
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 28 (2012) 015003 (11pp) doi:10.1088/0266-5611/28/1/015003

Finding a source inside a sphere

N L Tsitsas1 and P A Martin2

1 School of Applied Mathematical and Physical Sciences, National Technical University of

Athens, Athens 15773, Greece
2 Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden,

CO 80401-1887, USA

E-mail: pamartin@mines.edu

Received 4 May 2011, in final form 10 October 2011

Published 6 December 2011

Online at stacks.iop.org/IP/28/015003

Abstract

A sphere excited by an interior point source or a point dipole gives a simplified

yet realistic model for studying a variety of applications in medical imaging.

We suppose that there is an exterior field (transmission problem) and that the

total field on the sphere is known. We give analytical inversion algorithms

for determining the interior physical characteristics of the sphere as well

as the location, strength and orientation of the source/dipole. We start with

static problems (Laplace’s equation) and then proceed to acoustic problems

(Helmholtz equation).

1. Introduction

Sixty years ago, Wilson and Bayley [1] began with an assumption ‘that the electric field

generated by the heart may be regarded as not significantly different from that of a current

dipole at the center of a homogeneous spherical conductor’, and then went on to examine the

effect of moving the dipole away from the center. Point dipoles inside spheres (and ellipsoids)

are also used in the context of brain imaging; see Dassios [2] for a recent review and the book

by Ammari [3]. Locating point sources and dipoles using surface measurements is an example

of an inverse source problem [4].

The basic static problem consists of Laplace’s equation in a bounded region Vi with

boundary ∂V . There is a source of some kind in Vi and the goal is to identify the source

from Cauchy data on ∂V . Uniqueness [5] and stability [6, 7] results are available. For some

numerical results, see [8–11] in two dimensions and [12–16] in three dimensions. We will

show that some of these problems for balls can be solved exactly by analytical methods. Exact

methods for magnetostatic problems have been devised previously [17, 18]; our method is

arguably more elementary.

Analogous problems for the Helmholtz equation can be posed [17, 19]. In particular, the

problem of low-frequency internal source excitation of a homogeneous sphere has applications

in electroencephalography (EEG). The basic principle of EEG lies in the detection and
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processing of a signal generated by neural activity in order to map certain brain functions. More

precisely, the primary source inside the brain is determined from a set of signals measured

on the scalp, thus generating electric brain images [20]. The frequency, f , of the measured

signal from a human brain is very low and hence the interior excitation of a spherical human

head by a low-frequency point source constitutes a suitable EEG model. For example [21],

kia ≃ 1.3 × 10−7 for f = 60 Hz and head radius a = 10 cm, where ki is the interior

wavenumber. Further applications arise in magnetic resonance imaging (MRI) [22], brain

electrical impedance tomography (EIT) [23], the modeling of antennas implanted inside the

head for hyperthermia or biotelemetry [24] and in studies of the operation of wireless devices

around sensitive medical equipment (such as cardiac pacemakers) [25].

The direct problem of interior point-source excitation of a layered sphere has been solved

in [26] for acoustics and in [27] for electromagnetics. These papers include approximations

of the far field in the low-frequency regime and related far-field inverse scattering algorithms.

The possibility of using a near-field quantity, namely the scattered field at the source point,

in order to obtain inverse scattering algorithms for a small homogeneous soft sphere has been

pointed out in [28]; these algorithms are not applicable here as we regard the source point

as being inaccessible. For other implementations of near-field inverse problems, see also [29]

and [30, p 133].

In this paper, we suppose that there is a point source inside a sphere. There are fields both

inside and outside the sphere, with appropriate interface conditions on the sphere. The inverse

problem is to determine the location and strength of the source knowing the (total) field on the

sphere. For a point dipole, the orientation of the dipole is also to be determined. The internal

characteristics (such as wavenumber or conductivity) are also to be found. For static problems,

exact and complete results are obtained. Similar results are obtained for acoustic problems,

although further approximations are used. The static problem with several point sources is

also considered.

