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a b s t r a c t

Three-dimensional time-harmonic internal gravity waves are generated by oscillating
a bounded object (or by scattering from a fixed object) in a stratified fluid. Energy is
found in conical wave beams: the problem is to calculate the wave fields for an object
of arbitrary shape. An integral formula for the pressure is derived, using a reciprocal
theorem and a Green’s function. The boundary integrals are singular: their integrands
are infinite along a certain curve (not just at a point) on the boundary, and this happens
even when the field point is off the boundary (but within one of the conical wave
beams). This is very different to the situation with classical potential theory (Laplace’s
equation) or linear acoustics (Helmholtz’s equation), and is a consequence of the hyperbolic
nature of the governing partial differential equation. The boundary integrals are identified
as single-layer and double-layer potentials. A method is given for calculating the far
field of these potentials. It is verified by comparing with known solutions for spherical
objects.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Internal gravity waves are generated by oscillating bodies in density stratified fluids. For a uniform stratification, giving
a constant Brunt–Väisälä frequency, N , the significant wave motion is confined to beams forming a ‘‘Saint Andrew’s cross’’
(in two dimensions), as shown in famous images obtained by Mowbray and Rarity [1]: for reprints, see [2, p. 44], [3, p. 314]
or [4, p. 668]; the last of these also shows waves generated by a large oscillating cylinder. Internal gravity waves can also be
generated by the scattering of the barotropic tide in the oceans [5], and are then known as the baroclinic tide.

The governing equations are well known. For three-dimensional time-harmonic motions (frequency ω) of an
incompressible inviscid fluid with no rotation, the pressure p solves

∂2p

∂x2
+ ∂2p

∂y2
− ω2

N2 − ω2

∂2p

∂z2
= 0, (1.1)

where z is the vertical coordinate and 0 < ω < N . Eq. (1.1) is a hyperbolic partial differential equation and it is to be
solved subject to boundary and far-field conditions. The boundary conditions are clear: prescribed normal velocity on rigid
boundaries and zero pressure on free surfaces. The far-field conditions are less clear, but they have been reviewed thoroughly
by Voisin [6]. He identifies several approaches for imposing ‘‘radiation conditions’’. One is to require causality in the time
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domain, which then implies certain analyticity conditions in the complex ω-plane. This approach was used by Pierce [7],
Hurley [8] and others, and it will be used later in Section 5. Another approach is to look at the waves themselves, requiring
that they be outgoing: in linear acoustics, this would be recognised as the Sommerfeld radiation condition. However, for
internal gravity waves, the phase velocity is perpendicular to the group velocity: physically, wemay expect energy to travel
away from the source at the group velocity, and this could be stated as a radiation condition. A difficultywith such a condition
is that energy is a quadratic quantity: it does not seem obvious that linear combinations of such outgoing-energy solutions
will also be outgoing.

There are several papers on the generation of internal gravity waves by spheres. The main approach has been as follows:
start with Eq. (1.1) when ω > N (so that Eq. (1.1) is elliptic), scale the z-coordinate so that a boundary-value problem
for Laplace’s equation exterior to a spheroid is obtained; solve this problem by separation of variables; finally, effect the
Pierce–Hurley analytic continuation to obtain the solution for ω < N . See, for example, [9–11,6,12,13]. In Appendix A,
we use this approach for three problems (pulsating sphere, vertical oscillations and a combination of these two modes),
reviewing and extending previous work.

For more complicated body geometries, it is natural to try developing methods that use boundary integral equations,
methods that have proved to be very effective for potential flow problems and for acoustic scattering problems [14]. Sturova
[15], working in two dimensions, starts by writing

p(x, z) =
∫

S

µ(x′, z ′)G(x′, z ′; x, z) dS(x′, z ′) (1.2)

for points (x, z) in the fluid, where S is the surface of the body (a cylinder) and G is an appropriate Green’s function
(fundamental solution). Then, application of the boundary condition on S yields an integral equation for the function µ.

Eq. (1.2) defines a single-layer potential. Similar representations were first used in the context of internal waves by
Robinson [16], who considered a thin vertical barrier in a finite-depth ocean and constructed G so as to satisfy boundary
conditions at z = 0 and z = H . Similar methods have been used for barriers [17,18] and for other two-dimensional bottom
topographies [19–21]. All of these papers use representations of the stream function as a single-layer potential, leading to
a first-kind integral equation. Analogous representations using double-layer potentials (involving the normal derivative of
G) could be used. Similar approaches could be developed for three-dimensional problems.

For time-dependent problems, with prescribed initial conditions, the situation is a little simpler: by causality, there can
be nomotion far away. There is an extensive Russian literature on such problems, using a variety of layer potentials. See, for
example, [22] and papers by Gabov and his collaborators; we mention two [23,24] in which three-dimensional problems
are analysed.

It is implicit when using representations such as (1.2) that any linear combination of radiating Green’s functions
(constructed by the Pierce–Hurley method) is itself radiating. In linear acoustics, this is true: in that context, single-layer
and double-layer potentials always generate fields that satisfy the Sommerfeld radiation condition, for any choice of the
function µ. However, in the context of internal gravity waves, we do not have a precise condition to impose on p. For this
reason, we give a method for estimating the far field: it is not straightforward, but we verify that it gives the correct results
for two sphere problems (as presented in Appendix A).

We start the paper by setting up the governing equations in Section 2.Wederive a general reciprocal theorem, connecting
two time-harmonic pressure fields, in Section 3; this permits fluid rotation. The reciprocal theorem is used in Section 4
to obtain representation formulas (in the absence of rotation): these give the pressure in the fluid in terms of boundary
integrals over S of p, the normal velocity and a Green’s function, G. The Pierce–Hurley analytic continuation of G is discussed
in Section 5.

The boundary integrals are singular: their integrands are infinite along a certain curve (not just at a point) on the boundary
S, and this happens even when the field point is off the boundary (but within one of the conical wave beams). This is very
different to the situation with classical potential theory (Laplace’s equation) or linear acoustics (Helmholtz equation), and
is a consequence of the hyperbolic nature of (1.1) when 0 < ω < N .

The analysis of the far field is given in Section 7. The main idea is to write the boundary integrals as a double integral
over a region E in the ΘΦ-plane, where Θ and Φ are certain spherical polar coordinates. This unusual choice is made
because the singularities occur along the straight line Θ = θc (which passes through E ) and so they can be handled by
one-dimensional calculations. (The Φ integrations are benign.) The angle θc is defined by ω = N cos θc . In addition, as the
observation point recedes to infinity within the wave beams, the domain E shrinks so that approximations can be made.
Eventually, expressions for the far fields of single-layer and double-layer potentials are obtained. Some consequences of
these results are given in Section 8, with concluding remarks in Section 9.

The main contributions of the paper are as follows. First, there is the general reciprocal theorem (Section 3), relating
pressure and velocity fields. Next, there are the integral representations in terms of single-layer and double-layer potentials
(Section 4); these will provide a basis for the development of boundary integral methods. Then, a new method is given
(Section 7) for calculating the far-field behaviour of layer potentials. (Most of the details of this mathematical technique
are relegated to an Appendix.) The method is applied to specific problems for spheres, and some observations on energy
transport are made.



P.A. Martin, S.G. Llewellyn Smith / Wave Motion 49 (2012) 427–444 429

2. Mathematical formulation

We take the ocean to be a variable density fluid rotating with uniform frequency about the vertical axis. We model this
situation with the Boussinesq equations [25, Section 11.2], [26, Section 2.4.2]. In their linearised form, they are as follows:

∂v/∂t + f × v = −grad p + bẑ, (2.1)

div v = 0, ∂b/∂t + N2w = 0. (2.2)

Here, we have Cartesian coordinates Oxyz, with z pointing upwards; ẑ is a unit vector in the z-direction. The velocity is
v = (u, v, w) and f = (0, 0, f ) is a given constant vector; f is the Coriolis frequency. The excess pressure is ρ0p, where ρ0
is the constant background density. The buoyancy frequency, N(z), is positive and b is the buoyancy.

