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In a previous paper, Linton and Martin [J. Acoust. Soc. Am. 117, 3413–3423 (2005)] obtained two

formulas for the effective wavenumber in a dilute random array of circular scatterers. They

emerged from a study of the problem of the reflection of a plane wave at oblique incidence to a

half-space containing the scatterers. Here, their study is extended to obtain formulas for the reflec-

tion and transmission coefficients and to investigate the average fields near the boundary of the

half-space. Comparisons with previous work are made. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

In recent years, there has been a revival of interest in

methods for estimating the effective wavenumber for propa-

gation through random composites. In this paper, two-

dimensional acoustic problems are considered, with the

Helmholtz equation, (r2þ k2)u¼ 0, outside circular cylin-

ders. Inside each cylinder, there is another Helmholtz

equation, ðr2 þ k20Þu0 ¼ 0, with transmission conditions

connecting u and u0 across the circular boundaries. It is

assumed that every circle has radius a.

To analyze multiple scattering1 by random configura-

tions of scatterers, the theory given by Linton and Martin2 is

developed further; their paper and formulas taken from it

will be identified by LM below. In LM, formulas for the

effective wavenumber, K, were derived. These formulas take

the form

K2 ¼ k2 þ n0d1 þ n20d2; (1)

where n0 is the number of cylinders per unit area; the area

fraction occupied by the scatterers, /: n0pa
2, is assumed to

be small. Explicit formulas for d1 and d2 were given in LM.

They were obtained using the Lax quasicrystalline approxi-

mation (QCA), they compare favorably with experiments,3,4

they have been confirmed by an independent method that is

valid for weak scattering5 (see Sec. VIII), and they have

been used to estimate the dynamic effective mass density of

random composites.6 The LM formulas are accurate to sec-

ond order in /. They require the solution of a scattering

problem for one scatterer; this scalar (transmission) problem

is discussed briefly in Sec. II.

The basic problem considered in LM consists of circular

scatterers distributed randomly in the (right) half-plane x> 0

with a plane wave incident obliquely from the (left)

half-plane x< 0. The goal of LM was to estimate the effec-

tive wavenumber, K, within the right half-plane. No informa-

tion on the reflected and transmitted wavefields was given.

Here, we show that these wavefields can be determined by

extending the analysis in LM.

There is a specularly reflected plane wave. The (aver-

age) reflection coefficient is found to be

R ¼ n0ði=k
2Þf ðp� 2hinÞ þ Oðn20Þ; (2)

where hin is the angle of incidence and f(h) is the far-field

pattern for scattering by one cylinder. An explicit expression

for the Oðn20Þ contribution is also obtained, see Eq. (42).

The average field transmitted to the right half-plane has

a more complicated form. For example, at normal incidence,

it is found to be

eiKx þ n0pa
2 A1e

iKx � eikx
� �

þ Oðn20Þ; (3)

where an explicit formula for A1 is obtained, see Eq. (52).

To verify these results, comparisons with the independent

weak-scattering results in Ref. 5 are made, and agreement is

found.

In Sec. IX, the behavior of the fields across x¼ 0 is

examined. It is found that the fields themselves are continu-

ous but the slopes are discontinuous. An estimate for the

slope discontinuity is derived. This is then used to estimate

the effective density of the right half-plane.

II. LINTON–MARTIN (LM) FORMULATION

The LM approach (described in Sec. IV of LM2) starts

with an exact multiple-scattering method for an arbitrary

deterministic arrangement of N identical circular scatterers.

The total field outside the cylinders, u, is written as LM(47),

u ¼ uin þ
X

N

j¼1

X

1

n¼�1

Aj
nZnHnðkrjÞ e

inhj ; (4)a)Author to whom correspondence should be addressed. Electronic mail:

pamartin@mines.edu
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for rj> a, j¼ 1, 2, …, N, where (rj, hj) are the polar coordi-

nates centered at rj¼ (xj, yj), the center of the jth cylinder.

The incident field is taken as a plane wave at oblique inci-

dence, LM(24), so that

uin ¼ eiðaxþbyÞ with a ¼ k cos hin; b ¼ k sin hin: (5)

The coefficients Aj
n are to be found, Hn � Hð1Þ

n is a Hankel

function and Zn, which characterizes scattering by one iso-

lated cylinder, is given by LM(49),

Zn ¼ ðReDnÞ=Dn ¼ Z�n (6)

with

Dn ¼ ðq0=qÞH
0
nðkaÞJnðk0aÞ � ðk0=kÞHnðkaÞJ

0
nðk0aÞ:

(7)

Here, k0 is the interior wavenumber, q0 is the interior den-

sity, and q is the exterior density. The interface conditions

are LM(50),

u ¼ u0 and
1

q

@u

@r
¼

1

q0

@u0
@r

on r ¼ a; (8)

where u0 is the field inside the cylinder; these are appropriate

for a fluid cylinder surrounded by a different fluid, so that u

is the pressure. The far-field pattern, f, is given by LM(53) as

f ðhÞ ¼ �
X

1

n¼�1

Zn e
inh ¼ �Z0 � 2

X

1

n¼1

Zn cos nh: (9)

In LM, an exact linear system is derived for Aj
n. Then, en-

semble averages are taken, followed by letting N ! 1 and

imposition of the Lax QCA. (All the cylinders are in the

right half-plane, x> 0.) The key quantity is hAj
nij, the aver-

age of Aj
n conditional on there being a cylinder at rj. It is

expressed as LM(56),

hAj
nij ¼ in eibyj UnðxjÞ; xj > 0: (10)

Then, in order to avoid possible difficulties near the

“interface” at x¼ 0, Linton and Martin assumed that Un

could be written as LM(58),

UnðxÞ ¼ Fn e
�inu eikx for x > ‘; (11)

where the length ‘ is not (and need not be) specified; later,

we shall take ‘¼ 0 (see Sec. III). The quantities K and u are

defined by LM(31),

k ¼ K cosu and b ¼ K sinu ¼ k sin hin: (12)

The coefficients Fn were then shown to solve an infinite

homogeneous system of linear algebraic equations, LM(71).