Our analytical inversion algorithms make use of the moments obtained by integrating the

product of the total field on the spherical interface with spherical harmonic functions. All the

information about the primary source and the sphere’s interior characteristics is encoded in

these moments.

We emphasise that our method is simple, explicit and exact (given exact data). However,

as might be expected, it is limited to simple problems (with some extensions mentioned in

section 5). We observe that all the inverse problems mentioned above are finite-dimensional,

in the sense that the goal is to determine a few numbers (such as the coordinates and strength

of the unknown source), not functions. As such, these problems are essentially simpler than

many other inverse problems (such as determining the shape of a scatterer), and so it is perhaps

not surprising that some of them can be solved analytically. It does not seem to have been

noticed that locating a source inside a sphere is one of those problems.

2. Mathematical formulation

Consider a homogeneous spherical object of radius a, surrounded by an infinite homogeneous

medium. Denote the exterior by Ve and the interior by Vi. There is an interior point source

of some kind at an unknown location r1 ∈ Vi. We are interested in characterizing the source,

using information on the spherical interface.

Denote the field outside the sphere by ue and the (total) field inside by ui. Then, we can

write ui = upr + usec, where upr is the primary field due to the source (upr is singular at r1) and

usec is the secondary (regular) field. The field ue is regular and satisfies an appropriate far-field
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condition. The fields ue and ui are related by continuity (transmission) conditions across the

spherical interface.

Introduce spherical polar coordinates (r, θ, φ) for the point at r so that the source is at

(r1, θ1, φ1) with r1 = |r1| < a. Then, the transmission conditions are

ue = ui and
1

ρe

∂ue

∂r
= 1

ρi

∂ui

∂r
at r = a, (1)

where ρe and ρi are constants. To complete the problem formulation, we must specify the

governing differential equations, so we separate into electrostatics and acoustics.

2.1. Static problems

For static problems, both ue and usec are governed by Laplace’s equation. The field ue decays

to zero at infinity. In the context of electrostatics, ρe and ρi are inverse conductivities.

In some applications, the exterior is non-conducting. Then, ui solves an interior Neumann

problem (with (1) replaced by ∂ui/∂r = 0 on r = a), and ue solves an exterior Dirichlet

problem, with ue = ui on r = a.

For the primary field, we could choose a point source

upr(r; r1) = A

|r − r1|
, r ∈ R

3\{r1}, (2)

where A is a real constant; see, for example, [31, p 49]. Dipole fields will also be considered;

see (11).

2.2. Acoustic problems

For time-harmonic acoustic problems, we consider compressible fluids so that ρe and ρi are

densities. The governing equations are Helmholtz equations,
(

∇2 + k2
e

)

ue = 0 in Ve,
(

∇2 + k2
i

)

usec = 0 in Vi,

where ke and ki are the respective wavenumbers. The physical fields are given by Re
{

ue e−iωt
}

,

for example; henceforth, we suppress the time dependence. The complex-valued field ue must

satisfy the Sommerfeld radiation condition at infinity. For the primary field, we take

upr(r; r1) = A

|r − r1|
exp (iki|r − r1|), r ∈ R

3\{r1}, (3)

generated by a point source with the position vector r1, where A is a (possibly complex)

constant; see, for example, [31, p 144] or [32, p 153].

3. Static source inside a homogeneous sphere

There is a static source of some kind at r1 generating the field upr. Near the sphere (r1 < r < a),

separation of variables gives the expansion

upr(r; r1) =
∞

∑

n=0

n
∑

m=−n

f m
n (r1)(a/r)n+1Y m

n (r̂),

where r̂ = r/|r| = (sin θ cos φ, sin θ sin φ, cos θ ) and Y m
n (r̂) = Y m

n (θ, φ) is a spherical

harmonic; we define Y m
n as in [32, section 3.2].
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The quantities f m
n characterize the source. For a point source, defined by (2),

f m
n (r1) = 4πA

a

(−1)m

2n + 1
(r1/a)nY −m

n (r̂1); (4)

see, for example, [33, equation (3.70)].