The basic unknowns are u, v,w, p and b. Eliminating u, v and b gives

(

∂2

∂t2
+ f 2

)

∂w

∂z
= ∂

∂t
∇2

Hp, (2.3)

(

∂2

∂t2
+ N2

)

w = − ∂2p

∂z ∂t
, (2.4)

where∇2
H = ∂2/∂x2+∂2/∂y2 is the horizontal Laplacian. From these, a single equation forw canbe obtained [25, Eq. (11.14)],

but we shall not need it.

The local energy is defined by E = Eke + Epe with Eke = 1
2
ρ0v·v (kinetic energy) and Epe = 1

2
ρ0b

2/N2 (potential energy).
We have ∂E/∂t = −div I, where I = ρ0pv is known as the energy transport vector (recall that ρ0p is the excess pressure).
Integrating over a fixed volume V , we obtain

d

dt

∫

V

E dV = −
∫

S

I·n dS,

where S is the boundary of V and n is the unit outward normal to S.

2.1. Time-harmonic motions

Suppose that p(x, y, z, t) = Re {p(x, y, z) e−iωt}, with similar expressions for u, v,w and b. Then, Eqs. (2.1) and (2.4) give

(ω2 − f 2)u = −iω
∂p

∂x
+ f

∂p

∂y
, (2.5)

(ω2 − f 2)v = −iω
∂p

∂y
− f

∂p

∂x
, (2.6)

(ω2 − f 2)w = −iωΥ
∂p

∂z
, (2.7)

where

Υ (z) = ω2 − f 2

ω2 − N2(z)
. (2.8)

We are interested in frequencies ω satisfying f 2 < ω2 < N2 so that Υ < 0. (We also obtain Υ < 0 in a homogeneous
fluid (N = 0) with low-frequency motions (ω2 < f 2).) If we substitute forw from Eq. (2.7) in the time-harmonic version of
Eq. (2.3), we obtain a single equation for p,

∇2
Hp + ∂

∂z

(

Υ (z)
∂p

∂z

)

= 0. (2.9)

When considering energy transport with time-harmonic motions, it is natural to average the intensity I over a period. Thus,
we define

Iav = ω

2π

∫ 2π/ω

0

I dt = 1

2
ρ0 Re {pv} , (2.10)

where the overbar denotes complex conjugation. Note that div Iav = 0.



430 P.A. Martin, S.G. Llewellyn Smith / Wave Motion 49 (2012) 427–444

3. A time-harmonic reciprocal theorem

We start with the divergence theorem,
∫

V
div u dV =

∫

S
u·n dS, where u is a continuously differentiable vector field. Put

u = φw:

∫

V

(w·gradφ + φ divw) dV =
∫

S

φw·n dS. (3.1)

Suppose that p is a valid pressure field (p solves Eq. (2.9) in V ) and that vp is the corresponding velocity field (defined by
Eqs. (2.5)–(2.7)). Then, as div vp = 0, puttingw = vp in Eq. (3.1) gives

∫

S

φvp
·n dS

= −iT

∫

V

{

Υ
∂p

∂z

∂φ

∂z
+ ∂p

∂x

∂φ

∂x
+ ∂p

∂y

∂φ

∂y
− f

iω

(

∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

)}

dV , (3.2)

where T = ω/(ω2 − f 2). If we suppose that φ is a valid pressure field, and then interchange p and φ in Eq. (3.2), we obtain
∫

S

pvφ·n dS

= −iT

∫

V

{

Υ
∂p

∂z

∂φ

∂z
+ ∂p

∂x

∂φ

∂x
+ ∂p

∂y

∂φ

∂y
+ f

iω

(

∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

)}

dV . (3.3)

Subtracting Eq. (3.3) from Eq. (3.2) gives

∫

S

(

φvp − pvφ
)

·n dS = 2f

ω2 − f 2

∫

V

(

∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

)

dV . (3.4)

Now, suppose that, in Eq. (3.1), we take φ = p and

w = 2f

ω2 − f 2

(

−∂φ
∂y
,
∂φ

∂x
, 0

)

= wφ, (3.5)

say; as divwφ = 0, the result is
∫

S

pwφ
·n dS = 2f

ω2 − f 2

∫

V

(

∂p

∂y

∂φ

∂x
− ∂p

∂x

∂φ

∂y

)

dV .

Subtracting this result from Eq. (3.4) gives
∫

S

(

φvp − puφ
)

·n dS = 0, (3.6)

where uφ = vφ + wφ . Thus,

(ω2 − f 2)uφ =
(

−iω
∂φ

∂x
− f

∂φ

∂y
,−iω

∂φ

∂y
+ f

∂φ

∂x
,−iωΥ

∂φ

∂z

)

,

which should be compared with

(ω2 − f 2)vp =
(

−iω
∂p

∂x
+ f

∂p

∂y
,−iω

∂p

∂y
− f

∂p

∂x
,−iωΥ

∂p

∂z

)

. (3.7)

Eq. (3.6) is a reciprocal theorem, connecting two time-harmonic pressure fields, p and φ. Note that Eq. (3.6) involves vp
·n, a

quantity that is typically prescribed on boundaries. Note also that, in the absence of rotation (f = 0), Eq. (3.5) shows that
wφ = 0, so that we can then replace uφ by vφ in Eq. (3.6).

If we choose φ = p in Eq. (3.2), we obtain

∫

S

p vp
·n dS = −iT

∫

V

(

∣

∣

∣

∣

∂p

∂x

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∂p

∂y

∣

∣

∣

∣

2

+ Υ

∣

∣

∣

∣

∂p

∂z

∣

∣

∣

∣

2

+ 2f

ω
Im

{

∂p

∂x

∂p

∂y

}

)

dV . (3.8)

Taking the real part of this equation, using Eq. (2.10), gives
∫

S

Iav·n dS = 0. (3.9)
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4. An elliptic problem: ω > N

Suppose henceforth that there is no rotation (f = 0) and that N is a positive constant. Then, from Eq. (2.8), Υ =
ω2/(ω2 − N2) is a constant and the (reduced, time-harmonic) pressure p solves

∂2p

∂x2
+ ∂2p

∂y2
+ Υ

∂2p

∂z2
= 0. (4.1)

The velocity v = (u, v, w) is given in terms of p by Eqs. (2.5)–(2.7); these reduce to

u = − i

ω

∂p

∂x
, v = − i

ω

∂p

∂y
, w = − iΥ

ω

∂p

∂z
. (4.2)

The boundary condition is that v·n is prescribed, where n is a normal to the boundary. As this boundary condition and
Eq. (4.1) both involve derivatives of p, we can assume that p → 0 at infinity. Beyond this, there is also some kind of radiation
condition at infinity. The far-field behaviour of p and v will be discussed later.

Physically, we are interested in frequencies satisfying 0 < ω < N (Υ < 0). However, we start by supposing that ω > N

(Υ > 1), so that Eq. (4.1) is elliptic. It is easy to see that

G(x, y, z; x0, y0, z0) = {(x − x0)
2 + (y − y0)

2 + Υ −1(z − z0)
2}−1/2 (4.3)

solves Eq. (4.1), where (x0, y0, z0) is a fixed point.
Let vG denote the velocity field generated by the pressure G, using Eq. (4.2):

vG = i

ω

(x − x0, y − y0, z − z0)

{(x − x0)2 + (y − y0)2 + Υ −1(z − z0)2}3/2
. (4.4)

Let Sε denote the sphere of radius ε, centred at (x0, y0, z0). On Sε , introduce spherical polar coordinates, x−x0 = ε sin θ cosϕ,
y − y0 = ε sin θ sinϕ and z − z0 = ε cos θ . Then, with n pointing out of Sε ,

∫

Sε

vG
·n dS = 2π i

ω

∫ π

0

sin θ dθ

(sin2 θ + Υ −1 cos2 θ)3/2
= 4π i

ω
C(Υ ), (4.5)

say, where

C(Υ ) =
∫ π/2

0

sin θ dθ

(sin2 θ + Υ −1 cos2 θ)3/2
=
∫ ∞

1

ξ dξ

(ξ 2 − 1 + Υ −1)3/2
= Υ 1/2

and we used the substitution ξ = sec θ .
Let p andφ bepressure fieldswith velocity fields vp and vφ , respectively. Assume that p andφ are regular (no singularities)

everywhere inside a closed surface, S. Then, from Section 3, we have the reciprocal theorem,
∫