Analysis of this system led to formulas for d1 and d2 in Eq.

(1), LM(77) and LM(80), respectively,

d1 ¼ 4i
X

1

n¼�1

Zn ¼ �4if ð0Þ; (13)

d2 ¼ 4pib2
X

1

n¼�1

X

1

m¼�1

ZmZndm�nðkbÞ; (14)

where b is the “hole radius” introduced in the conditional

averaging to prevent cylinders overlapping, the function

dn(x) is defined by LM(73),

dnðxÞ ¼ J0nðxÞH
0
nðxÞ þ ½1� ðn=xÞ2�JnðxÞHnðxÞ; (15)

and Jn is a Bessel function. Equation (13) is the well-known

Foldy–Lax estimate. The second-order contribution, Eq.

(14), is approximated further in LM by taking the limit kb

! 0; the result is LM(7), a formula that is reminiscent of the

Lloyd–Berry formula for analogous three-dimensional

problems.7,8

Concerning the dependence of Fn on n0, the analysis in

Sec. IV C of LM shows that

Fn ¼ Fþ n0qn þ Oðn20Þ; (16)

qn ¼ ~Qþ pb2F
X

1

m¼�1

Zmdm�nðkbÞ; (17)

where F and ~Q are n0-independent constants. The values of

these two constants were not determined; this will be done in

Sec. IV.

III. DEPENDENCE ON ‘

On p. 3419 of LM, it is shown that B ¼ �1,

�1 ¼ B ¼
2n0

a

X

1

n¼�1

Zne
inhinCnð‘Þ; (18)

Cnð‘Þ ¼

ð‘

0

UnðtÞe
�iat dtþ

iFne
�inu

k� a
eiðk�aÞ‘: (19)

This relation was not used in LM. As the main results in

LM do not depend on ‘, we shall assume that a continuity

argument can be used to assert that Eq. (11) should hold for

all ‘> 0, leading to a useful simplification. So, setting ‘¼ 0

in Eq. (18) gives

�1 ¼
2in0

aðk� aÞ

X

1

n¼�1

FnZne
inðhin�uÞ: (20)

This equation will be used in Sec. IV to obtain informa-

tion on Fn.

IV. INFERENCES FROM K

Given the LM formula for K, Eq. (1) with Eqs. (13) and

(14), estimates for u and k can be obtained. To begin,

rewrite Eq. (1) as
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ðK=kÞ2 ¼ 1þ /j1 þ /2j2; (21)

where /¼pa2n0, and

j1 ¼
d1

pðkaÞ2
¼ �

4i f ð0Þ

pðkaÞ2
and j2 ¼

d2

ðpka2Þ2
(22)

are dimensionless. Ignoring terms that are O(/3) as / ! 0,

Eq. (21) gives K=k ¼ 1þ 1
2
/j1 þ

1
8
/2ð4j2 � j21Þ.

Put C¼ cos hin, S¼ sin hin, and T¼ tan hin. To solve Eq.

(12)2, (K/k)sin u¼ S, for u, write

u ¼ hin þ /p1 þ /2p2: (23)

Then

S ¼ ðK=kÞ

�

S cosð/p1 þ /2p2Þ þ C sinð/p1 þ /2p2Þ

�

¼ ðK=kÞ S 1�
1

2
/2p21

� �

þ Cð/p1 þ /2p2Þ

� �

¼ Sþ
1

2
/ðSk1 þ 2Cp1Þ

þ
1

8
/2½Sð4j2 � j21Þ þ 4Cp1j1 þ 8Cp2 � 4Sp21�:

Hence,

p1 ¼ �
1

2
Tj1 and p2 ¼

1

8
T½ð3þ T2Þj21 � 4j2�: (24)

Next, calculate k¼K cosu, using Eqs. (23) and (24),

k=k ¼ Cþ
1

2
/j1C

�1 þ
1

8
/2ð4j2C

�1 � j21C
�3Þ: (25)

This approximation is used in Eq. (20). Thus,

2in0

aðk� aÞ
¼

4i

pðkaÞ2j1
1þ /

j1

4C2
�
j2

j1

� �� 	

: (26)

From Eqs. (16) and (17),

Fn

F
¼ 1þ /Qþ / b=að Þ2

X

1

m¼�1

Zmdm�nðkbÞ; (27)

where Q ¼ ~Q=ðpa2FÞ, a dimensionless constant. Hence

1

F

X

1

n¼�1

FnZne
inðhin�uÞ

¼
X

1

n¼�1

Zne
inðhin�uÞ þ /Q

X

1

n¼�1

Zne
inðhin�uÞ

þ /
pðkaÞ2

4i
Kðhin � uÞ

¼ �f ðhin � uÞ � /Qf ð0Þ �
1

4
i/pðkaÞ2Kð0Þ

¼ �ff ð0Þ � /p1f
0ð0Þg � /Qf ð0Þ �

1

4
i/pðkaÞ2j2

¼ �
1

4
ipðkaÞ2j1 �

1

4
i/QpðkaÞ2j1 �

1

4
i/pðkaÞ2j2

¼
pj1

4i
ðkaÞ2 1þ / Qþ

j2

j1

� �� 	

; (28)

where f 0(0)¼ 0 has been used [see Eq. (9)] and the function

K is defined by

KðdÞ ¼
4iðb=aÞ2

pðkaÞ2

X

1

n¼�1

X

1

m¼�1

ZmZndm�nðkbÞ e
ind; (29)

so that Kð0Þ ¼ j2 [see Eqs. (14) and (22)]. (Note that

limkb!0 KðdÞ can be expressed as an integral, similar to that

for Kð0Þ as in Sec. IV C of LM.) Substituting Eqs. (26) and

(28) in Eq. (20) gives

�1 ¼ F 1þ /
j1

4C2
�
j2

j1

� �� 	

1þ / Qþ
j2

j1

� �� 	

¼ F 1þ / Qþ
j1

4C2


 �h i

þ Oð/2Þ:

Thus,

F ¼ �1 and Q ¼ �
j1

4C2
¼

i f ð0Þ

pðkaÞ2C2
:

Substituting back in Eq. (28) gives

X

1

n¼�1

FnZne
inðhin�uÞ ¼

i

4
pðkaÞ2j1 1� /

j1

4C2
�
j2

j1

� �� 	

þ Oð/2Þ: (30)

This approximation will be used in Sec. VII.