The total field inside the sphere is ui = upr + usec where

usec(r) =
∞

∑

n=0

n
∑

m=−n

αn f m
n (r1)(r/a)nY m

n (r̂), 0 � r < a

(usec must be finite at r = 0) whereas the field outside is given by

ue(r) =
∞

∑

n=0

n
∑

m=−n

βn f m
n (r1)(a/r)n+1Y m

n (r̂), r > a

(ue must vanish as r → ∞). The transmission conditions at r = a, (1), give

1 + αn = βn, −n − 1 + nαn = −̺(n + 1)βn,

where ̺ = ρi/ρe. These can be solved for αn and βn yielding

αn = (1 − ̺)(n + 1)

n + ̺(n + 1)
, βn = 2n + 1

n + ̺(n + 1)
. (5)

Note that these quantities do not depend on any characteristics of the source. Also, for ̺ = 1

(no interface at r = a), we can verify that ue(r) = upr(r; r1) and usec(r) = 0, as expected.

The field on the sphere is

usurf(θ, φ) =
∞

∑

n=0

n
∑

m=−n

2n + 1

n + ̺(n + 1)
f m
n (r1)Y

m
n (θ, φ).

It is this quantity that we will use to find the source.

The spherical harmonics are orthonormal:
∫

�

Y m
n Y

µ
ν d� =

∫ π

0

∫ π

−π

Y m
n (θ, φ)Y

µ
ν (θ, φ) sin θ dφ dθ = δnνδmµ,

where � is the unit sphere and the overbar denotes complex conjugation. Hence, the moments

Mm
n ≡ 1√

4π

∫

�

usurfY m
n d� = 1√

4π

2n + 1

n + ̺(n + 1)
f m
n (r1) (6)

are known, in principle, if u is known on r = a; the double integral over � could be

approximated using a suitable quadrature rule and corresponding point evaluations of usurf.

The problem now is to determine properties of the source and the interior material (namely,

ρi = ρe̺) from Mm
n .

3.1. Point source

For a point source, (4) and (6) give

Mm
n = (−1)m Ãr̃n

1

√
4π

n + ̺(n + 1)
Y −m

n (θ1, φ1), with Ã = A

a
and r̃1 = r1

a
. (7)

Thus, there are five unknowns, Ã, ̺, r̃1, θ1 and φ1.

As Y 0
0 = (4π)−1/2, we obtain

M0
0 = Ã/̺.

This ratio is all that can be recovered if the source is at the sphere’s center (r1 = r̃1 = 0). So,

let us assume now that r̃1 	= 0.
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For n = 1, we can use [32, equation (8.28)]

Y 0
1 =

√

3

4π
cos θ, Y 1

1 = −
√

3

8π
eiφ sin θ, Y −1

1 =
√

3

8π
e−iφ sin θ (8)

giving

M0
1 = Ã

r̃1

√
3

1 + 2̺
cos θ1, M±1

1 = ∓Ã
r̃1

√
3/2

1 + 2̺
e∓iφ1 sin θ1.

If M±1
1 = 0, then θ1 = 0 or π (the source is on the z-axis and so φ1 is irrelevant); to

decide which, note that the sign of M0
0M0

1 is the sign of cos θ1. If M±1
1 	= 0, φ1 is determined

by noting that the complex number M0
0M−1

1 has argument φ1.

