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In a previous paper, Linton and Martin [J. Acoust. Soc. Am. 117, 3413-3423 (2005)] obtained two
formulas for the effective wavenumber in a dilute random array of circular scatterers. They
emerged from a study of the problem of the reflection of a plane wave at oblique incidence to a
half-space containing the scatterers. Here, their study is extended to obtain formulas for the reflec-
tion and transmission coefficients and to investigate the average fields near the boundary of the
half-space. Comparisons with previous work are made. © 2011 Acoustical Society of America.
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. INTRODUCTION

In recent years, there has been a revival of interest in
methods for estimating the effective wavenumber for propa-
gation through random composites. In this paper, two-
dimensional acoustic problems are considered, with the
Helmbholtz equation, (V2+k2)u:0, outside circular cylin-
ders. Inside each cylinder, there is another Helmholtz
equation, (V?+ k3)up = 0, with transmission conditions
connecting u and uq across the circular boundaries. It is
assumed that every circle has radius a.

To analyze multiple scattering' by random configura-
tions of scatterers, the theory given by Linton and Martin® is
developed further; their paper and formulas taken from it
will be identified by LM below. In LM, formulas for the
effective wavenumber, K, were derived. These formulas take
the form

K2 :k2+n051 +I’1652, (1)

where ng is the number of cylinders per unit area; the area
fraction occupied by the scatterers, ¢ = nona®, is assumed to
be small. Explicit formulas for d; and J, were given in LM.
They were obtained using the Lax quasicrystalline approxi-
mation (QCA), they compare favorably with experiments,>*
they have been confirmed by an independent method that is
valid for weak scattering’ (see Sec. VIII), and they have
been used to estimate the dynamic effective mass density of
random composites.® The LM formulas are accurate to sec-
ond order in ¢. They require the solution of a scattering
problem for one scatterer; this scalar (transmission) problem
is discussed briefly in Sec. II.

The basic problem considered in LM consists of circular
scatterers distributed randomly in the (right) half-plane x > 0
with a plane wave incident obliquely from the (left)
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half-plane x < 0. The goal of LM was to estimate the effec-
tive wavenumber, K, within the right half-plane. No informa-
tion on the reflected and transmitted wavefields was given.
Here, we show that these wavefields can be determined by
extending the analysis in LM.

There is a specularly reflected plane wave. The (aver-
age) reflection coefficient is found to be

R = no(i/k*)f (m — 2050) + O(nj), )

where 60, is the angle of incidence and f(0) is the far-field
pattern for scattering by one cylinder. An explicit expression
for the O(n3) contribution is also obtained, see Eq. (42).

The average field transmitted to the right half-plane has
a more complicated form. For example, at normal incidence,
it is found to be

ein + nonaz{AleiKX _ eik\'} 4 0(1’[%), (3)

where an explicit formula for A, is obtained, see Eq. (52).
To verify these results, comparisons with the independent
weak-scattering results in Ref. 5 are made, and agreement is
found.

In Sec. IX, the behavior of the fields across x=0 is
examined. It is found that the fields themselves are continu-
ous but the slopes are discontinuous. An estimate for the
slope discontinuity is derived. This is then used to estimate
the effective density of the right half-plane.

Il. LINTON-MARTIN (LM) FORMULATION

The LM approach (described in Sec. IV of LM?) starts
with an exact multiple-scattering method for an arbitrary
deterministic arrangement of N identical circular scatterers.
The total field outside the cylinders, u, is written as LM(47),

N 00
w=in+» > AZ,H,(kr;) ", (4)

j=1 n=—00
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forr;>a, j=1,2, ..., N, where (r;, 0)) are the polar coordi-
nates centered at ;= (x;, y;), the center of the jth cylinder.
The incident field is taken as a plane wave at oblique inci-
dence, LM(24), so that

Uin = ) with o = kcos Oy, f=ksinby. (5)

The coefficients A/, are to be found, H, = H'" is a Hankel
function and Z,, which characterizes scattering by one iso-
lated cylinder, is given by LM(49),

Z,= (Re An)/An =7, (6)

with
A, = (po/ p)H, (ka)l,(koa) — (ko/k)H,(ka)T, (koa).
(N

Here, kg is the interior wavenumber, py is the interior den-
sity, and p is the exterior density. The interface conditions
are LM(50),

10u 1%

;E—p—oar n r—=ada, (8)

u=uy and

where i is the field inside the cylinder; these are appropriate
for a fluid cylinder surrounded by a different fluid, so that u
is the pressure. The far-field pattern, f, is given by LM(53) as

o0

f(0) =— Z Z, " = —Zy — ZZZ,, cos nf. 9)

n=-—o00 n=1

In LM, an exact linear system is derived for A{,. Then, en-
semble averages are taken, followed by letting N — oo and
imposition of the Lax QCA. (All the cylinders are in the
right half-plane, x > 0.) The key quantity is (A/) ;» the aver-
age of A/ conditional on there being a cylinder at r;. It is
expressed as LM(56),