V. RESULTS FROM FOLDY THEORY

Classical Foldy theory assumes isotropic scattering. The

effective wavenumber is given by LM(1),

K2 ¼ k2 � 4ign0; (31)

where g is the (dimensionless) scattering coefficient. For the

scattering problem, we have

huðx; yÞi ¼
eiðaxþbyÞ þ Reið�axþbyÞ; x < 0;
AeiðkxþbyÞ; x > 0;

�

(32)

where R is the (average) reflection coefficient and A is the

(average) transmission coefficient.

Foldy theory (see Sec. III A in LM) predicts that R¼RF

and A ¼ AF, where

RF ¼
a� k

kþ a
and AF ¼

2a

kþ a
¼ 1þ RF: (33)

From these formulas and Eq. (32), it follows that both hui
and (@/@x)hui are continuous across x¼ 0.

Working to first order in /, u¼ hin þ /p1, p1¼ 2igT/

[p(ka)2], k¼ a � /kp1/S, and Eq. (33) gives

RF ¼
i/g

pðkaÞ2C2
¼

in0g

a2
and AF ¼ 1þ RF: (34)
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If we put g¼ f(0), which is the correct non-isotropic

extension of Eq. (31), it turns out that Eq. (34) does not give

the correct estimates for R or A, as we show below. [See the

text above Eq. (43) for R and the text below Eq. (52) for A:]

VI. THE AVERAGE REFLECTED FIELD

Calculating the ensemble average of Eq. (4) for x< 0 gives

huðx;yÞi¼ uinþ
n0

N

X

N

j¼1

X

1

n¼�1

Zn

ð ð

hAj
nijHnðkrjÞ

� einhj dxjdyj: (35)

Here, x � xj¼ rj cos hj and y � yj¼ rj sin hj. Then, use

the indistinguishability of the scatterers, let N ! 1, and use

Eq. (10):

huðx; yÞi ¼ uin þ n0
X

1

n¼�1

inZn

ð1

0

Unðx1Þ

�

ð1

�1
eiby1Hnðkr1Þ e

inh1 dy1 dx1: (36)

The inner integral can be evaluated. In LM, it is shown

that

LnðXÞ ¼

ð1

�1
eibYHnðkRÞeinH dY

¼
ð2=aÞð�iÞne�inhineiaX; X > 0;
ð2=aÞineinhine�iaX; X < 0;

�

(37)

where a and b are defined by Eq. (5), X ¼ R cosH and

Y ¼ R sinH. Comparison with the inner integral in Eq. (36)

shows that we should take Y¼ y1 � y, R ¼ r1, H¼ h1 + p,

and X¼ x1 � x. As x< 0 and x1> 0, X> 0 and so

huðx; yÞi ¼ uin þ
2n0

a
eiby

X

1

n¼�1

ð�1ÞnZn

�

ð1

0

Unðx1Þe
�inhineiaðx1�xÞ dx1: (38)

Hence, comparison with Eq. (32) gives

R ¼
2n0

a

X

1

n¼�1

ð�1Þne�inhinZn

ð1

0

Unðx1Þe
iax1 dx1

¼
2in0

aðkþ aÞ

X

1

n¼�1

FnZne
inðp�hin�uÞ: (39)

Le Bas et al.9 have obtained a formula for R for a slab,

0< x< d; letting d ! 1 in their Eq. (41) gives agreement

with Eq. (39). The same paper9 also contains Eq. (20); see

their Eq. (31).

Equation (39) is an exact formula for the reflection coef-

ficient. It can be used to approximate R for small /. From

Eq. (25),

2in0

aðkþ aÞ
¼

i/

pðkaÞ2C2
1�

/j1

4C2

� �

: (40)

Also,

X

1

n¼�1

Fn

F
Zne

inðp�hin�uÞ ¼
X

1

n¼�1

ð1þ /QÞZne
inðp�hin�uÞ

�
1

4
i/pðkaÞ2Kðp� hin � uÞ

¼ �f ðp� hin � uÞ � /Qf ðhreÞ

�
1

4
i/pðkaÞ2KðhreÞ;

with f ðp� hin � uÞ ¼ f ðhreÞ þ
1
2
/Tj1f

0ðhreÞ þ Oð/2Þ and

h¼p � 2hin.

As F¼�1, Eq. (39) gives

R ¼ /R1 þ /2R2;

where

R1 ¼
i f ðhreÞ

pðkaÞ2C2
; (41)

C¼ cos hin, and

R2 ¼
i

pðkaÞ2C2

j1

2
Tf 0ðhreÞ þ

i

4
pðkaÞ2KðhreÞ

�

�
j1

2C2
f ðhreÞ

i

: (42)

Bose10 has obtained similar formulas [see Eq. (24) in

Ref. 10] for a slab, 0< x<H. They involve the quantity

e2ikHC, so that the limit H ! 1 cannot be taken. It appears

that this is due to the use of a “Born-type approximation” at

an early stage in the analysis.

The estimate R¼/R1 agrees with the Foldy estimate,

RF [see Eq. (34)], but only for isotropic scattering [where

f(h) does not depend on h]: particularly, using g¼ f(0) gives

an incorrect result.