S

(

pvφ − φvp
)

·n dS = 0. (4.6)

We shall use this formula with φ = G in order to obtain an integral representation for p.
Proceeding in a standard way [14], suppose that there is a bounded rigid object with boundary S. Choose a point P at

(x0, y0, z0) in the fluid outside S. Surround P be a small sphere Sε (as above). Surround S and P by a large sphere, SR, of radius
R. Apply the reciprocal theorem to p(x, y, z) and G(x, y, z; x0, y0, z0) in the region bounded by S, Sε and SR. The contribution
from SR vanishes as R → ∞; see Section 8. The integration over Sε picks out the value of p at P . Thus, using Eq. (4.5),

4π i

ω
C(Υ )p(x0, y0, z0)+

∫

S

(

pvG − Gvp
)

·n dS = 0,

where n points into the fluid. Hence, as C(Υ )/ω = (ω2 − N2)−1/2,

p(P) = i

2π
(ω2 − N2)1/2

∫

S

(

pvG − Gvp
)

·n dS, P outside S. (4.7)

This gives a formula for the pressure in the fluid in terms of the (unknown) pressure and the (known) normal velocity on S.
When P ∈ S, the left-hand side of Eq. (4.7) is replaced by A(P)p(P) where A(P) arises from an integration over a small

hemisphere at P; it is calculated in Appendix B. The result is an integral equation for the boundary values of p on S.
As in classical potential theory, define single-layer and double-layer potentials by

(Sµ)(P)

= i(ω2 − N2)1/2
∫

S

µG
dS

4π
and (Dµ)(P) = i(ω2 − N2)1/2

∫

S

µvG
·n

dS

4π
, (4.8)
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respectively. Thus, Eq. (4.7) becomes

p(P) = Dp − S(v·n), P in the fluid. (4.9)

This formula shows that p can always be written as a combination of single-layer and double-layer potentials. However, a
double-layer potential suffices for scattering problems, as we show next.

For scattering problems, we suppose that we have an incident field, pin, satisfying Eq. (4.1) in a region that includes the
interior of S. Then, an application of the reciprocal theorem inside S (but retaining the outward-pointing normal) gives

i

2π
(ω2 − N2)1/2

∫

S

(

pinv
G − Gvpin

)

·n dS = 0, P outside S. (4.10)

As S is rigid, (vp + vpin)·n = 0 on S. Hence, adding Eqs. (4.7) and (4.10) gives

p(P) = (Dptot)(P), P in the fluid outside S, (4.11)

where ptot = p + pin is the total pressure on S. From here, we can derive a boundary integral equation for ptot on S.

5. Analytic continuation and the radiation condition

The calculations in Section 4 assume that ω > N , but we are interested in solutions with 0 < ω < N . To find these,
we effect analytic continuation with respect to ω: Voisin [6] refers to this as the Pierce–Hurley method. The main idea is to
impose causality in the time domain, which means there should be no motion before a disturbance is excited. As we have
used a time-dependence of e−iωt , causality implies that there should be no singularities or branch cuts in the upper half of
the complex ω-plane.

Start with (ω2 − N2)1/2. Put cuts emanating from ω = ±N , going vertically downwards. Then, as (ω2 − N2)1/2 must be
real and positive when ω is real and greater than N , we find that

(ω2 − N2)1/2 =











+
√

ω2 − N2, ω > N,

i
√

N2 − ω2, −N < ω < N,

−
√

ω2 − N2, ω < −N.

(5.1)

In particular, on this branch of the square-root, we do not have an even function ofω, a fact that is emphasised by Voisin [6].
Then, for single-layer potentials, we need G, defined by Eq. (4.3). Using spherical polar coordinates,

x0 − x = R sinΘ cosΦ, y0 − y = R sinΘ sinΦ, z0 − z = R cosΘ, (5.2)

we have

G = 1

R(sin2Θ + Υ −1 cos2Θ)1/2
= ω

R(ω2 − N2 cos2Θ)1/2
, (5.3)

giving branch points at ω = ±N| cosΘ|, with cuts extending downwards.

As we are interested in using Gwhen 0 < ω < N , we define an angle θc by ω = N cos θc with 0 < θc < π/2. Then, from
Eqs. (4.8) and (5.3), we can write the basic single-layer potential as

(Sµ)(x0, y0, z0) =
∫

S

µ(x, y, z)M(Θ)
dS(x, y, z)

4πR
, (5.4)

where

M(Θ) =



















−ω
√
N2 − ω2

√
ω2 − N2 cos2Θ

= −N cos θc sin θc
√

cos2 θc − cos2Θ
, | cosΘ| < cos θc,

iω
√
N2 − ω2

√
N2 cos2Θ − ω2

= iN cos θc sin θc
√

cos2Θ − cos2 θc
, cos θc < | cosΘ|.

(5.5)

We proceed similarly for double-layer potentials, starting with an appropriate branch for (ω2 − N2)−3/2 and vG
·n, with vG

given by Eq. (4.4). Thus,

vG
·n = iN (Θ,Φ)

ωR2(sin2Θ + Υ −1 cos2Θ)3/2
= iω2N (Θ,Φ)

R2(ω2 − N2 cos2Θ)3/2
,

where

N (Θ,Φ) = N (Θ,Φ;Q ) = −(n1 cosΦ + n2 sinΦ) sinΘ − n3 cosΘ (5.6)
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Fig. 1. The body (scatterer or vibrator) is located inside the sphere, Sa . Regions III and V are the conical wave beams bounded by characteristic cones. The

pressure decays rapidly in Regions II, IV and VI. Similar figures can be found in other papers, such as Fig. 1 of [11] and Fig. 10 of [6].

and n(Q ) = (n1, n2, n3) is the outward normal at Q = (x, y, z) ∈ S. Then, from Eq. (4.8), we can write the double-layer
potential as

(Dµ)(x0, y0, z0) =
∫

S

µ(x, y, z)N (Θ,Φ)D(Θ)
dS(x, y, z)

4πR2
, (5.7)

where

D(Θ) =















−iω2
√
N2 − ω2

(ω2 − N2 cos2Θ)3/2
= −i cos2 θc sin θc

(cos2 θc − cos2Θ)3/2
, | cosΘ| < cos θc,

+ω2
√
N2 − ω2

(N2 cos2Θ − ω2)3/2
= + cos2 θc sin θc

(cos2Θ − cos2 θc)3/2
, cos θc < | cosΘ|.

(5.8)

Examining Eqs. (5.5) and (5.8), we see that M(Θ) and D(Θ) are singular at Θ = θc and at Θ = π − θc , so we must
investigate when these singularities arise and how to handle them.

The singularities in M(Θ) are integrable but D(Θ) has non-integrable singularities. In detail, for Θ ≃ θc , cos
2 θc −

cos2Θ ≃ (Θ − θc) sin 2θc . As we shall want to integrate with respect toΘ , for fixed θc , we define (Θ − θc)ν in the complex
Θ-plane, with a cut going downwards from Θ = θc , taking real positive values when Θ is real with Θ > θc ; here, ν is a
parameter. Then, (Θ−θc)ν = eiνπ (θc −Θ)ν whenΘ is real withΘ < θc . The choice of cut ensures that we have agreement
with Eqs. (5.5) and (5.8) whenΘ ≃ θc , and then we can write

M(Θ) ≃ −(N/2)
√

sin 2θc (Θ − θc)
−1/2, D(Θ) ≃ −(i/4)

√

2 cot θc (Θ − θc)
−3/2 (5.9)

for complexΘ near θc .

6. Geometry and singularities

To proceed, we partition the fluid domain into several regions. First, choose an origin O inside S. Suppose that S can be
enclosed by a sphere, Sa, of radius a, centred at O (Fig. 1). Define cylindrical polar coordinates (̺, φ, z) at O. Define spherical
polar coordinates (r, θ, φ) at O, with θ = 0 as the positive z-axis. A source at r = 0would propagate energy along the upper
cone, θ = θc (z = ̺ cot θc) and along the lower cone, θ = π − θc .