(Al), =1"eM 0, (x;), x> 0. (10)
Then, in order to avoid possible difficulties near the
“interface” at x=0, Linton and Martin assumed that ®,
could be written as LM(58),
®,(x) = F,e "¢ e for x > ¢, (11)
where the length ¢ is not (and need not be) specified; later,
we shall take £ =0 (see Sec. III). The quantities K and ¢ are
defined by LM(31),
A=Kcosp and f=Ksing = ksinb,. (12)
The coefficients F,, were then shown to solve an infinite
homogeneous system of linear algebraic equations, LM(71).
Analysis of this system led to formulas for ¢, and J, in Eq.

(1), LM(77) and LM(80), respectively,
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51 = 4i i Z, = —4if(0), (13)

n=—00

& =4mib” Y Y ZuZudw n(kD), (14)

n=—00 Mm=—0oC

where b is the “hole radius” introduced in the conditional
averaging to prevent cylinders overlapping, the function
d,(x) is defined by LM(73),

dy(x) = J,(x)H, (x) + [1 — (n/x)z]Jn(x)H,,(x), (15)

and J, is a Bessel function. Equation (13) is the well-known
Foldy—Lax estimate. The second-order contribution, Eq.
(14), is approximated further in LM by taking the limit kb
— 0; the result is LM(7), a formula that is reminiscent of the
Lloyd-Berry formula for analogous three-dimensional
problems.”*®

Concerning the dependence of F, on n, the analysis in
Sec. IV C of LM shows that

Fy = F + nog, + 0(n5), (16)
Gy =0 +1b’F Y Zudy n(kb), (17

where F and Q are no-independent constants. The values of
these two constants were not determined; this will be done in
Sec. IV.

Ill. DEPENDENCE ON ¢
On p. 3419 of LM, it is shown that B = —1,

2”0 > in0;
-1 = _ 7 11Uin 1
B " n:gfoo " Cu(0), (18)
0 ) iFne—imp o
C,(0) = J @, (e ™ dr 4 —1—— =2t (19)
0 A — U

This relation was not used in LM. As the main results in
LM do not depend on ¢, we shall assume that a continuity
argument can be used to assert that Eq. (11) should hold for
all >0, leading to a useful simplification. So, setting £ =0
in Eq. (18) gives

Zi}’l() > in(0.
-1 =— E F.Z, in(0n=¢), 20
o(4— o) e ¢ (20)

This equation will be used in Sec. IV to obtain informa-
tion on F,,.

IV. INFERENCES FROM K

Given the LM formula for K, Eq. (1) with Egs. (13) and
(14), estimates for ¢ and A can be obtained. To begin,
rewrite Eq. (1) as
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(K/k)? =1+ ¢rcr + ¢*rca, Q1)
where ¢ = nazno, and

b 4if(0) 5

= and K =
n(ka)? : (nka?)?

K| = (22)

 n(ka)?
are dimensionless. Ignoring terms that are O(¢”) as ¢ — 0,
Eq. (21) gives K /k = 1 + L ey + L p* (4K — 13).

Put C =cos 6;,, S =sin 6;,, and T =tan 6;,. To solve Eq.
(12),, (K/k)sin ¢ = S, for ¢, write

¢ = O + ¢p1 + ¢°po. (23)

Then

S = (K/k) {SCOS(¢P1 + ¢*p2) + Csin(¢p) + d>2pz)}
= {s(1-502) + ctom + o702
=S5+ %qs(sm +2Cp))

41 $*[S(4Ky — K3) +4Cp 1Ky + 8Cps — 4Spl).

8

Hence,
1 1 2 2
p1= _ETKI and p, = gT[(3 + 7)) —4ia]. (24)
Next, calculate A=K cos ¢, using Egs. (23) and (24),
1 1
Ak =C+ Eqb;ch’l + gqbz(%c1 —K2C7H. (25)

This approximation is used in Eq. (20). Thus,

2ing 4i K 1\%)
- 1 R 26
27— 1) ﬂ(ka)zrcl[ +"5<4€2 ﬂ 20

From Egs. (16) and (17),

b 40+ g/a) Y Zud). @D

m=—00

where O = O/(naF), a dimensionless constant. Hence

1 & .
F Z F,,Zne”’(e‘“*“’)

_ Z Znein(()m*@) + ¢0 Z Z”ein(()m*ﬁﬂ)
n(ka)*
+¢ (41) K(0in — o)

= (6 — ) — $QF(0) ~ gidn(ka)*K(0)

= —{£(0) ~ dpif )} — $OF(0) — jigm(ka) s

1 1 1

= ——in(ka)*x, — —ipQn(ka)’ k| — ~ipn(ka)’K,
4 4 4

- K|

= (ka)? [1 +é <Q n %ﬂ : 28)
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where f(0) = 0 has been used [see Eq. (9)] and the function
K is defined by

. 2 o 00
K(5) = Hib/a) NN ZuZudna(kb) e, (29)

- n(ka)2 Nn=—00 M=—00

so that K(0) =k, [see Egs. (14) and (22)]. (Note that
limy;,_, IC(J) can be expressed as an integral, similar to that
for K£(0) as in Sec. IV C of LM.) Substituting Eqgs. (26) and
(28) in Eq. (20) gives

e -2) [ ofo+2)]

=Fl1+¢(0+55)| + 0.