If M0
1 = 0, then θ1 = π/2. If M0

1 	= 0,
√

2 M−1
1 /M0

1 = eiφ1 tan θ1 determines θ1. Also

(1 + 2̺)2
{(

M0
1

)2 − 2M1
1M−1

1

}

= 3(Ãr̃1)
2. (9)

To conclude, we take a measurement with n = 2. Thus,

̺(2 + 3̺)M0
0Mm

2 = (Ãr̃1)
2(−1)m

√
4πY −m

2 (θ1, φ1). (10)

Then, choosing m such that Y −m
2 (θ1, φ1) 	= 0 (which means take m = 0 unless P2(cos θ1) = 0),

eliminate (Ãr̃1)
2 between (9) and (10) to give a quadratic equation for ̺ (which is real and

positive). Then, Ã = A/a = M0
0̺ and r̃1 = r1/a follows from Mm

1 or from (9).

3.2. Point dipole

Let d̂ = (sin θd cos φd, sin θd sin φd, cos θd) be an unknown unit vector, giving the direction

of a point dipole at r1. The field generated is given by

upr
r1

(r) = d̂ · grad1 (A/|r − r1|) , (11)

where grad1 denotes the gradient with respect to r1 and A is a real constant. As changing the

sign of A is equivalent to changing the direction of d̂, we can assume that A is positive.

From (2) and (4), the source coefficients are given by

f m
n (r1) = d̂ · grad1

(

4πA

a

(−1)m

2n + 1
(r1/a)nY −m

n (r̂1)

)

, (12)

and then Mm
n is given by (6).

We have f 0
0 = 0. Then, with n = 1, we have

a2

√
4π

f 0
1 (r) = d̂ · grad

(

A√
3

z

)

= A√
3

cos θd

and

a2

√
4π

f ±1
1 = d̂ · grad

(√
4πA

3
(−r)Y ∓1

1

)

= d̂ · grad

(

A√
6
(iy ∓ x)

)

= ∓ A√
6

e∓iφd sin θd.

If M±1
1 = 0, then θd = 0 or π , which we can determine by examining the sign of M0

1 ,

recalling that A > 0. If M±1
1 	= 0, φd is determined by noting that M−1

1 is a complex number

with argument φd.

If M0
1 = 0, then θd = π/2. If M0

1 	= 0,
√

2M−1
1 /M0

1 = eiφd tan θd determines θd.

Thus, we have determined the orientation of the dipole, d̂. Also,

(1 + 2̺)2a4
{(

M0
1

)2 − 2M1
1M−1

1

}

= 3A2. (13)

5
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To find the dipole’s location and strength, we move on to n = 2. Thus,

r2Y ±2
2 = 3

√
5√

4π
√

4!
(x ± iy)2, r2Y ±1

2 = ∓ 3
√

5√
4π

√
3!

(x ± iy)z,

r2Y 0
2 =

√
5√

4π

(

z2 − 1

2
(x2 + y2)

)

.

Hence,

a3

√
4π

f 0
2 (r1) = d̂ · grad1

(

A

2
√

5

(

2z2
1 − x2

1 − y2
1

)

)

= Ar1√
5

{2 cos θ1 cos θd − sin θ1 sin θd cos (φ1 − φd)} , (14)

a3

√
4π

f ±1
2 (r1) = ∓d̂ · grad1

(

3A√
30

(x1 ∓ iy1)z1

)

= ∓3Ar1√
30

{e∓iφd cos θ1 sin θd + e∓iφ1 sin θ1 cos θd}, (15)

a3

√
4π

f ±2
2 (r1) = d̂ · grad1

(

3A

2
√

30
(x1 ∓ iy1)

2

)

= 3Ar1√
30

e∓i(φ1+φd ) sin θ1 sin θd. (16)

Our first goal is to determine θ1 and φ1 from Mm
2 . Note that if all the moments Mm

2 vanish, then

r1 = 0 (the dipole is at the sphere’s center); henceforth, we assume that r1 > 0.