Define a thick conical shell of thickness 2a with surfaces given by z = ̺ cot θc ± a csc θc . This defines the upper wave
beam (Region III in Fig. 1). The lower wave beam is defined by z = −̺ cot θc ± a csc θc (Region V). The object S lies in the
intersection of the two conical wave beams.

The observation point is P at (x0, y0, z0). The integration point is Q at (x, y, z). Using Eq. (5.2), we have

{(x − x0)
2 + (y − y0)

2} cos2 θc − (z − z0)
2 sin2 θc = R2(cos2 θc − cos2Θ).

Thus, the singularities in Eqs. (5.5) and (5.8) occur when

(z − z0)
2 = {(x − x0)

2 + (y − y0)
2} cot2 θc . (6.1)

This defines a double cone in xyz-space with apex at P .

If P is not inside one of the conical wave beams (so P is in Regions II, IV or VI), the double cone does not intersect S: there
are no singularities in the integrations over S in Eqs. (5.4) and (5.7). Specifically, we have θc < Θ < π − θc when P is in
Region II, 0 ≤ Θ < θc when P is in Region IV, and π − θc < Θ ≤ π when P is in Region VI. Thus, | cosΘ| < cos θc in Region
II and cos θc < | cosΘ| in Regions IV and VI.
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Suppose now that P is inside the upper wave beam, Region III. Then, the lower half of the double cone, Eq. (6.1),

z − z0 = −
√

(x − x0)2 + (y − y0)2 cot θc,

will intersect S in a closed curve C. (For simplicity, assume that there is just one of these curves; this will be the case if the
object is convex, for example.) Thus, as Q is at (x, y, z), we see that the singularities in the integration over S in Eq. (4.11)
occur at all points Q on the curve C. This curve is characterised as being whereΘ = θc .

A similar construction can be made when P is inside the lower wave beam, Region V, using the upper half of the double
cone, Eq. (6.1). The singularity corresponds toΘ = π − θc .

We emphasise that there are singularities in the boundary integrals over S even when P is not on S (but is in Region
III or V). This is very different from classical potential theory, for example, where typical boundary integrals only contain
singularities when the field point P is on the boundary, and then the singularity is at P , not along a curve on S. All this is a
consequence of the hyperbolic nature of the governing partial differential equation.

7. The far field

The observation point P , at (x0, y0, z0), has cylindrical polar coordinates (̺0, φ0, z0) and spherical polar coordinates
(r0, θ0, φ0). We estimate the pressure field as r0 → ∞. The results are different depending on whether P is outside or
inside the wave beams.

7.1. The far field outside the wave beams

As already noted, within Regions II, IV and VI, M and D are finite. Thus, Eqs. (5.4), (5.7) and (4.9) show that Sµ = O(r−1
0 ),

Dµ = O(r−2
0 ) and p = O(r−1

0 ), respectively, as r0 → ∞. For the scattering problem, Eq. (4.11) shows that p is smaller:

p = O(r−2
0 ) as r0 → ∞. In the same limit, Eq. (5.2) shows that N (Θ,Φ) ∼ N (θ0, φ0).

7.2. The far field within the wave beams

To quantify the fields inside the beams, it is convenient to introduce additional sets of coordinates. Following [27],
introduce two sets of conical polar coordinates, (x0+, φ0, z

0
+) and (x

0
−, φ0, z

0
−), with

̺0 = r0 sin θ0 = x0± cos θc ± z0± sin θc, z0 = r0 cos θ0 = ∓x0± sin θc + z0± cos θc . (7.1)

Inverting, x0± = ∓z0 sin θc + ̺0 cos θc and z0± = z0 cos θc ± ̺0 sin θc . So, P is on the upper cone (θ = θc) when x0+ = 0 and

P is on the lower cone (θ = π − θc) when x0− = 0. Moreover, P is within the upper conical beam when |x0+| < a with P

receding to infinity as x0− → ∞. Similarly, P is within the lower conical beam when |x0−| < a with P receding to infinity as

x0+ → ∞.

Consider the far-field behaviour within the upper conical wave beam, Region III. In that region, |x0+| < a, |X±| < a and

|Y | < a but z0+ → ∞; here, X± and Y are defined by Eqs. (C.1)–(C.3). In what follows, we focus on Region III, and so we

simplify notation slightly, and write σ0 ≡ x0+ and ζ0 ≡ z0+. To calculate the radiated field, we suppose that the waves are
generated by vibrations of the spherical surface, Sa, represented by single-layer and double-layer potentials over Sa. Using a
spherewill permit explicit and detailed calculations, and comparisonswith earlierwork on oscillating spheres. Also, integral
representations such as Eq. (4.9) (with integrations over Sa) hold outside Sa, with the actual object, S, inside Sa.

So, we consider a single-layer potential, Sµ, and a double-layer potential, Dµ, with integrations over Sa. We parametrise
Sa usingΘ andΦ to locate points Q = (x, y, z) on Sa, leading to double integrals over a certain domain E in theΘΦ-plane.
Points around the perimeter of E correspond to points of contact of tangent lines from P to Sa; see, for example, [6, Fig. 9].
The integrands are singular along the coordinate line Θ = θc , a straight line that passes through E . The domain E shrinks
to a point as P recedes to infinity. These facts simplify the computation of the far field. The details of the calculation can be
found in Appendix C.

7.3. Radiation by a single-layer potential

Consider the single-layer potential, defined by Eq. (5.4). Parametrising S usingΘ andΦ gives

(Sµ)± = a

4π

∫

E

µ±(Θ,Φ)M(Θ)
Q2

±√
∆

sinΘ
dΘ dΦ

R±

where the ± refers to the two sides of S, and the two contributions must be summed to obtain Sµ. In the far field, R± ∼ r0
and r0 → ∞. In this limit, E shrinks onto the point (Θ,Φ) = (θc, φ0), so we can approximate.



P.A. Martin, S.G. Llewellyn Smith / Wave Motion 49 (2012) 427–444 435

From Eq. (C.9), as ζ0 ∼ r0, we have Q± ∼ −r0. Then, from Eq. (C.17),

∆(Θ,Φ) ≃ [Φ+(Θ)− Φ] [Φ − Φ−(Θ)] r
2
0 sin2 θc .

Hence,

Sµ = (Sµ)+ + (Sµ)− ∼ a

2

∫ Θ+

Θ−
µS(Θ)M(Θ) dΘ, (7.2)

where

µS(Θ) = 1

2π

∫ Φ+

Φ−

{µ+(Θ,Φ)+ µ−(Θ,Φ)} dΦ√
[Φ+(Θ)− Φ][Φ − Φ−(Θ)]

; (7.3)

if µ+ = µ− = constant, µS = µ±, exactly.
Then, we expand µS(Θ) as a Taylor series aboutΘ = θc ; if the Taylor coefficient of (Θ − θc)

n is cn(r0), we suppose that
mS

n = limr0→∞ cn/r
n
0 exists and write

µS(Θ) ≃
∞
∑

n=0

mS
nr

n
0 (Θ − θc)

n. (7.4)

(Note that, in Region III, r0 is large and |Θ − θc | is small but their product is O(a).) Substituting in Eq. (7.2) followed by use
of Eq. (5.9) shows that the remaining integrals are of the form

∫ Θ+

Θ−
(Θ − θc)

ν−1 dΘ = 1

ν

{

(Θ+ − θc)
ν − eiνπ (θc −Θ−)

ν
}

∼ ν−1r−ν
0

{

(a + σ0)
ν − eiνπ (a − σ0)

ν
}

, (7.5)

using Eq. (C.18). (The branch in the complexΘ-plane is described above Eq. (5.9).)