Thus,

_ _ ko _ if(0)
F=-1 and Q = _4—6‘2 = n(ka)2C2 .

Substituting back in Eq. (28) gives

F,Z,e"n=0) — i I PR B B
n:z_:oo e 4n(ka) K ¢ 3
+ 0(¢%). (30)

This approximation will be used in Sec. VII.

V. RESULTS FROM FOLDY THEORY

Classical Foldy theory assumes isotropic scattering. The
effective wavenumber is given by LM(1),

K? = k* — 4igny, (31)

where g is the (dimensionless) scattering coefficient. For the
scattering problem, we have

ei(ooﬂr[)’y) +Rei(_M+/;y)7 X< 0’

(u(x,y)) = {Aei<"“+/‘>’>, >0, (32)

where R is the (average) reflection coefficient and A is the
(average) transmission coefficient.

Foldy theory (see Sec. III A in LM) predicts that R =Rg
and A = Ag, where

o—A 200
T4 A+ o

=1+RE. (33)

From these formulas and Eq. (32), it follows that both (u)
and (9/0x){(u) are continuous across x = 0.

Working to first order in ¢, ¢ =0i, + ¢py, py =2igT/
[n(ka)?], .= o — ¢kp,/S, and Eq. (33) gives

ipg inog
Rp=——°2 =" and =1+Rp. 34
F n(ka)*C? o2 and - Ap =1+ Re (34
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If we put g=/(0), which is the correct non-isotropic
extension of Eq. (31), it turns out that Eq. (34) does not give
the correct estimates for R or A, as we show below. [See the
text above Eq. (43) for R and the text below Eq. (52) for A.]

VI. THE AVERAGE REFLECTED FIELD

Calculating the ensemble average of Eq. (4) for x < 0 gives

() = Nzi 2 [ytany

x e’ dx; dy;. (35)

Here, x — x;j=rjcos0; and y — y;=r; sin 0;. Then, use
the mdlstlngulshablhty of the scatterers, let N — oo, and use
Eq. (10):

u(x)) =t + 70> "zj ®,(x)

n=—00

X J e H, (kry) ™™ dy, dx,. (36)

—00

The inner integral can be evaluated. In LM, it is shown
that

L,(X) = J e H, (kR)e"® dy

)” —inbi, eiocX
)

{(2/ ) (— ,
(2/a)i" el0ing =X

where o and f§ are defined by Eq. (5), X = Rcos® and
Y = R sin ®. Comparison with the inner integral in Eq. (36)
shows that we should take Y=y; — y, R=r;, ®=0, + 7,
and X=x; —x. Asx<0and x; >0, X >0 and so

X >0,

X <0, 37)

2”0 'ﬁy > n
= Uin —e -1 Zn
() = i+ 203 (1)

n=—00

X J D, (x))e e ;. (38)
0

Hence, comparison with Eq. (32) gives

2 )
R— nO Z( l)n 71)79,“2 J ( l)elwq dx1

n=—00
21110 0. —

= § FZye"v0n=0), 39
)L + OC n=—00 ne ( )

Le Bas ez al.’ have obtained a formula for R for a slab,
0 <x<d; letting d — oo in their Eq. (41) gives agreement
with Eq. (39). The same paper’ also contains Eq. (20); see
their Eq. (31).

Equation (39) is an exact formula for the reflection coef-
ficient. It can be used to approximate R for small ¢. From
Eq. (25),

2ing g o
Ot a)  mlka)’C? <1 402>' o
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Also,

%Znein(n—()in—(M — Z (1+ d)Q)Znein(n—()m—(p)
— él—liqﬁn(ka)le(Tc — O — @)
- —f(T[ - Gin - QD) - ¢Qf(0re)

- %iqsn(ka)z;c(om),

with f(n — Oy — @) = f(0rc) + 1 ¢Tx1f'(0re) + O(¢p*) and
O0=mn— 20in-

As F =—1, Eq. (39) gives

R = ¢R + ¢°Ry,

where
(0,
R, = Mv 41)
n(ka) C?
C =cos 0;,, and
i 2
R, = o {2 Tf'(0re) +Zn(ka) K(0re)
( )
~3c/ (0] @)
Bose'? has obtained similar formulas [see Eq. (24) in

Ref. 10] for a slab, 0 <x <H. They involve the quantity
e?MC 5o that the limit H — oo cannot be taken. It appears
that this is due to the use of a “Born-type approximation” at
an early stage in the analysis.