At normal incidence, we have hin¼ 0, hre¼p, C¼ 1,

and T¼ 0, whence

R1 ¼
i f ðpÞ

pðkaÞ2
and R2 ¼ �

KðpÞ

4
�
2f ð0Þf ðpÞ

½pðkaÞ2�
2
; (43)

where we have used Eq. (22) for j1. The formula for R1

agrees with an estimate from Angel et al.11 (see Appendix A

for comparisons with the work of Aristégui, Angel, and their

colleagues).

VII. THE AVERAGE TRANSMITTED FIELD

The field in the region to the right of x ¼ 0 is given by

Eq. (4) outside the cylinders. Inside the jth cylinder, the field,

uj, is given by LM(48),

uj ¼
X

1

n¼�1

Bj
nJnðk0rjÞ e

inhj ; rj < a: (44)
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The fact that there are different expansions in different

regions makes the calculation of hu(x, y)i for x> 0 less

straightforward than when x< 0.

In Appendix B, it is shown that

huðx; yÞi ¼ ð1� /Þuin þ huðx; yÞiext þ huðx; yÞiint; (45)

for x> a, where

huðx; yÞiext ¼ n0
X

1

n¼�1

Zn

ð ð

x1>0; r1>a

hA1
ni1Hnðkr1Þ

� einh1 dx1 dy1; (46)

huðx; yÞiint ¼ n0
X

1

n¼�1

ð ð

r1<a

hB1
ni1Jnðk0r1Þe

inh1 dx1 dy1:

(47)

(As x> a, the disc r1< a lies in x1> 0.)

A. Calculation of hu iext

From Eqs. (10) and (11),

hA1
ni1 ¼ in Fn e

�inu eiðkx1þby1Þ: (48)

Substitution in Eq. (46) gives

huðx; yÞiext ¼ n0
X

1

n¼�1

inFnZne
�inu

�

ð ð

x1>0; r1>a

eiðkx1þby1ÞHnðkr1Þ e
inh1 dx1 dy1:

The double integral is similar to Mn in Sec. IV B of LM.

Its value is found to be

2ið�iÞn

aðk�aÞ
eiðaxþbyÞ einhin þ

2pð�iÞn

k2�K2
eiðkxþbyÞeinuN nðKa;kaÞ;

where

N nðKa; kaÞ ¼ kaH0
nðkaÞJnðKaÞ � KaHnðkaÞJ

0
nðKaÞ:

Hence

huðx; yÞiext ¼ PeiðaxþbyÞ þQexte
iðkxþbyÞ;

where

P ¼
2in0

aðk� aÞ

X

1

n¼�1

FnZne
inðhin�uÞ;

Qext ¼
2pn0

k2 � K2

X

1

n¼�1

FnZnN nðKa; kaÞ:

Combining Eqs. (26) and (30) shows that

P ¼ �1þ Oð/2Þ;

there is no linear term in /. Thus,

ð1� /Þuin þ PeiðaxþbyÞ ¼ �/eiðaxþbyÞ þ Oð/2Þ

as / ! 0:

For Qext, use K
2 � k2¼ k2 � a2, Eqs. (26) and (40), and

a¼ kC to obtain

2pn0

k2 � K2
¼ �

2

ðkaÞ2j1
1� /

j2

j1

� �

þ Oð/2Þ:

From LM(72),

N nðKa;kaÞ¼ ð2i=pÞ 1�
1

4
i/pðkaÞ2j1dnðkaÞ

� 	

þOð/2Þ;

where dn is defined by Eq. (15). Then, using Eqs. (27) and (29),

X

1

n¼�1

FnZnN n ¼
2

ip

X

1

n¼�1

Znð1þ/QÞ

�
h

1�
i

4
/pðkaÞ2j1dnðkaÞ

i

�
/

2
ðkaÞ2j2

¼�
1

2
ðkaÞ2j1

�

1þ/Qþ/
j2

j1

þ/
X

1

n¼�1

ZndnðkaÞ

�

:

Hence,

Qext ¼ 1þ /Qþ /
X

1

n¼�1

ZndnðkaÞ þ Oð/2Þ:

B. Calculation of huiint

Next, consider huiint, defined by Eq. (47) in terms of the

coefficients B1
n in Eq. (44). In Sec. IV A of LM, a linear sys-

tem for Aj
n was obtained by applying the pair of transmission

conditions, Eq. (8), on each cylinder followed by elimination

of Bj
n. Those calculations also yield a simple relation

between Aj
n and Bj

n, namely

Bj
n ¼ cnA

j
n; with cn ¼

2ðq0=qÞ

pikaDn

;

for Dn, see Eq. (7). Using this relation and Eq. (48) in Eq.

(47) gives

huðx; yÞiint ¼ n0
X

1

n¼�1

inFncne
�inu

�

ð ð

r1<a

eiðkx1þby1ÞJnðk0r1Þ e
inh1 dx1 dy1

¼ n0e
iðkxþbyÞ

X

1

n¼�1

FncnIn ¼ Qinte
iðkxþbyÞ;
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say, where

In¼ð�iÞne�inu

ða

0

ð2p

0

eiKRcosðH�uÞJnðk0RÞeinHRdHdR

¼2p

ða

0

JnðKRÞJnðk0RÞRdR

¼2pðK2�k20Þ
�1MnðKa;k0aÞ

and

MnðKa; k0aÞ ¼ k0aJ
0
nðk0aÞJnðKaÞ � KaJnðk0aÞJ

0
nðKaÞ:

(49)

Hence,

Qint ¼ 2/
X

1

n¼�1

cn
Mnðka; k0aÞ

ðk0aÞ
2 � ðkaÞ2

þ Oð/2Þ:

C. Synthesis

Substituting the results for huiext and huiint back in Eq.