Thus, formally, we obtain the far-field estimate

Sµ ∼ aN

2
√
r0

√

sin 2θc

∞
∑

n=0

mS
n

2n + 1
Fn(σ0), (7.6)

where

Fn(x) = i(−1)n(a − x)n+1/2 − (a + x)n+1/2. (7.7)

We emphasise, first, that the coefficients mS
n in Eqs. (7.4) and (7.6) can depend on the lateral coordinate σ0 and on the

azimuthal angle φ0. Second, Eq. (7.6) is not a far-field expansion: every term in the series must be retained in order to obtain

the leading-order estimate (the quantity multiplying r
−1/2

0 ).

7.4. Radiation by a double-layer potential

Consider the double-layer potential, defined by Eq. (5.7). Parametrising S usingΘ andΦ , and then proceeding as for Sµ
gives

(Dµ)± = a

4π

∫

E

µ±(Θ,Φ)N±(Θ,Φ)D(Θ)
Q2

±√
∆

sinΘ
dΘ dΦ

R2
±

. (7.8)

Let us evaluate N±. On Sa, n = (x, y, z)/a. Then, using Eqs. (5.6) and (C.1)–(C.3),

aN (Θ,Φ) = (X+S − Z+C) cosΘ − {(X+C + Z+S)c + Ys} sinΘ.

We have X+ = X̃ +σ0 and Z+ = Z̃ + ζ0; Z̃ is given by Eq. (C.8), and X̃ and Y are given by Eq. (C.11). Hence, substitution gives

aN = −Q3 − Q± = ∓
√
∆, using Eqs. (C.9) and (C.10), and then Eq. (7.8) reduces to

(Dµ)± = ∓ 1

4π

∫

E

µ±(Θ,Φ)D(Θ)Q
2
± sinΘ

dΘ dΦ

R2
±

. (7.9)

As in Section 7.3, we approximate. Thus, as (Q±/R±)2 ∼ 1 and sinΘ ∼ S,

Dµ = (Dµ)+ + (Dµ)− ∼ − a

4r0

∫ Θ+

Θ−
µD(Θ)D(Θ) dΘ,
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where

µD(Θ) = r0S

πa

∫ Φ+

Φ−
{µ+(Θ,Φ)− µ−(Θ,Φ)} dΦ. (7.10)

Next, expand µD(Θ) aboutΘ = θc , as we did with µS (see Eq. (7.4)):

µD(Θ) ≃
∞
∑

n=0

mD
n r

n
0 (Θ − θc)

n. (7.11)

Then, using Eqs. (5.9) and (7.5) with ν = n − 1/2, we obtain the estimate

Dµ ∼ − ia

8
√
r0

√

2 cot θc

∞
∑

n=0

mD
n

2n − 1
Fn−1(σ0), (7.12)

where Fn is defined by Eq. (7.7). Again,mD
n can depend on σ0 and φ0. See also the remarks below Eq. (7.7).

7.5. Pulsating sphere

On the sphere, v·n = U0, a constant. From the known exact solution, the pressure on the sphere is also constant, p = p0.
Then, from Eq. (4.9),

p(P) = Dp − S(v·n) = Dp0 − SU0, P in the fluid.

Comparison with the results in Section 7.4 shows that µ± = p0 so that µD = 0: the double-layer contribution in the far
field is negligible. Comparison with the results in Section 7.3 shows that µ± = U0 = µS = mS

0, and then Eq. (7.6) gives, to
leading order,

p(P) ∼ − aNU0

2
√
r0

√

sin 2θc F0(σ0), (7.13)

where

F0(x) = i
√
a − x −

√
a + x = −

√
2a exp

{

−1

2
i arccos(x/a)

}

. (7.14)

The far-field estimate, Eq. (7.13), agrees precisely with the known exact solution: see [27, Eq. (4.47)], [6, Eq. (8.25)] (where
a time dependence of e+iωt is used) and Eq. (A.5).

7.6. Vertically oscillating rigid sphere

On the sphere, v·n = W0z/a for some constant W0. From the known exact solution, p = P z/a, where P is a complex
constant given by Eq. (A.7). Then, from Eq. (4.9),

p(P) = Dp − S(v·n) = PDµ− W0Sµ, µ = z/a, P in the fluid. (7.15)

To estimate the far field, we start by calculating µS and µD. We have

aµ± = z = Z+C − X+S = ζ0C − σ0S + Z̃C − X̃S = ζ0C − σ0S + Q± cosΘ

= ζ0(C sinΘ − cS cosΘ) sinΘ − σ0(S sinΘ + cC cosΘ) sinΘ ±
√
∆ cosΘ

∼ r0S(Θ − θc)− σ0S ± r0CS
√

(Φ+ − Φ)(Φ − Φ−).

From Eq. (7.3), we integrate with respect toΦ to obtain

aµS(Θ) = r0S(Θ − θc)− σ0S,

a linear function ofΘ . Hence comparisonwith Eq. (7.4) shows thatmS
0 = −σ0S/a,mS

1 = S/a andmS
n = 0 for n ≥ 2. Similarly,

Eq. (7.10) gives

(a2/C)µD(Θ) = r20 [Φ]2(S/2)2 = r20 (Θ+ −Θ)(Θ −Θ−),

a quadratic inΘ , using Eq. (C.19) for [Φ]. Hence, comparison with Eq. (7.11) gives

(a2/C)mD
0 = a2 − σ 2

0 , (a2/C)mD
1 = 2σ0, (a2/C)mD

2 = −1

andmD
n = 0 for n ≥ 3.
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Examination of Eqs. (7.6) and (7.12) shows that we require F±1 and F0. From Eq. (7.7),

F−1(x) = i√
a2 − x2

F0(x) and F1(x) =
(

2x + i
√

a2 − x2
)

F0(x), (7.16)

with F0 given by Eq. (7.14).
From Eq. (7.6),

Sµ ∼ aN

6
√
r0

√

sin 2θc
{

3mS
0F0 + mS

1F1

}

= − NS

12
√
r0

√

sin 2θc F 3
0 (σ0). (7.17)

From Eq. (7.12),

Dµ ∼ − ia

24
√
r0

√

2 cot θc
{

−3mD
0F−1 + 3mD

1F0 + mD
2F1

}

= − iC

12a
√
r0

√

2 cot θc F 3
0 (σ0). (7.18)

Combining Eqs. (7.15), (7.17) and (7.18) gives

p ∼ p∞(a/r0)
1/2 exp

(

−3

2
i arccos(σ0/a)

)

(7.19)

where

p∞ = (i/3)PC
√

C/S − (a/3)W0NS
√
SC . (7.20)

From Eqs. (A.6) and (A.7),W0 and P are related: aW0NS
2 = iCB0(Q1 + C−2) and P = B0Q1. Substitution in Eq. (7.20) gives

p∞ = −(i/3)B0/
√
SC , in precise agreement with the known exact solution, Eq. (A.8).

Inspection of Eqs. (7.17) and (7.18) shows that Sµ and Dµ are both approximately constant multiples of F 3
0 . Thus, for

the vertically oscillating sphere, we can write p = Sµ1 or p = Dµ2, whereµ1 andµ2 are certain constant multiples of z. For
example, a short calculation gives

µ1 = B0z/(ia
2NS2C) = −W0(z/a)[1 + C2Q1(i/c)]−1,

and this agrees with [13, Eq. (2.10)].

8. Energy and radiation conditions

There are two kinds of far-field behaviour to discuss. First, wemust check that the fields decay fast enough to ensure that
the surface integral over the large sphere, SR, vanishes as its radius R → ∞. Outside the wave beams (Regions II, IV and VI
in Fig. 1), the decay is rapid (Section 7.1), so standard potential-theory estimates give the result. Within the beams, p decays
slowly, as R−1/2, but the total area of the beam cross-sections also grows slowly (it is 8aπR sin θc) and so simple estimates
suffice.

The second concern is physical: energy transport. Thus, from Eq. (2.10), we consider the vector Iav = 1
2
ρ0 Re {pv}.

The velocity field v can be calculated from p using Eq. (4.2). Within the beam, Region III, the velocity in the far field is
parallel to the beam. Explicitly, if ẑ0+ is a unit vector in the direction of increasing z0+ ≡ ζ0 (away from the object), then

Voisin [27, Eq. (4.36)] has shown that v ∼ vẑ0+, where

v = 1

iN sin θc

∂p

∂σ0
.