The estimate R = ¢R, agrees with the Foldy estimate,
Ry [see Eq. (34)], but only for isotropic scattering [where
f(6) does not depend on 0]: particularly, using g =f(0) gives
an incorrect result.

At normal incidence, we have 0,,=0, O,.=7n, C=1,
and T =0, whence

W . K %0F@
Takay M 4 [n(ka)] @

where we have used Eq. (22) for x;. The formula for R,
agrees with an estimate from Angel et al.'' (see Appendix A
for comparisons with the work of Aristégui, Angel, and their
colleagues).

Vil. THE AVERAGE TRANSMITTED FIELD

The field in the region to the right of x = 0 is given by
Eq. (4) outside the cylinders. Inside the jth cylinder, the field,
uj, is given by LM(48),

= Y Bilu(kory) e, r<a. (44)

n=—00
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The fact that there are different expansions in different
regions makes the calculation of (u(x, y)) for x>0 less
straightforward than when x < 0.

In Appendix B, it is shown that

(u(x,y)) = (1= @)uin + ((x, 9)) exe + (X, Y)) s (45)

for x > a, where

e =10 Y 7 | jo )yl

x e dxy dyy, (46)
<u(x7y)>int =Ny Z JJ <Brlz>1']n(k0rl)ein0] dx; dyl'
n=—oo r<a
47)
(As x > a, the disc r; < a lies in x; > 0.)
A. Calculation of (U)ext
From Egs. (10) and (11),
(AL), = i F im0 eln s, (8)

Substitution in Eq. (46) gives

= ny Z i"F,Z,e" e

n=-—00

< ext

" JJ ei().xHr/)’yl)Hn(krl)einel dx; dy;.
x1>0,r1>a

The double integral is similar to M,, in Sec. IV B of LM.

Its value is found to be

21( 1)" 1(x,x+ﬁy) 1n0m+2 (71)

(}.x+13y 1n(p Ka.k
a(A— oc) 2_K2© No(Kaka),

where
N, (Ka, ka) = kaH, (ka)J,(Ka) — KaH,(ka)J (Ka).
Hence

(X)) ext =

where

PelHh) 1 Qe )

2ing (O
§ F Z in(0i (/7)
oc()h —a) ¢

n=—00

27m0

Qext = Z F.Z,N \(Ka, ka).

n=—00
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Combining Egs. (26) and (30) shows that
P=—1+0($");
there is no linear term in ¢. Thus,

(1 ¢)Mm + pel (ox+By) d)el(ax+ﬁy + 0(¢ )

as ¢ — 0.

For Qey, use K> — k> =2 — o*, Egs. (26) and (40), and

o= kC to obtain

271ng 2 K2> 2
=— 1—¢=2) +0(¢?).
e (1-62) +o?
From LM(72),

1
N, (Ka,ka) = (2i/7) [1 —Zidm(ka)z;cla’n (ka)} +0(¢?),
where d,, is defined by Eq. (15). Then, using Egs. (27) and (29),

Z FnZnN :% Z Zn(1+¢Q)

n=—00 n=—00

x [1 —%qﬁn(ka)z;cld,,(ka)} —%(ka)zxz

_ 1 2 K2
= —5(ka) K1{1+¢Q+¢>K—l
+¢ i an,,(ka)}.

Nn=—00

Hence,

Qexl =1+ d)Q + ¢ i ann(ka) + O(d)z)

n=—00

B. Calculation of (U)int

Next, consider (u);,, defined by Eq. (47) in terms of the
coefficients B! in Eq. (44). In Sec. IV A of LM, a linear sys-
tem for A/, was obtained by applying the pair of transmission
conditions, Eq. (8), on each cylinder followed by elimination
of B/. Those calculations also yield a simple relation
between A/ and B/, namely

2(po/p)
nikaA, ’

B, =c,A,, with ¢, =

for A,, see Eq. (7). Using this relation and Eq. (48) in Eq.
(47) gives

o0
(u(x,))ine = 10 Z i"F,c,e”"?

n=—00

o JJ ei(/Lv.+/fy1)Jn(k0’,I) ein(ﬂ dx; dy,
r<a

00
= noei(jx+ﬁy) Z FnCnIn = Qinlei<b‘+ﬁy)a

n=—00
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say, where

a (2m
L= (—i)”e’i""’J J ek Res®-0)), (kR)e"® RIOIR
0J0

_ znj I(KR) (koR) RAR
0

=2n(K? —k2) "' M, (Ka,koa)

and

M, (Ka, koa) = koaJ! (koa)J,(Ka) — KaJ,(koa)J| (Ka).