(45) then gives the transmitted field as

huðx; yÞi ¼ A eiðkxþbyÞ � / eiðaxþbyÞ; (50)

with

A ¼ 1þ /A1 þ Oð/2Þ; (51)

A1 ¼
i f ð0Þ

pðkaÞ2C2
þ

X

1

n¼�1

ZndnðkaÞ

þ 2
X

1

n¼�1

cn
Mnðka; k0aÞ

ðk0aÞ
2 � ðkaÞ2

: (52)

The first term in Eq. (52) constitutes the Foldy estimate [see

AF, given by Eq. (34)] if we take g¼ f(0), but it is seen here

that the correct estimate of A at O(/) contains two addi-

tional terms.

Notice that the dependence of A1 on the angle of inci-

dence appears only in the first term, via C¼ cos hin.

The formula for the transmitted field, Eq. (50) with Eqs.

(51) and (52), is surprisingly complicated, especially as it is

only first order in /. (Indeed, the analysis above does not

give any information on the O(/2) contribution, unlike in

Sec. VI where we obtained the second-order contribution to

R.) Fortunately, we can check our calculations with an inde-

pendent analysis that is valid for weak scattering: we do this

next.

VIII. WEAK SCATTERING

The term “weak scattering” means here that

q ¼ q0 and jm0j � 1; where m0 ¼ 1� ðk0=kÞ
2:

Martin and Maurel5 (MM) have given results for weak

scattering, correct to second order in both / and m0; their

paper and formulas taken from it will be identified by MM

below. Particularly, MM confirms the LM formula for K2

and it contains an estimate for the transmitted field when

hin¼ 0, MM(5.25),

hui ¼ AMMe
iKx with (53)

AMM ¼ 1þ
1

4
m0/þ

1

4
m2

0fP0 � pðkaÞ2Hg/þ Oð/2Þ;

(54)

where

H ¼
i

4

X

1

n¼�1

J ndn; (55)

J n ¼ J2n � Jn�1Jnþ1 ¼ J02n � f½n=ðkaÞ�2 � 1gJ2n ; (56)

4P0 ¼ ðkaÞ2 þ 2piðkaÞ2
X

1

n¼�1

J nðJnHn � dnÞ; (57)

and all functions have argument ka. (MM also contains a for-

mula for the O(/2) correction to AMM.) Here, Eq. (54) will

be compared with the estimate found in Sec. VII, Eq. (50)

with Eqs. (51) and (52).

From MM(2.24), we have an estimate for f(0) that can

be used in the first term in Eq. (52) (with C¼ 1),

T1 �
i f ð0Þ

pðkaÞ2
¼

1

4
m0 �

1

4
m2

0pðkaÞ
2H;

these contributions can be seen in Eq. (54).

From MM(2.18), we have an estimate for Zn that can be

used in the second term in Eq. (52),

T2 �
X

1

n¼�1

Zndn

¼ m0pðkaÞ
2H�

m2
0

16

X

1

n¼�1

pkafiSn � kalnJ ngdn;

(58)

where ln¼p(ka)2dn and Sn¼ 2kaJn�1Jn+1.

The third term in Eq. (52), denoted by T3, is more com-

plicated. To begin, MM(2.12) and MM(2.14) give

cn ¼ 2=ðpikaDnÞ

¼ �1þ
1

4
im0ln þ

1

16
m2

0ðl
2
n � pikaUnÞ; (59)

where Un¼ 2ka(JnHn � dn) + 2[i=(pka)][n2 � (ka)2]. Then,

as (k0a)
2 � (ka)2¼�m0(ka)

2 and Mnðka; kaÞ ¼ 0, it is nec-

essary to expand Mnðka; k0aÞ to third order in m0. Thus,

from Eqs. (6), (7), and (49),

Mnðka;k0aÞ¼�kaReDn

¼
1

2
m0ðkaÞ

2 J n�
1

4
m0Sn=ðkaÞþ

1

16
m2

0Xn

� �

; (60)
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where the first two terms can be found below MM(2.15),

Xn ¼
2

3
ð8þ n2 � z2ÞJ02n þ

4

3
zJnJ

0
n

�
2

3
fðn2 � z2Þðn2 � z2 þ 8Þ þ 8z2gz�2J2n ; (61)

and we have written z: ka. Then, using Eqs. (59) and (60),

the third term in Eq. (52) becomes

T3 ¼
X

1

n¼�1

1�
i

4
m0ln �

m2
0

16
ðl2n � pikaUnÞ

� 	

� J n �
m0

4ka
Sn þ

m2
0

16
Xn

� 	

¼
X

1

n¼�1

J n �
m0

4

X

1

n¼�1

ilnJ n þ
1

ka
Sn

� �

þ
m2

0

16

X

1

n¼�1

iln
Sn

ka
� J nl

2
n þ pikaJ nUn þ Xn

� �

:

As
P

n J n ¼ 1 and
P

n Sn ¼ 0 [see Sec. 2.2 of MM or

Eq. (C1)],

T3 ¼ 1� m0pðkaÞ
2H

þ
m2

0

16

X

1

n¼�1

iln
Sn

ka
� J nl

2
n

� �

þ
m2

0

16
S1; (62)

where S1 ¼
P

n ðpikaJ nUn þ XnÞ and we have used Eq.

(55). Substituting for Un and comparison with Eq. (57) gives

S1¼ 4P0 + S2, where

S2 ¼ �ðkaÞ2 þ
X

1

n¼�1

f2½ðkaÞ2 � n2�J n þXng

¼
1

2
ðkaÞ2 þ

X

1

n¼�1

Xn; (63)

after use of Eq. (C2). Hence, adding Eqs. (58) and (62),

T2 þ T3 ¼ 1þ
1

4
m2

0P0 þ
1

16
m2

0S2:

It is shown in Appendix C that S2¼ 0. Thus, for weak

scattering and normal incidence,

/A1 ¼ /ðT1 þ T2 þ T3Þ ¼ ðAMM � 1Þ þ /;

which gives

hui ¼ AMMe
iKx þ /ðeiKx � eikxÞ: (64)

This shows agreement with the MM estimate, correct to

first order in / and second order in m0. Note that the method

used in MM is based on an iterative solution of the govern-

ing Lippmann–Schwinger equation. It leads to an expression

of the form

hui ¼ eikxðpolynomial in xÞ;

which is then set equal to AMMe
iKx; expanding about x¼ 0

leads to expressions for both K and AMM. If this process is

applied to Eq. (64), it is easily seen that the last term is

O(/2) and so should be ignored if the goal is to determine

the amplitude correct to first order in /.