Now, from Eqs. (7.6) and (7.12), the far-field behaviour of both single-layer and double-layer potentials has the form

p ∼ r
−1/2

0 F(σ0, φ0), (8.1)

where F is a complex-valued function of σ0 and φ0. Hence,

Iav = 1

2
ρ0 Re {pv} ∼ ρ0

2Nr0 sin θc
Im ( FF ′) ẑ0+, (8.2)

where F ′ ≡ ∂F/∂σ0 and we have used Re (iFF ′) = Im ( FF ′).
For a pulsating sphere, (7.13) gives F = F0 (apart from a constant real factor), F ′ = F ′

0(σ0) = (i/2)(a2 − σ 2
0 )

−1/2F0(σ0)

and Im (FF ′) = a(a2 − σ 2
0 )

−1/2, which is positive. Thus, Iav points away from the sphere.

For a vertically oscillating rigid sphere, (7.19) gives F = F 3
0 , F ′ = 3F 2

0 F ′
0 and Im (FF ′) = 12a3(a2 − σ 2

0 )
−1/2, which is

positive; again, Iav points away from the sphere.
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These two results suggest that a plausible far-field condition is that Iav should point away from the radiator, especially
given textbook interpretations of themeaning of Iav. For example, Lighthill [3, p. 14] states that I·n is the rate atwhich energy
is transported in the direction of n across a small plane element that is perpendicular to n, per unit area of that element.

However, there are two objections. First, there is some arbitrariness in the definition of Iav: any divergence-free vector can
be added to Iav without violating div Iav = 0. The significance of this observationwas noted by Longuet-Higgins [28]. Second,
although there is a requirement that

∫

SR
Iav·n dS > 0 when SR encloses a radiating object (see (3.9)), it is easy to construct

examples where Iav points towards the object in parts of the wave beams. For example, consider Sµ with µ = 2a + 3z/S.
This is a linear combination of two pieces, namely 2a and 3z/S, each of which generates outgoing Iav. However, their sum
does not, as we show next. We havemS

0 = 2a − 3σ0, m
S
1 = 3 and

F(σ0) = 3mS
0F0(σ0)+ mS

1F1(σ0) = {6a − 3σ0 + 3i(a2 − σ 2
0 )

1/2}F0(σ0),

using (7.16). Differentiating,

F ′(σ0) = (3/2)F0(σ0){2ia − 3iσ0 − 3(a2 − σ 2
0 )

1/2}(a2 − σ 2
0 )

−1/2.

Let ψ0 = arccos(σ0/a)with 0 < ψ0 < π , so that aeiψ0 = σ0 + i(a2 − σ 2
0 )

1/2. Then,

F = 3a(2 − e−iψ0)F0, F ′ = (3/2)i(2 − 3e−iψ0)F0 cscψ0

and, as |F0|2 = 2a (see (7.14)),

Im (FF ′) = 9a2(7 − 8 cosψ0) cscψ0.

Evidently, this is negative in part of the wave beam; in that part, Iav points towards S.

For another (less artificial) example, consider the problem of a sphere that is both pulsating and oscillating vertically.
Adding the two known solutions for the constituent problems leads to a solution that may or may not satisfy Iav·ẑ

0
+ > 0,

depending on the strengths of the modes. See Appendix A.3 for details.

9. Discussion

Pressure fields exterior to radiators in stratified fluids may be sought in the form of a single-layer potential, p = Sµ,
or as a double-layer potential, p = Dµ. To justify these choices, we have to show that µ can be chosen so as to satisfy the
boundary condition and that the far fields are physically meaningful. In the absence of a precise radiation condition, it is
worthwhile to be able to calculate the far fields from a knowledge of µ. We have shown how to do this, using a careful
asymptotic analysis.

The specification of a radiation condition in the frequency domain is problematic. If we had a plane-wave (Fourier
transform) representation, we could select those plane waves with outgoing group velocity. This technique can be used
for special geometries [29,18], but it is not general. Another possibility would be to use Pierce–Hurley analytic continuation,
but it is unclear how to do that computationally. We have shown that it is not sufficient to check that the energy transport,
Iav, points outwards in all directions: imposing this condition would eliminate physically meaningful solutions.

Instead of writing p = Sµ, we could use one of the representations derived in Section 4, involving boundary integrals of
p and v·n. These have two advantages: the representations are known to be valid (in the sense that if the boundary value
problem has a solution, then the solution can be represented as claimed) and they involve physical quantities (as opposed
to µ).
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Appendix A. Exact solutions for a sphere

We consider the axisymmetric oscillations of a sphere (radius a). Use cylindrical polar coordinates, r and z. Start with the
elliptic problem, ω > N . Following [6], the governing equations for p are Eq. (1.1) with boundary condition v·n = f on the
sphere; the latter becomes

(ω2 − N2)r
∂p

∂r
+ ω2z

∂p

∂z
= iω(ω2 − N2)af on R2 ≡ r2 + z2 = a2. (A.1)

Introduce ‘‘stretched oblate spheroidal coordinates’’ (see [11, Eq. (2.3)] or [6, Eq. (8.5)]), ξ and η, defined by

r = a(N/ω)
√

ξ 2 + 1
√

1 − η2, z = acξη, c = N/
√

ω2 − N2. (A.2)



P.A. Martin, S.G. Llewellyn Smith / Wave Motion 49 (2012) 427–444 439

We have

(r/a)2 + (z/a)2 = (N/ω)2(ξ 2 + 1)+ {c2ξ 2 − (N/ω)2(ξ 2 + 1)}η2

and this equals 1 when ξ = 1/c. From Eq. (A.2),

ω2r2

(aN)2
+ z2

(ac)2
− 1 = ξ 2 − η2 = ξ 2 − z2

(ac)2ξ 2
= z2

(ac)2η2
− η2.

Differentiating with respect to r gives

ω2r

(aN)2
= 1

ξ

∂ξ

∂r

(

ξ 2 + z2

(ac)2ξ 2

)

= −1

η

∂η

∂r

(

z2

(ac)2η2
+ η2

)

.

Hence,

∂ξ

∂r
= ω2rξ

(aN)2(ξ 2 + η2)
,

∂η

∂r
= − ω2rη

(aN)2(ξ 2 + η2)
.

Similarly, differentiating with respect to z gives

∂ξ

∂z
= z(ξ 2 + 1)

(ac)2ξ(ξ 2 + η2)
,

∂η

∂z
= z(1 − η2)

(ac)2η(ξ 2 + η2)
.

Then, using N2 = c2(ω2 − N2),

∂p

∂r
= ω2r

(aN)2(ξ 2 + η2)

(

ξ
∂p

∂ξ
− η

∂p

∂η

)

,

∂p

∂z
= (ω2 − N2)z

(aN)2(ξ 2 + η2)

(

ξ 2 + 1

ξ

∂p

∂ξ
+ 1 − η2

η

∂p

∂η

)

.

These are the same as [6, Eq. (8.8)] except that the quantity (aN)2(ξ 2 + η2) is replaced by R2

√

ω2 −Σ2
+

√

ω2 −Σ2
−, with

Σ± defined by Voisin [6, Eq. (8.6)].
For the boundary condition, Eq. (A.1), we need the combination

(ω2 − N2)r
∂p

∂r
+ ω2z

∂p

∂z
= ω2(ω2 − N2)

(aN)2(ξ 2 + η2)

(

A
∂p

∂ξ
+ B

∂p

∂η

)

,

where

A = r2ξ + (z2/ξ)(ξ 2 + 1) = a2ξ(ξ 2 + 1){(N/ω)2(1 − η2)+ c2η2}
B = −r2η + (z2/η)(1 − η2) = a2η(1 − η2){c2ξ 2 − (N/ω)2(ξ 2 + 1)}.

Now, on the sphere, ξ = 1/c and (N/ω)2(ξ 2 + 1) = 1 so that B = 0. Also,

(N/ω)2(1 − η2)+ c2η2 = (Nc/ω)2(c−2 + η2).