49)
Hence,
(ka, koa) 2
int = 7—1—0 .
Q=20 3 en B+ 00)
C. Synthesis

Substituting the results for (u)ey, and ()i, back in Eq.
(45) then gives the transmitted field as

(u(x,y)) = AP — et (50)
with
A=1+ A +0($), (51)
_if(0)
A = )’ C +n_ZooZ"d (ka)
- M, (ka, koa)
2 al = 52
" ,,200 (koa)* — (ka)* 62

The first term in Eq. (52) constitutes the Foldy estimate [see
Ag, given by Eq. (34)] if we take g =£(0), but it is seen here
that the correct estimate of A at O(¢) contains two addi-
tional terms.

Notice that the dependence of .A; on the angle of inci-
dence appears only in the first term, via C =cos 0;,,.

The formula for the transmitted field, Eq. (50) with Egs.
(51) and (52), is surprisingly complicated, especially as it is
only first order in ¢. (Indeed, the analysis above does not
give any information on the O(¢?) contribution, unlike in
Sec. VI where we obtained the second-order contribution to
R.) Fortunately, we can check our calculations with an inde-
pendent analysis that is valid for weak scattering: we do this
next.

Vill. WEAK SCATTERING

The term “weak scattering” means here that
p=p, and |mo| <1, where mo=1— (ko/k).

Martin and Maurel® (MM) have given results for weak
scattering, correct to second order in both ¢ and my; their

1690  J. Acoust. Soc. Am., Vol. 129, No. 4, April 2011

paper and formulas taken from it will be identified by MM
below. Particularly, MM confirms the LM formula for K?
and it contains an estimate for the transmitted field when
0in =0, MM(5.25),

(u) = Aypme™ with (53)

Avm =1 +%mo¢ +%mé{P0 — n(ka)’H} ¢ + O(%),
(54

where

Z Tl (55)

}’177()(3

Tn =02 =Ty iduis =J% = {[n)(ka)* — 1}J2,  (56)

4Py = (ka)® + 27i(ka)® Y Tu(JuH, — dy), (57)

n=—00

and all functions have argument ka. (MM also contains a for-
mula for the O(¢?) correction to Any.) Here, Eq. (54) will
be compared with the estimate found in Sec. VII, Eq. (50)
with Egs. (51) and (52).

From MM(2.24), we have an estimate for f(0) that can
be used in the first term in Eq. (52) (with C=1),

1 1
= ;{k(a))z 7m0~ Zmon(ka) H;

these contributions can be seen in Eq. (54).

From MM(2.18), we have an estimate for Z,, that can be
used in the second term in Eq. (52),

T2 = i ann

— .
= mon(ka)zH — T—g Z nka{iS, — kaw, T, }dy,

(58)

where 1, = n(ka)’d, and S, = 2kaJ,,_ 1J s1.
The third term in Eq. (52), denoted by T3, is more com-
plicated. To begin, MM(2.12) and MM(2.14) give

¢, = 2/(nikaA,)

1.
=—1 +_lm0un +

) m(u2 — mikaU,), (59)

1
16
where U, =2ka(J,H, — d,) + 2[i/(nka)][n* — (ka)*]. Then,
as (koa)® — (ka)*> = —mg(ka)* and M, (ka, ka) = 0, it is nec-
essary to expand M, (ka,koa) to third order in myg. Thus,
from Egs. (6), (7), and (49),

M, (ka,koa) =—kaReA,

:%mO(kCOZ {jn mOSn/<ka) + Qn }a (60)
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where the first two terms can be found below MM(2.15),

4
(8 +n* =A%+ ngnJ;

—%{(n2 —2)(n* =22 +8) +82}2T2,  (6])

Q, =

[SSI )

and we have written z = ka. Then, using Egs. (59) and (60),
the third term in Eq. (52) becomes

0 . 2
B i mg, o, .
T; = E [1 = 2 Moty = E(“” - mkaUn)}

n=—00

2

my ny
n n Qn
x[j TTRET: }

Z jn_% Z {i,unjn"'klasn}

n=—00 n=—00
m(z] s Sn R
" En;oo {l'un E N j”:“n + ﬂ:lkajnUn + Qn}

As > Jp,=1land } S, =0 [see Sec. 2.2 of MM or
Eq. (CD],

T3 = 1 — mon(ka)*H
2 > 2
my . Sn 2 my
— — =T — &1, 62
16 2 {l'u”ka J “”} AT 62)
where S| =3, (nikaJ,U, +€,) and we have used Eq.
(55). Substituting for U,, and comparison with Eq. (57) gives
S| =4Py+ S5, where

S1=—(a + 3 Qlka) = 17, + Q)

1 &=
:E(ka)u >, (63)

after use of Eq. (C2). Hence, adding Egs. (58) and (62),

1 1
T, +T3=1 +Zm(2)P0 +Em(2)82.