IX. EFFECTIVE INTERFACE CONDITIONS

In this section, the fields near the “interface” at x¼ 0 are

investigated, working to first order in /.

The average total field in x< 0, evaluated at x¼ 0, u�, is

u� ¼ ð1þ /R1Þe
iby

and the corresponding x-derivative, u0�, is

u0� ¼ ikCð1� /R1Þe
iby:

From Eq. (50), the transmitted field at x¼ d, say, u+, is

uþ ¼ fð1þ /A1Þe
iðk�aÞd � /geiadeiby

¼ f1þ iðk� aÞdþ /A1 � /geiadeiby

¼ 1þ /
1

2
ikdj1=CþA1 � 1

� 	� �

eiadeiby

(65)

and the corresponding x-derivative, u0þ, is

u0þ¼ ikC ðk=aÞð1þ/A1Þe
iðk�aÞd�/

n o

eiadeiby

¼ ikC 1þ/
1

2
j1=C

2þ
1

2
ikdj1=CþA1�1

� 	� �

eiadeiby:

(66)

To estimate these quantities, suppose further that ka� 1

and k0a� 1. Then, the terms containing kdj1 in Eqs. (65)

and (66) are smaller than the other terms (see below): ignor-

ing them and letting d! 0 gives

uþ � u� ¼ /ðA1 � R1 � 1Þeiby; (67)

u0þ � u0� ¼ /ikC A1 þ R1 þ
1

2
j1=C

2 � 1

� �

eiby: (68)

These give the discontinuities in hui and its normal de-

rivative across x¼ 0.

For small ka and k0a, Z0 and Z+1 are dominant, in gen-

eral, and they are O((ka)2) (see Sec. III A in Ref. 6). Thus,

f ðhÞ ’ �Z0 � 2Z1 cos h.

From Eq. (22), j1¼�4if(0)=[p(ka)2]¼O(1) as ka ! 0,

which justifies discarding the kdj1 terms above.

From Eq. (41), f(hre)¼ f(p � 2hin) is needed to calculate

R1. As cos hre¼ 1 � 2C2,

R1 ¼
i

pðkaÞ2C2
½�Z0 � 2Z1ð1� 2C2Þ�

¼
i f ð0Þ

pðkaÞ2C2
þ

4iZ1

pðkaÞ2
:
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For A1, use Eq. (52), containing three terms. For the sec-

ond term, use dn(ka) � 2i|n|=[p(ka)2] [see above LM(82)] to

obtain
P

n ZndnðkaÞ � 4iZ1=½pðkaÞ
2�. For the third term, use

Mnðka; k0aÞ � ðkaÞnðk0aÞ
n ðkaÞ2 � ðk0aÞ

2

22nþ1n! ðnþ 1Þ!
; n � 0;

with M�n ¼ �Mn. Also, c0 � �1 and cn � �2(k/k0)
n for

n> 0, with c�n¼�cn. Hence, the dominant contribution to

the third term in Eq. (52) comes from n¼ 0; as

M0ðka; k0aÞ �
1
2
½ðkaÞ2 � ðk0aÞ

2�,

A1 ¼
i f ð0Þ

pðkaÞ2C2
þ

4iZ1

pðkaÞ2
þ 1:

Use of these approximations for R1 and A1 gives

A1 ¼ 1þ R1; (69)

so that Eq. (67) gives uþ� u�¼O(/2). In other words, there

is no discontinuity in hui across x¼ 0, for any angle of

incidence.

Similarly, from Eq. (68),

u0þ � u0� ¼ �/kC
8Z1

pðkaÞ2
eiby � 2/ikC

q0 � q

q0 þ q
eiby; (70)

using Eq. (23) from Ref. 6. Thus, at this level of approxima-

tion, there is a jump in the normal (x) derivative of hui across
x¼ 0 (unless q0 ¼ q). Moreover, for normal incidence, it is

seen that Eq. (70) agrees with the estimates of Aristégui and

Angel12 [see Eq. (A3)], in the low-frequency, small-/ limit.

As a reviewer noted, the discontinuity in slope at x¼ 0

could be used to predict the effective density, qeff, of the

effective medium occupying x> 0:

q�1u0� ¼ q�1
eff u

0
þ: (71)

Using the estimates for u06 given above,

qeff
q

¼
1þ /ðR1 þ 1

2
j1=C

2Þ

1� /R1

� 1þ / 2R1 þ
j1

2C2


 �

:

Substituting for R1 and j1 gives

qeff=q � 1þ 8i/Z1=½pðkaÞ
2� � 1� 2/ðq� q0Þ=ðqþ q0Þ;

in agreement with Ament’s formula for the effective density;

see Eq. (11) in Ref. 6. This agreement provides a further

check on the calculations.

X. CONCLUSIONS

A plane wave is incident on a half-space containing a

dilute random arrangement of identical scatterers. An

expression for the average reflection coefficient has been

derived: it involves the far-field pattern for a single scatterer.

The average field within the half-space has also been calcu-

lated: it is found that a small amount of the incident wave

penetrates [the second term on the right-hand side of Eq.

(50)]. This result was checked by comparing with an inde-

pendent calculation, valid for weak scattering (and normal

incidence). Effective interface conditions at the boundary of

the half-space were also obtained. It is anticipated that exten-

sions to three-dimensional problems can be made.

APPENDIX A: ARISTÉGUI AND ANGEL

Aristégui, Angel, and their colleagues have written sev-

eral papers11–14 in which waves are normally incident on a

finite slab, �h< y2< h, containing circular scatterers. Com-

parisons with their work, in the limit of a semi-infinite slab,

will be given here.