Thus, on ξ = 1/c ,

(ω2 − N2)r
∂p

∂r
+ ω2z

∂p

∂z
= ω2

c

∂p

∂ξ

and so Eq. (A.1) becomes

∂p

∂ξ
= iac

ω
(ω2 − N2)f (η) on ξ = 1/c. (A.3)

A.1. Pulsating sphere

In this case, f = U0, a constant, so the right-hand side of Eq. (A.3) is constant and the appropriate solution of the partial
differential equation for p has the form

p = A0Q0(iξ) = 1

2
A0 log

(

iξ + 1

iξ − 1

)

,

where Qn is a Legendre function. Application of the boundary condition, Eq. (A.3), gives A0 = a(ω/N)U0

√
ω2 − N2, in

agreement with [6, Eq. (8.12)]. For large ξ , p ∼ −iA0/ξ , in agreement with [6, Eq. (8.17)].
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After analytic continuation, we obtain

A0 = ia(ω/N)U0

√

N2 − ω2 = iaU0N cos θc sin θc .

In Region III, z0 ∼ r0 cos θc and, after analytic continuation, [6] gives

ξ 2 ∼ cos θc sin θc(r0/a) e
iψ0 with ψ0 = arccos(σ0/a). (A.4)

Hence,

p ∼ aU0N
√

(a/r0) cos θc sin θc e
−iψ0/2 = −aU0N

2
√
r0

√

sin 2θc F0(σ0). (A.5)

A.2. Vertical oscillations of a rigid sphere

For this case, f = W0n3 = W0z/a = W0η on ξ = 1/c . Then, the appropriate solution for p is

p = B0ηQ1(iξ) = B0η

[

iξ

2
log

(

iξ + 1

iξ − 1

)

− 1

]

(see [11, Section 2.1]), with B0 chosen to satisfy Eq. (A.3):

B0[Q1(i/c)+ N2/ω2] = i(a/ω)(ω2 − N2)W0. (A.6)

On the sphere,

p = Pη with P = B0Q1(i/c). (A.7)

In the far field, ξ is large, so that p ∼ −B0z0/(3acξ
3). Thus, using Eq. (A.4),

p ∼ p∞(a/r0)
1/2 e−3iψ0/2 with p∞ = −1

3
iB0[cos θc sin θc]−1/2. (A.8)

A.3. Combination of pulsations and vertical oscillations

For this case, f = U0 + W0z/a. By linearity, p = A0Q0(iξ) + B0ηQ1(iξ), with A0 and B0 given above. The combined
far-field solution is given by Eq. (8.1) with

F(σ0) = aAF0(σ0)+ BF 3
0 (σ0),

where A = −U0(N/2)
√
sin 2θc is a real constant (see Eq. (A.5)), B = −p∞/(2a

√
2) is a complex constant and p∞ is given

by Eq. (A.8). Differentiating,

F ′(σ0) = (aA + 3BF 2
0 )(i/2)(a

2 − σ 2
0 )

−1/2F0(σ0).

Write B = |B|eiβ . Then, as F 2
0 = 2ae−iψ0 , we find that

Im (FF ′) =
[

A2 + 12|B|2 + 8A|B| cos(β − ψ0)
]

a2 cscψ0.

As expected, this is positive when B = 0 (pulsations only) and when A = 0 (vertical oscillations only), but Im (FF ′) can be
negative in part of the wave beam. This is most easily seen by fixing B (fixW0) and then varying A (vary U0).

Appendix B. Contribution from the small hemisphere when P ∈ S

Suppose that P at (x0, y0, z0) is a point on S. Denote the unit normal vector at P (pointing out of S) by nP . Let Hε denote
the hemisphere of radius ε, centred at P , with nP along its axis of symmetry, and with Hε outside S. We are interested in
integrating (pvG − Gvp)·n over Hε , in the limit ε → 0. The result is p(P) multiplied by the value of the integral on the
left-hand side of Eq. (4.5), with Sε replaced by Hε; denote this integral by I .

It is natural to introduce local spherical polar coordinates at P , with polar axis aligned with nP ; this will lead to a formula
for I as a repeated integral with constant limits of integration. However, as the integrand involves the global Cartesian
coordinates, we require a coordinate rotation.

Let x′ = (x′, y′, z ′) give local coordinates at P with z ′ in the direction of nP . Let X = (x−x0, y−y0, z−z0). The integration
point onHε is located using x′ or (x, y, z), so that |x′| = |X | = ε. From [30, Section 4-4], we have x′T = AX T , where A is a 3×3
orthogonal matrix (A−1 = AT ) with entries given in terms of Euler angles. With nP = (sin θP cosφP , sin θP sinφP , cos θP),

A =
( − sinφP cosφP 0

− cos θP cosφP − cos θP sinφP sin θP
sin θP cosφP sin θP sinφP cos θP

)

;
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as a check, we note that AnT
P = (0, 0, 1)T . Next, we locate the integration point using x′ = ε(sin θ cosϕ, sin θ sinϕ, cos θ)

and calculate X T = ATx′T ; this gives

ε−1(x − x0) = −(sinφP cosϕ + cos θP cosφP sinϕ) sin θ + sin θP cosφP cos θ,

ε−1(y − y0) = (cosφP cosϕ − cos θP sinφP sinϕ) sin θ + sin θP sinφP cos θ,

ε−1(z − z0) = sin θP sin θ sinϕ + cos θP cos θ;
as a check, |X | = ε. Finally, we obtain

I = i

ω

∫ 2π

0

∫ π/2

0

sin θ dθ dϕ

{Λ(θ, ϕ; nP)}3/2
(B.1)

where

Λ = [(cos2 θP + Υ −1 sin2 θP) sin
2 ϕ + cos2 ϕ] sin2 θ

+ (sin2 θP + Υ −1 cos2 θP) cos
2 θ + 1

2
(Υ −1 − 1) sin 2θP sin 2θ sinϕ;

as expected,Λ = 1 when Υ = 1. Then, the quantity A(P) defined below Eq. (4.7) is given by A = (ω2 − N2)1/2I/(4π i).

Appendix C. Details for the far field within the wave beams

C.1. Coordinate systems

The integration point, Q , is at (x, y, z). Following [27], introduce local Cartesian coordinates, (X+, Y , Z+) and (X−, Y , Z−),
so that

x = X± cos θc cosφ0 − Y sinφ0 ± Z± sin θc cosφ0, (C.1)

y = X± cos θc sinφ0 + Y cosφ0 ± Z± sin θc sinφ0, (C.2)

z = ∓X± sin θc + Z± cos θc . (C.3)

Note that as x2 + y2 + z2 = X2
± + Y 2 + Z2

±, X±, Y and Z± are all bounded for Q ∈ S.

C.2. The integration domain in theΘΦ-plane

We locate points on Sa using Θ and Φ , assuming that P is in Region III; the reason for doing this is given at the end of
Section 7.2. Our purpose here is to identify the (integration) region in theΘΦ-plane.

Rather than relateΘ andΦ to x, y and z, we use X+, Y and Z+. To begin, Eq. (5.2) gives

x − x0 = (z − z0)T cosΦ and y − y0 = (z − z0)T sinΦ, (C.4)

where T = tanΘ . Also, Eqs. (7.1) and (C.3) give

z − z0 = Z̃ cos θc − X̃ sin θc = Λ, (C.5)

say, where X̃ = X+ − σ0 and Z̃ = Z+ − ζ0. Then, as x0 = ̺0 cosφ0 and y0 = ̺0 sinφ0, Eqs. (C.1), (C.2) and (C.4) give

x − x0 = X̃ cos θc cosφ0 − Y sinφ0 + Z̃ sin θc cosφ0 = ΛT cosΦ,

y − y0 = X̃ cos θc sinφ0 + Y cosφ0 + Z̃ sin θc sinφ0 = ΛT sinΦ.

These two equations give Y = ΛT s and Z̃S + X̃C = ΛT c , where

C = cos θc, S = sin θc, c = cos(Φ − φ0), s = sin(Φ − φ0).