It is shown in Appendix C that S, =0. Thus, for weak
scattering and normal incidence,

PA = ¢(T1 +Ta +T3) = (Aum — 1) + ¢,
which gives

<M> _ -AMMeiKX + ¢(eikx _ eikx). (64)

This shows agreement with the MM estimate, correct to
first order in ¢ and second order in mg. Note that the method
used in MM is based on an iterative solution of the govern-
ing Lippmann—Schwinger equation. It leads to an expression
of the form

(u) = ™ (polynomial in x),
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which is then set equal to Aype'®; expanding about x =0

leads to expressions for both K and Ayy. If this process is
applied to Eq. (64), it is easily seen that the last term is
O(¢?) and so should be ignored if the goal is to determine
the amplitude correct to first order in ¢.

IX. EFFECTIVE INTERFACE CONDITIONS

In this section, the fields near the “interface” at x =0 are
investigated, working to first order in ¢.
The average total field in x < 0, evaluated at x =0, u_, is

u_ = (14 ¢Rr,)e”
and the corresponding x-derivative, «’_, is
u = ikC(1 — ¢Ry)e?.
From Eq. (50), the transmitted field at x =9, say, u,, is
= {1+ A e — ey
= {1+i(A— )0 + pA — p}e™e? (65)

1 o
— {1 +¢ [5 ikdr; /C+ Ay — 1} }e‘“ée‘ﬂy
and the corresponding x-derivative, u/+, is

ul, =ikC{ (/) (14 A )7 — g heleil

1 1 . .
_ikC{ 1+¢ {ZKI/Cerziké;q/CJrAl - 1} }é“%lﬁy,

(66)

To estimate these quantities, suppose further that ka < 1
and kpa < 1. Then, the terms containing kdx; in Egs. (65)
and (66) are smaller than the other terms (see below): ignor-
ing them and letting § — 0 gives

uy —u_ = G(A — Ry — 1), (67)
W, —u = ¢ikC<A1 +R, +%K1/C2 — 1>ei/fy. (68)

These give the discontinuities in (#) and its normal de-
rivative across x = 0.

For small ka and koa, Zy and Z+, are dominant, in gen-
eral, and they are O((ka)z) (see Sec. III A in Ref. 6). Thus,
f(0) ~ —Zy —2Z, cos 0.

From Eq. (22), k; = —4if(0)/[7r(ka)2] =0(1) as ka — 0,
which justifies discarding the kdx; terms above.

From Eq. (41), f(0,.) =f(n — 20,,) is needed to calculate
R,.Ascos 0,,=1—2C?,

1

R, = W[_ZO —2Z,(1 - 2C%)]
_ if(0) 4iZ,
 n(ka)’C?  m(ka)*

P. A. Martin: Scattering by random arrays of cylinders 1691

Author's complimentary copy



For A, use Eq. (52), containing three terms. For the sec-
ond term, use d,(ka) ~ 2ilnl/ [n(ka)z] [see above LM(82)] to
obtain Y, Z,d,(ka) ~ 4iZ,/ [7t(ka)?]. For the third term, use

n n (ka)2 — (koa)z

./\/l,,(ka, koa) ~ (k(l) (koa) m, n Z 0,
with M_, = —M,,. Also, ¢y ~ —1 and ¢, ~ —2(k/ky)" for
n >0, with ¢_,= —c,. Hence, the dominant contribution to
the third term in Eq. (52) comes from n=0; as
Mo(ka, koa) ~ L [(ka)* — (koa)?],

_if(0) 4iz,
e n(ka)*C?  n(ka)? ol

Use of these approximations for Ry and A; gives
A =1+Ry, (69)

so that Eq. (67) gives u, —u_ = O(gbz). In other words, there
is no discontinuity in (u) across x=0, for any angle of
incidence.

Similarly, from Eq. (68),

87, . —p
W, — = —kC—2L e 2gikC LI L ity (70)
n(ka) pPo+p

using Eq. (23) from Ref. 6. Thus, at this level of approxima-
tion, there is a jump in the normal (x) derivative of (u) across
x=0 (unless py = p). Moreover, for normal incidence, it is
seen that Eq. (70) agrees with the estimates of Aristégui and
Angel'? [see Eq. (A3)], in the low-frequency, small-¢ limit.
As a reviewer noted, the discontinuity in slope at x=0
could be used to predict the effective density, pes, of the
effective medium occupying x > 0:
1

p~ = pgrid,. an

Using the estimates for #’- given above,

Pt _ L+ GRi +5x1/C?)
p 1 —¢R,

~1+¢(2R1+2K—(;2>.

Substituting for R and x; gives

peie/p ~ 1+ 8idZy /[n(ka)’] ~ 1 = 2¢(p — po)/(p + po).

in agreement with Ament’s formula for the effective density;
see Eq. (11) in Ref. 6. This agreement provides a further
check on the calculations.