To begin, write the averaged field as

Uðy2Þ ¼
u0e

iky2 þ u0R
0e�iky2 ; y2<�h;

Cþe
iKy2 þ C�e

�iKy2 ; �h < y2 < h;
u0T

0eiky2 ; y2 > h:

8

<

:

Put x¼ y2 + h, U(y2)¼ u(x) and u0¼ eikh:

uðxÞ ¼
eikx þ R0e2ikhe�ikx; x < 0;
Cþe

�iKheiKx þ C�e
iKhe�iKx; 0 < x < 2h;

T0eikx; x > 2h:

8

<

:

Aristégui and Angel13 have given expressions for R0, C6
and T 0. Using these gives

R � R0e2ikh ¼ e2iðk�KÞh 1� e4iKh
� 

ðk2 � K2Þ=D;

A � Cþe
�iKh ¼ 2ke2iðk�KÞhðK þ kÞ=D;

A� � C�e
iKh ¼ 2ke2iðk�KÞhe4iKhðK � kÞ=D;

and T0 ¼ 4kK=D, where

D ¼ e2iðk�KÞhfðk þ KÞ2 � ðk � KÞ2e4iKhg:

Letting h! 1 (using Im K> 0) gives

uðxÞ ¼
eikx þ Re�ikx; x < 0;
AeiKx; x > 0;

�

(A1)

where

R ¼
1�H

1þH
; A ¼

2

1þH
¼ 1þ R and H ¼

K

k
:

These agree with the Foldy estimates, Eq. (34), when hin¼ 0

and K2¼ k2 � 4ign0.

In later papers,11,14 formulas for non-isotropic scattering

were obtained, using K2 ¼ k2 � 4in0f ð0Þ þ Oðn20Þ. In

particular,11

H ¼ ðK=kÞ 1� ð2in0=k
2Þ½f ð0Þ � f ðpÞ�

� ��1

¼ 1� ð2in0=k
2Þf ðpÞ þ Oðn20Þ;

giving
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R ¼
in0

k2
f ðpÞ and A ¼ 1þ R ¼ 1þ

in0

k2
f ðpÞ: (A2)

This expression for R agrees with Eq. (43) but the esti-

mate for A is incorrect.

Evidently, Eqs. (A1) and (A2) show that u(x) is continu-

ous across x¼ 0, whereas

u0ð0þÞ � u0ð0�Þ ¼ iKA� ikð1� RÞ

¼ iðK � kÞ þ iðK þ kÞR

’ ikfðK=kÞ � 1þ 2Rg

’ ð2n0=kÞff ð0Þ � f ðpÞg: (A3)

These results are consistent with those found in Sec. IX.

APPENDIX B: SOME ENSEMBLE AVERAGING

In this appendix, notation from Sec. II of LM2 is used.

Start with N scatterers located at r1, r2, …, rN; denote this

configuration by KN. The ensemble average of any quantity

F(r | KN) is defined by LM(8),

hFðrÞi ¼

ð

ðNÞ
pðr1; r2;…; rNÞFðrjKNÞ dV1			N; (B1)

where the subscript (N) indicates that the integration is over

N copies of the region BN containing N scatterers, and

dV1			N¼ dV1 			 dVN. (BN has area N=n0.) Similarly, the aver-

age of F(r jKN) over all configurations for which the first

scatterer is fixed at r1 is given by LM(9),

hFðrÞi1 ¼

ð

ðN�1Þ
pðr2;…; rNjr1ÞFðrjKNÞ dV2			N;

where p(r1, r2, …, rN)¼ p(r1) p(r2, …, rN j r1) defines

p(r2, …, rN j r1) and p(r)¼ n0=N.
For clarity, suppose first that N¼ 2. Equation (B1)

reduces to

hFðrÞi ¼

ð ð

pðr1; r2ÞFðrjK2Þ dV12

¼

ð ð

r1<a

pðr1; r2ÞFðrjK2Þ dV12

þ

ð ð

r1>a

pðr1; r2ÞFðrjK2Þ dV12: (B2)

The first term in Eq. (B2) is

ð

r1<a

pðr1Þ

ð

pðr2jr1ÞFðrjK2Þ dV21 ¼
n0

2

ð

r1<a

hFðrÞi1 dV1:

The second term in Eq. (B2) is split as

ð

r2>a

ð

r1>a

pðr1; r2ÞFðrjK2Þ dV12

þ

ð

r2<a

ð

r1>a

pðr1; r2ÞFðrjK2Þ dV12: (B3)

The first term in this expression involves integration for

which both r1> a and r2> a. In that case, an expansion of

the following form is available [cf. Eq. (4)],

FðrjKNÞ ¼ F0ðrÞ þ
X

N

j¼1

FjðrjKNÞ; (B4)

with N¼ 2, where F0 does not depend on KN and F1, … ,FN

are small, O(n0). Hence
ð

r2>a

ð

r1>a

pðr1; r2ÞFðrjK2Þ dV12

¼ F0ðrÞ

ð

r2>a

ð

r1>a

pðr1; r2Þ dV12

þ

ð

r1>a

ð

r2>a

pðr1; r2ÞF1 dV21

þ

ð

r2>a

ð

r1>a

pðr1; r2ÞF2 dV12

’ F0ðrÞðn0=2Þ
2½ð2=n0Þ � pa2�2

þ

ð

r1>a

ð

pðr1; r2ÞF1 dV21

þ

ð

r2>a

ð

pðr1; r2ÞF2 dV12

’ ð1� n0pa
2ÞF0ðrÞ

þ
n0

2

ð

r1>a

hF1i1 dV1 þ
n0

2

ð

r2>a

hF2i2 dV2

¼ ð1� n0pa
2ÞF0ðrÞ þ n0

ð

r1>a

hF1i1 dV1;

using the indistinguishability of the scatterers in the last step.