Substituting forΛ from Eq. (C.5) and then solving for Y and X̃ in terms of Z̃ gives

X̃ = (T Cc − S)Z̃

T Sc + C
, Y = T sZ̃

T Sc + C
. (C.6)

Thus,

(T Sc + C)2(X2
+ + Y 2) = [(T Sc + C)σ0 + (T Cc − S)Z̃]2 + [T sZ̃]2. (C.7)
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Now, the equation defining Sa is x2 + y2 + z2 = X2
+ + Y 2 + Z2

+ = a2, so X2
+ + Y 2 = a2 − (Z̃ + ζ0)

2. Hence, eliminating

X2
+ + Y 2, using Eq. (C.7), gives a quadratic equation for Z̃ ,

0 = [(T Cc − S)Z̃ + (T Sc + C)σ0]2 + [T sZ̃]2 + (T Sc + C)2[(Z̃ + ζ0)
2 − a2]

= Z̃2{(T Cc − S)2 + T 2s2 + (T Sc + C)2} + 2Z̃(T Sc + C)Q1 + (T Sc + C)2Q2,

where Q1 = (T Cc − S)σ0 + (T Sc + C)ζ0 and Q2 = σ 2
0 + ζ 2

0 − a2. As the coefficient multiplying Z̃2 simplifies to sec2Θ , the

solution for Z̃(Θ,Φ) is

Z̃ = (T Sc + C) cos2Θ
{

−Q1 ± (Q 2
1 − Q2 sec

2Θ)1/2
}

= (C cosΘ + cS sinΘ)Q±, (C.8)

say, where

Q±(Θ,Φ) = −Q3 ±
√
∆, ∆(Θ,Φ) = Q 2

3 − Q2, (C.9)

Q3 = Q1 cosΘ = (cC sinΘ − S cosΘ)σ0 + (cS sinΘ + C cosΘ)ζ0. (C.10)

Then, Eq. (C.6) gives

X̃(Θ,Φ) = (cC sinΘ − S cosΘ)Q± and Y (Θ,Φ) = sQ± sinΘ. (C.11)

Evidently, we require that∆(Θ,Φ) ≥ 0. WhenΘ = θc andΦ = φ0, we have c = 1, Q3 = ζ0 and∆(θc, φ0) = a2 − σ 2
0 ≥ 0,

because |σ0| < awhen P is in Region III. Moreover, when P is in the far field, the region of theΘΦ-plane in which∆ ≥ 0 is
small, so we can approximate. Thus, forΘ ≃ θc andΦ ≃ φ0, write ϑ = Θ − θc and ϕ = Φ − φ0. Then

Q3 = ζ0 cosϑ + σ0 sinϑ + (c − 1)(Cσ0 + Sζ0) sinΘ

≃ ζ0 + σ0ϑ − 1

2
ζ0ϑ

2 − 1

2
(Cσ0 + Sζ0)Sϕ

2,

correct to second order in ϑ and ϕ. Then, from Eq. (C.9),

∆ ≃ a2 − σ 2
0 + 2ζ0σ0ϑ + (σ 2

0 − ζ 2
0 )ϑ

2 − (Cσ0 + Sζ0)Sζ0ϕ
2. (C.12)

We are interested in locating the curve defined by∆(Θ,Φ) = 0, given approximately by

(Cσ0 + Sζ0)Sζ0ϕ
2 + Z0ϑ

2 − 2ζ0σ0ϑ = a2 − σ 2
0 , (C.13)

where Z0 = ζ 2
0 − σ 2

0 is taken to be positive. Completing the square shows that Eq. (C.13) defines an ellipse, ϕ2/A2 + (ϑ −
ϑ0)

2/B2 = 1, where ϑ0 = ζ0σ0/Z0,

A2 = a2 − σ 2
0 + Z0ϑ

2
0

(Cσ0 + Sζ0)Sζ0
and B2 = ϑ2

0 + a2 − σ 2
0

Z0

. (C.14)

Denote the interior of this ellipse by E . In the ΘΦ-plane, E is aligned with the coordinate axes, and its centre is as
(Θ,Φ) = (θc +ϑ0, φ0). The endpoints of the major axis are at (Θ,Φ) = (θc +ϑ0, φ0 ±A). The endpoints of the minor axis
are at (Θ,Φ) = (θc +ϑ0 ±B, φ0). The area of E is approximately πa2/(r20 sin θc) for large r0. AsB > ϑ0, (Θ,Φ) = (θc, φ0)
is always in E . We conclude that∆ ≥ 0 in E . Explicitly, E is defined by

Φ−(Θ) < Φ < Φ+(Θ), Θ− < Θ < Θ+, (C.15)

where

Φ±(Θ) = φ0 ± (A/B)
√

(Θ+ −Θ)(Θ −Θ−), Θ± = θc + ϑ0 ± B. (C.16)

Then, from Eq. (C.12), we obtain

∆(Θ,Φ) = (Cσ0 + Sζ0)Sζ0 [Φ+(Θ)− Φ] [Φ − Φ−(Θ)] . (C.17)

In the far field, where ζ0 is large, we have Z0 ≃ ζ 2
0 , ϑ0 ≃ σ0/ζ0, A ≃ a/(ζ0S) and B ≃ a/ζ0 ≃ SA. Thus, E shrinks as ζ0

increases, and its centre moves towards (θc, φ0). Also, ζ0 ∼ r0 and

Θ± ≃ θc ± (a ± σ0)/r0, (C.18)

[Φ] = Φ+ − Φ− ≃ (2/S)
√

(Θ+ −Θ)(Θ −Θ−). (C.19)
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C.3. The Jacobian

In terms ofΘ andΦ , we have dS = |(jx, jy, jz)| dΘ dΦ , where

(jx, jy, jz) =
(

∂X+
∂Θ

,
∂Y

∂Θ
,
∂Z+
∂Θ

)

×
(

∂X+
∂Φ

,
∂Y

∂Φ
,
∂Z+
∂Φ

)

. (C.20)

Direct calculation from Eqs. (C.8) and (C.11) gives

∂X+
∂Θ

= (cC sinΘ − S cosΘ)
∂Q±
∂Θ

+ (cC cosΘ + S sinΘ)Q±,

∂Y

∂Θ
= s

∂Q±
∂Θ

sinΘ + sQ± cosΘ,

∂Z+
∂Θ

= (C cosΘ + cS sinΘ)
∂Q±
∂Θ

+ (−C sinΘ + cS cosΘ)Q±,

∂X+
∂Φ

= (cC sinΘ − S cosΘ)
∂Q±
∂Φ

− sCQ± sinΘ,

∂Y

∂Φ
= s

∂Q±
∂Φ

sinΘ + cQ± sinΘ,

∂Z+
∂Φ

= (C cosΘ + cS sinΘ)
∂Q±
∂Φ

− sSQ± sinΘ.

From these and Eq. (C.20), jx, jy and jz can be calculated, whence

j2x + j2y + j2z

Q2
±

= Q2
± sin2Θ +

(

∂Q±
∂Θ

)2

sin2Θ +
(

∂Q±
∂Φ

)2

.

We have Q± = −Q3 ±
√
∆with∆ = Q 2

3 − Q2, and, from Eq. (C.10),

∂Q3

∂Θ
= (cC cosΘ + S sinΘ)σ0 + (cS cosΘ − C sinΘ)ζ0,

∂Q3

∂Φ
= −s(Cσ0 + Sζ0) sinΘ.

Hence,

∂Q±
∂Θ

=
(

−1 ± Q3√
∆

)

∂Q3

∂Θ
= ∓ Q±√

∆

∂Q3

∂Θ
,

with a similar formula for ∂Q±/∂Φ . Thus,

j2x + j2y + j2z =
Q4

±
∆

{

∆ sin2Θ +
(

∂Q3

∂Θ

)2

sin2Θ +
(

∂Q3

∂Φ

)2
}

=
Q4

±
∆

{

a2 + Q 2
3 +

(

∂Q3

∂Θ

)2

− σ 2
0 − ζ 2

0 + s2(Cσ0 + Sζ0)
2

}

sin2Θ.

The expression inside the braces simplifies to a2, whence

|(jx, jy, jz)| =
Q2

±a√
∆

sinΘ. (C.21)
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