compares well with the small-α approximation (36).
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9 Discussion and conclusion

We have described a method for treating problems where two modal expansions are connected via a region in

which neither expansion is valid. Such problems arise in several contexts: one is the horn-feed problem, where a

waveguide (tube or channel) is connected to a horn (cone or wedge). The method leads to infinite systems of linear

algebraic equations for the modal coefficients. Truncated systems were solved analytically: good agreement with

various low-frequency and narrow-horn approximations was found.

It is known that the infinite systems arising from matched modal expansions should be truncated with care.

This was first shown by Mittra [31] for the problem of a bifurcated waveguide, with an infinite channel, |y| < b,

containing a thin semi-infinite screen along y = 0, x > 0; see also [32, Sect. 2-3]. Mittra showed that it is necessary

to take proper account of the edge condition at the tip of the screen. In our context, this means the behaviour of u

near the points A± in Fig. 1, where u ∼ {x2 + (y ∓ b)2}π/(2π+2α). Our linear systems were obtained by making

two choices for the function � in (14), but, as already noted, other choices could have been made. It is anticipated

that this flexibility could be exploited in order to incorporate the edge conditions, perhaps by adapting Porter’s

method (see, for example, [33, Sect. 5]). Related issues of linear independence and conditioning have not yet been

investigated.
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