Let us first dispose of special cases. Suppose that θd = 0, in which case

a3

√
4π

f 0
2 (r1) = 2Ar1√

5
cos θ1,

a3

√
4π

f ±1
2 (r1) = ∓3Ar1√

30
e∓iφ1 sin θ1

and f ±2
2 = 0. If M±1

2 = 0, then θ1 = 0 or π , which the sign of M0
2 determines. If M±1

2 	= 0,

φ1 is the argument of M−1
2 . Then, if M0

2 = 0, θ1 = π/2, otherwise M±1
2 /M0

2 determines θ1. A

similar analysis succeeds when θd = π .

When θd = π/2,

a3

√
4π

f ±1
2 (r1) = ∓3Ar1√

30
e∓iφd cos θ1,

a3

√
4π

f ±2
2 (r1) = 3Ar1√

30
e∓i(φ1+φd ) sin θ1.

So, if M±2
2 = 0, θ1 = 0 or π , and the sign of ∓e±iφd M±1

2 gives the sign of cos θ1. If

M±2
2 	= 0, e−iφd M−2

2 has the argument φ1. Then, if M±1
2 = 0, θ1 = π/2, otherwise M±2

2 /M±1
2

determines θ1.

Now, for θd different than 0, π/2 and π , we proceed as follows. If M±2
2 = 0, then θ1 = 0 or

π , and the sign of ∓e±iφd M±1
2 gives the sign of cos θ1. If M±2

2 	= 0, the angle φ1 is determined

from (16) by noting that e−iφd M−2
2 has the argument φ1. Then, M1

2/M2
2 gives cot θ1.

Thus, we have now calculated the angular coordinates of the dipole, θ1 and φ1, as well as

its orientation, θd and φd. It remains to determine A, r1 and ̺. Now, from (6) and (12), any non-

zero Mm
1 gives A/(1 + 2̺) = m1, say. Similarly, any non-zero Mm

2 gives Ar1/(2 + 3̺) = m2,

say. So, in order to extract all three unknowns, we have to move on to n = 3. (For the point-

source problem, discussed in section 3.1, we had non-trivial information from n = 0, so we

did not require measurements with n = 3.) Then, any non-zero Mm
3 gives Ar2

1/(3 + 4̺) = m3,

say. Eliminating A and r1 gives

(1 + 2̺)(3 + 4̺)m1m3 − (2 + 3̺)2m2
2 = 0,

6
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a quadratic for ̺. Then, m1 gives A and m2 gives r1. Of course, the details of the calculation

depend on the choices of m in Mm
n . If P3(cos θ1) 	= 0, we would select M0

3 and use (see [32,

section 3.4])

r3Y 0
3 =

√
7√

4π

(

z3 − 3

2
z(x2 + y2)

)

,

giving

a4

√
4π

f 0
3 (r1) = d̂ · grad1

(

A√
7

(

z3
1 − 3

2
z1(x

2
1 + y2

1)

))

= 3Ar2
1√

7
F ,

where F = − sin θd cos θ1 sin θ1 cos(φd − φ1) + cos θd(cos θ1 − 1
2

sin2 θ1). Hence,

M0
3 =

√
4π

a4

3
√

7

3 + 4̺
A r2

1 F . (17)

This completes the determination of all the parameters of the problem.

3.3. N point sources

Suppose there are N point sources, located at r j = (x j, y j, z j) with spherical polar coordinates

(r j, θ j, φ j), j = 1, 2, . . . , N. Suppose for simplicity that each source has the same strength A,

and that ̺ is known. Thus, there are 3N + 1 unknowns. By linearity and (7), the moments are

Mm
n = A(−1)m

√
4π

an+1{n + ̺(n + 1)}

N
∑

j=1

rn
jY

−m
n (θ j, φ j).

The moment M0
0 determines A.

Now, rnY −m
n (θ, φ) is a homogeneous polynomial of degree n in x, y and z [30, section 2.3].

For each n, there are 2n+1 distinct polynomials. So, if we collect all the moments from n = 1

to n = NM , we will have N2
M + 2NM pieces of data from which to recover 3N unknowns. Thus,

in principle, we can recover the N locations by solving a system of polynomial equations:

exact solutions will be rare.