X. CONCLUSIONS

A plane wave is incident on a half-space containing a
dilute random arrangement of identical scatterers. An
expression for the average reflection coefficient has been
derived: it involves the far-field pattern for a single scatterer.
The average field within the half-space has also been calcu-
lated: it is found that a small amount of the incident wave
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penetrates [the second term on the right-hand side of Eq.
(50)]. This result was checked by comparing with an inde-
pendent calculation, valid for weak scattering (and normal
incidence). Effective interface conditions at the boundary of
the half-space were also obtained. It is anticipated that exten-
sions to three-dimensional problems can be made.

APPENDIX A: ARISTEGUI AND ANGEL

Aristégui, Angel, and their colleagues have written sev-
eral papers“’14 in which waves are normally incident on a
finite slab, —h <y, < h, containing circular scatterers. Com-
parisons with their work, in the limit of a semi-infinite slab,
will be given here.

To begin, write the averaged field as

uoei’fyz + uoR’e’fkyz, Y2 < —h,
Coefn 4 C e e h<y, <h,
upT'e2, yo > h.

U()’z) =

Put x =y, + h, U(y,) = u(x) and uy ="

eikx —|—R/CZikhe_ikx, X< 07
M()C) — C+e_‘K’7e‘Kx + C,e‘Khe_‘K", O <x< Zh,
T'el x> 2h.

Aristégui and Angel'® have given expressions for R, C
and T'. Using these gives

R = Rle2ikh _ e2i(k—K)h(1 - e4iKh)(k2 - K2)/D7

A=Cre " = 2k KK 1 k) /D,

A =C ok — 2ke2i(k—K)he4iKh(K —k)/D,
and T" =4kK /D, where

D— eZi(k—K)h{(k +K)2 — (k- K)Ze4i[<h}.

Letting # — oo (using Im K > 0) gives

e L Re & x <0,
where
1-0 2 K

—=1+4+R and ®:k.

110 7T 110

These agree with the Foldy estimates, Eq. (34), when 6;, =0
and K* = k* — 4igny.

In later papers,'''* formulas for non-isotropic scattering
were obtained, using K* = k* — 4ingf(0) + O(n}). In
particular,1 !

—1

® = (K/k){1 — (2ine/k*)[f(0) — f(m)]}
= 1= Qing/k)f (m) + O ().
giving
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in() i

R="3f(m) and A:1+R:1+gf(n). (A2)

This expression for R agrees with Eq. (43) but the esti-
mate for A is incorrect.

Evidently, Egs. (A1) and (A2) show that u(x) is continu-
ous across x = 0, whereas

' (0+) — ' (0—) = iKA — ik(1 — R)
=i(K — k) +i(K+ k)R
~ ik{(K/k) — 1+ 2R}
~ (2n0/k){f(0) —f(m)}. (A3)

These results are consistent with those found in Sec. IX.

APPENDIX B: SOME ENSEMBLE AVERAGING

In this appendix, notation from Sec. II of LM? is used.
Start with N scatterers located at ry, r», ..., ry; denote this
configuration by An. The ensemble average of any quantity
F(r | Ay) is defined by LM(8),

<F(l’)> = J p(l'l, rp, ..., I‘N) F(l‘lAN) dVlmN, (Bl)

()
where the subscript (V) indicates that the integration is over
N copies of the region By containing N scatterers, and
dVy.y=dVy .- dVy. (By has area N/ny.) Similarly, the aver-
age of F(r|Ay) over all configurations for which the first
scatterer is fixed at r; is given by LM(9),

(F(r)), :J p(ra, ..., ryry) F(r|Ay) dVa.y,

where p(ry, ra, ..., ry)=p(r)) p(ras, ..., ry|ry) defines

p(ra, ..., ry|ry) and p(r) = no/N.
For clarity, suppose first that N=2. Equation (Bl)
reduces to

= JJ p(l‘l,l‘z)F(rV\z) dV]z
r<a
+J [ p(l’l,l’z)F(l"Ag) dV12. (BZ)
Jri>a
The first term in Eq. (B2) is

J <ap(r1) jp(r2|r1 )E(r|A2) dVay = %J . (F(r)), dv;.