Here, two approximations were made, in which Oðn20Þ contri-
butions were discarded. First, the inner integrals
Ð

rj>a
dVj ðj ¼ 1; 2Þ of small quantities (F1 or F2) over the

(large) region B2 with a (small) hole were replaced by inte-

grals over B2 (no hole). Second, the term (n0=2)
2(pa2)2F0 was

ignored.

Similarly, the second term in Eq. (77) is approximately

ð

r2<a

ð

pðr1; r2ÞFðrjK2Þ dV1 dV2 ¼
n0

2

ð

r2<a

hFi2 dV2:

Substituting back yields

hFðrÞi ¼ð1� n0pa
2ÞF0ðrÞ þ n0

ð

r1>a

hF1i1 dV1

þ n0

ð

r1<a

hFðrÞi1 dV1: (B5)

This is the result for N¼ 2. It holds for any N � 2, as

will be shown next.

From the definition, Eq. (B1),

hFðrÞi ¼

ð

ðN�1Þ

ð

r1<a

pðr1; r2;…; rNÞFðrjKNÞ dV1…N

þ

ð

ðN�1Þ

ð

r1>a

pðr1; r2;…; rNÞFðrjKNÞ dV1…N:

(B6)
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The first term is ðn0=NÞ
Ð

r1<a
hFi1 dV1. The second term is

split as

ð

ðN�2Þ

ð

r2>a

ð

r1>a

pðr1; r2;…; rNÞFðrjKNÞ dV1			N

þ

ð

ðN�2Þ

ð

r2<a

ð

r1>a

pðr1; r2;…; rNÞFðrjKNÞ dV1			N:

(B7)

The second term in Eq. (B7) is approximately

ð

r2<a

ð

ðN�1Þ
pðr1; r2;…; rNÞFðrjKNÞ dV13…N2

¼
n0

N

ð

r2<a

hFi2 dV2:

The pattern is now clear. The splitting process is

repeated on the first term in Eq. (B7). This shows that the

second term in Eq. (B6) is approximately

ð

rN>a

	 	 	

ð

r1>a

pðr1; r2;…; rNÞFðrjKNÞ dV1			N

þ
X

N

j¼2

n0

N

ð

rj<a

hFij dVj: (B8)

Using the expansion (B4), the first term in Eq. (B8)

becomes, approximately,

n0

N


 �N N

n0
� pa2

� �N

þ
n0

N

X

N

j¼1

ð

rj>a

hFjij dVj

’ ð1� n0pa
2ÞF0ðrÞ þ n0

ð

r1>a

hF1ij dV1:

Collecting up the results, Eq. (B5) is obtained again, but

now for any N.

APPENDIX C: SOME SUMS OF PRODUCTS OF
BESSEL FUNCTIONS

In this appendix, all functions have argument z and all

sums are from n¼�1 to n¼þ1. The basic sums are15

X

J2n ¼ 1 and
X

JnJnþm ¼ 0; m 6¼ 0: (C1)

Differentiating the first of these gives
P

JnJ
0
n ¼ 0.

The differential equation for Jn(z) gives

4ðn2 � z2ÞJn ¼ 4z2J00n þ 4zJ0n

¼ 2z2ðJ0n�1 � J0nþ1Þ þ 4zJ0n

¼ z2ðJn�2 � 2Jn þ Jnþ2Þ þ 2zðJn�1 � Jnþ1Þ;

using 2J0m ¼ Jm�1 � Jmþ1. Hence

4
X

ðn2 � z2ÞJ2n ¼ �2z2:

Also, squaring,

16ðn2 � z2Þ2J2n ¼ z4ðJ2n�2 þ 4J2n þ J2nþ2Þ

þ 4z2ðJ2n�1 þ J2nþ1Þ þ cross terms;

where “cross terms” denotes terms of the form JmJn with

m= n. Hence, using Eq. (C1),

16
X

ðn2 � z2Þ2J2n ¼ 6z4 þ 8z2:

As 4½J0n�
2 ¼ J2n�1 � 2Jn�1Jnþ1 þ J2nþ1,

2
X

J02n ¼ 1 and
X

n

J0nJ
00
n ¼ 0:

Differentiating the differential equation for Jn(z) gives

ðn2 � z2ÞJ0n ¼ z2J000n þ 3zJ00n þ J0n þ 2zJn

whence

X

ðn2 � z2ÞJ02n ¼
X

z2J000n þ 3zJ00n þ J0n þ 2zJn
� �

J0n

¼
1

2
þ z2

X

n

J000n J
0
n

As 16J000n J
0
n ¼ �8½J0n�

2 � J2n�1 � J2nþ1 þ cross terms,

16
X

ðn2 � z2ÞJ02n ¼ 8� 6z2:

These sums are sufficient to evaluate the sums needed in

Sec. VIII. First,

X

2ðz2�n2ÞJ nðzÞ¼
2

z2

X

ðn2�z2Þ2J2n� 2
X

ðn2�z2ÞJ02n

¼
1

8z2
ð6z4þ8z2Þ�

1

8
ð8�6z2Þ¼

3

2
z2: (C2)

Then, using Eq. (61),

3

2
z2
X

Xn ¼
X

½ð8þ n2 � z2Þz2J02n þ 2z3JnJ
0
n

� fðn2 � z2Þðn2 � z2 þ 8Þ þ 8z2gJ2n �

¼ 8z2
X

J02n þ z2
X

ðn2 � z2ÞJ02n

þ 2z3
X

JnJ
0
n �

X

ðn2 � z2Þ2J2n

� 8
X

ðn2 � z2ÞJ2n � 8z2
X

J2n

¼ 4z2 þ
z2

16
ð8� 6z2Þ �

1

16
ð6z4 þ 8z2Þ

þ 4z2 � 8z2

¼ �
3

4
z4:

Thus,
P

Xn ¼ �z2=2 and so Eq. (63) gives S2¼ 0.
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