For two point sources (N = 2), we could use the axisymmetric spherical harmonics

(m = 0) in order to determine r1, r2, z1 and z2; writing down M0
n for n = 1, 2, 3 and 4 gives

enough equations. For example, ignoring multiplicative constants, rY 0
1 = z, M0

1 = z1 + z2,

r2Y 0
2 = 3z2 − r2, M0

2 = 3z2
1 + 3z2

2 − r2
1 − r2

2, and so on. In this way, we can find a quartic

equation for each unknown. We can then use other moments (with m 	= 0) to recover φ1 and

φ2. Evidently, this process becomes more complicated as N is increased.

4. Acoustic source inside a homogeneous sphere

In this section, we outline how some of the static results can be generalized to acoustic

problems. We suppose that there is a point source at r1 generating the field upr defined by (3).

Near the sphere (r1 < r < a), we have the expansion [32, theorem 6.4]

upr(r; r1) =
∞

∑

n=0

n
∑

m=−n

dm
n (r1)ψ

m
n (ki, r), dm

n = 4π ikiA(−1)mψ̂−m
n (ki, r1),

where ψm
n (k, r) = hn(kr)Y m

n (r̂), ψ̂m
n (k, r) = jn(kr)Y m

n (r̂), jn is a spherical Bessel function

and hn is a spherical Hankel function of the first kind.

The total field inside the sphere is upr + usec where

usec(r) =
∞

∑

n=0

n
∑

m=−n

αndm
n (r1)ψ̂

m
n (ki, r), 0 � r < a,

7
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whereas the (radiating) field outside is given by

ue(r) =
∞

∑

n=0

n
∑

m=−n

βndm
n (r1)ψ

m
n (ke, r), r > a.

The transmission conditions at r = a give

hn(κi) + αn jn(κi) = βnhn(κe), h′
n(κi) + αn j′n(κi) = βnwh′

n(κe),

where κi = kia, κe = kea and w = (keρi)/(kiρe). These can be solved for αn and βn. (Note

again that these quantities do not depend on properties of the source.) For example,

βn = iκ−2
i {w jn(κi)h

′
n(κe) − j′n(κi)hn(κe)}−1. (18)

Then, the field on the sphere is

usurf(θ, φ) =
∞

∑

n=0

n
∑

m=−n

βndm
n (r1)hn(κe)Y

m
n (θ, φ).

Our inverse problem is to determine the location of the source (r1, θ1 and φ1), the strength

of the source (A) and the interior properties (κi and ρi) from usurf. We assume that κe and ρe

are known.

As the spherical harmonics are orthonormal,

Mm
n ≡ 1√

4πhn(κe)

∫

�

usurfY m
n d� = βn

dm
n (r1)√

4π

= ikiAβn jn(kir1)
√

4π(−1)mY −m
n (θ1, φ1).

In principle, Mm
n are known if u is known on r = a. Let us write

Bn = ikiAβn jn(K) with K = kir1; (19)

these quantities do not depend on θ1 or φ1.

As Y 0
0 = (4π)−1/2, we obtain M0

0 = B0.

For n = 1, we can use (8), giving

M0
1 = B1

√
3 cos θ1, M±1

1 = ∓B1

√

3/2 e∓iφ1 sin θ1.

If all three of these vanish, B1 = 0, and we move on to n = 2.

If M±1
1 = 0 but M0

1 	= 0, then θ1 = 0 or π , φ1 is irrelevant and B1 is undetermined.

Suppose now that M±1
1 	= 0. Write B1 = |B1|eiδ . Then, as sin θ1 > 0, the complex number

M−1
1 has the argument δ + φ1 and the complex number −M1

1 has the argument δ − φ1; thus,

we can determine both δ and φ1. For |B1|, we can use
(

M0
1

)2 − 2M1
1M−1

1 = 3B2
1 = 3|B1|2e2iδ.