The second term in Eq. (B2) is split as

J J p(r17r2)F(r|A2) dV12
mn>a Jri>a

+ J J p(rl,rz) F(I‘|A2) dVis. (B3)
r<a Jri>a
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The first term in this expression involves integration for
which both r; >a and r, > a. In that case, an expansion of
the following form is available [cf. Eq. (4)],

F(r[Ay) = Fo(r) + Y F;(r|Ay), (B4)

=1

with N =2, where F does not depend on Ay and Fy, ... ,Fy
are small, O(ng). Hence

J J p(rr, ) F(r|Ay) dViy
r>a Jri>a

:Fo(r)J J p(l‘l,l'2> dV12
rm>a Jri>a

+ p(ri,ry) FidVy
ri>a Jry>a

+ p(l’l,l'z)F2dV12
r>a Jri>a

~ Fo(r)(no/2)*[(2/no) — na’}

+ p(ri,rp) FidVy
r>a

+ p(l‘l,l'z)Fz dV12
rn>a

~ (1 — nona®)Fy(r)

n n
+—°J <F1>1dV1+—0J
ri>a 2

2 n>a

<Fl>1dvl7

(Fa),dV,

= (1 — nona®)Fy(r) + noj

ri>a

using the indistinguishability of the scatterers in the last step.
Here, two approximations were made, in which O(n}) contri-
butions were discarded. First, the inner integrals
J;'j>a dV; (j =1, 2) of small quantities (F, or F) over the
(large) region B, with a (small) hole were replaced by inte-
grals over B, (no hole). Second, the term (ny/ 2)2(7ra2)2F o was
ignored.
Similarly, the second term in Eq. (77) is approximately

n
J Jp(rl,rz)F(r|A2) dv, dv, = EOJ (F),dV,.
n<a n<a

Substituting back yields
(F(r)) =(1 — nona*)Fo(r) + noj

r>a

(Fy), dv,
—+ ng J <F(l’)>1 dv. (BS)
r<a

This is the result for N=2. It holds for any N > 2, as
will be shown next.
From the definition, Eq. (B1),
<F(l‘)> = J J p(l’l,l‘z,...,l'N)F(l'|AN) dV]...N
(N=1) Jri<a
+J J p(rl,rz,...,rN)F(r|AN)dV1...N.
(N=1) Jri>a
(B6)
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The first term is (n/N) [, _,(F),dV;. The second term is

split as

J J J p(l‘l,l‘z, ceey I‘N) F(I‘|AN) dVi.n
(N=2) Jr>a Jri>a

“FJ J j p(rl,rz, ...,I'N) F(I“AN) dVlu.N.
(N=2) Jrp<a Jri>a

(B7)

The second term in Eq. (B7) is approximately

J J p(rl,rz,...,rN)F(r|AN)dV13...N2
r<aJ(N-1)

no
=— F),dv;.
er2<a< >2 :

The pattern is now clear. The splitting process is
repeated on the first term in Eq. (B7). This shows that the
second term in Eq. (B6) is approximately

J J p(r17r2,...,rN)F(r|AN) dVlN.N
v>a ri>a

N
> J (R (BY)

Jj=2

Using the expansion (B4), the first term in Eq. (B8)
becomes, approximately,

N

N/N N
() (B-nr) +25 j}paw»_,dv_,-

J=1

~ (1 —nonaz)Fo(r)—l-nOJ <F1>jdV1.

ry>a

Collecting up the results, Eq. (B5) is obtained again, but
now for any N.

APPENDIX C: SOME SUMS OF PRODUCTS OF
BESSEL FUNCTIONS

In this appendix, all functions have argument z and all
sums are from 7 = —oco to n = +o0. The basic sums are'”

=1 and Y JuJuim =0,

Differentiating the first of these gives » J,J}, = 0.
The differential equation for J,(z) gives

m 0. (C1)

4(n* — ), = 422J,'1/ + 427,
=222,y = Jop) + 42,

= Zz(Jth - 2Jn +Jn+2) + 22(.],,,1 _Jn+1)7

using 2/, = Jy_1 — J,+1. Hence

42(112 —2)J? = 27
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Also, squaring,

16(n* — 22202 =242, + 42 +J2,,)
+422(J2_, +J%, ) + cross terms,

where “cross terms” denotes terms of the form J,,J, with
m # n. Hence, using Eq. (C1),

16271 -7 12—62 + 82%.

n

As4 P = T2 = 21T +
2y J7=1 and Y JJ)=0.
n
Differentiating the differential equation for J,(z) gives
(n* =2 = 20" + 320" + T+ 22,
whence

Z(nZ o ZZ

W2 =3 {20 4320 + T, + 220, 1),
1 2 s
=5+7 EH:J” 7
As 167", = —8[J'> —J2 | —J2,, + cross terms,

16 (n?

These sums are sufficient to evaluate the sums needed in
Sec. VIII. First,

22(2 —n? VT u(z

2?2 =8 — 622

ZZ 2) J2 22 J/2

(6z +82%) ——(8 62%)==2>. (C2)

Then, using Eq. (61),

%zz Z Q, = Z[(8 +n?— 22)22.122 + 223.],1],'7
—{(* = 2)(n* = 2 + 8) + 82}

=82 I+ (=)

+22°) I n—z n — 222

—SZ P82 T

1
=4Z+ (8— )—E(6Z4+822)
+422—822
_ 3

R

Thus, > Q, = —2%/2 and so Eq. (63) gives S, =0.
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