Finally, use M0
1 to deduce cos θ1 and hence θ1.

To make further progress, we make further assumptions. They are either that ki is known

or that kia and kea are small.

4.1. ki is known

Suppose that ki is known. Having already determined φ1 and θ1, we proceed to determine w,

r1 and A. By considering M0
n , we can obtain values for Bn. Then, the recurrence relation for

spherical Bessel functions gives

1

K
= jn−1(K) + jn+1(K)

(2n + 1) jn(K)
= Bn−1/βn−1 + Bn+1/βn+1

(2n + 1)Bn/βn

8
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for each n � 1. Equating two of these gives
Bn−1/βn−1 + Bn+1/βn+1

(2n + 1)Bn/βn

= Bn/βn + Bn+2/βn+2

(2n + 3)Bn+1/βn+1

.

Thus,
2n + 3

2n + 1

(

Bn−1

βn−1

+ Bn+1

βn+1

)

Bn+1

βn+1

=
(

Bn

βn

+ Bn+2

βn+2

)

Bn

βn

.

For each n � 1, this is a quadratic equation for w because β−1
n is linear in w; see (18). This

equation has the form

Anw
2 + Bnw + Cn = 0, (20)

where

An = (2n + 3)Bn−1Bn+1 jn−1(κi)h
′
n−1(κe) jn+1(κi)h

′
n+1(κe)

− (2n + 1)Bn+2Bn jn(κi)h
′
n(κe) jn+2(κi)h

′
n+2(κe)

+ (2n + 3)B2
n+1

[

jn+1(κi)h
′
n+1(κe)

]2 − (2n + 1)B2
n

[

jn(κi)h
′
n(κe)

]2
,

Bn = 2(2n + 1)B2
n jn(κi)h

′
n(κe) j′n(κi)hn(κe)

− 2(2n + 3)B2
n+1 j′n+1(κi)hn+1(κe) jn+1(κi)h

′
n+1(κe)

+ (2n + 1)Bn+2Bn

[

jn(κi)h
′
n(κe) j′n+2(κi)hn+2(κe)

+ j′n(κi)hn(κe) jn+2(κi)h
′
n+2(κe)

]

− (2n + 3)Bn−1Bn+1

[

jn−1(κi)h
′
n−1(κe) j′n+1(κi)hn+1(κe)

+ j′n−1(κi)hn−1(κe) jn+1(κi)h
′
n+1(κe)

]

,

Cn = (2n + 3)Bn−1Bn+1 j′n−1(κi)hn−1(κe) j′n+1(κi)hn+1(κe)

− (2n + 1)Bn+2Bn j′n(κi)hn(κe) j′n+2(κi)hn+2(κe)

+ (2n + 3)B2
n+1

[

j′n+1(κi)hn+1(κe)
]2 − (2n + 1)B2

n

[

j′n(κi)hn(κe)
]2

.

Although the parameter w (which gives the interior density ρi) solves the quadratic

equation (20) for each integer n, the second solution may depend on n.

The distance r1 can then be determined using β0B1 j0(kir1) = β1B0 j1(kir1) (see (19)),

while the strength A follows from the expression for B0.

4.2. kia and kea are small

Suppose that ki is unknown. Then analytic progress can be made in the low-frequency zone,

using the assumptions κi ≪ 1 and κe ≪ 1. In that case, the coefficients βn and Bn have the

following leading-order approximations as κi → 0 and κe → 0:

βn ∼ (2n + 1)(ke/ki)
n+1

n + ̺(n + 1)
, Bn ∼ iAke

n + ̺(n + 1)

(ker1)
n

cn

, (21)

where cn = 1 · 3 · · · (2n − 1), with c0 = 1. Then,

3B2B0

B2
1

= (2̺ + 1)2

̺(3̺ + 2)

determines ̺ = ρi/ρe; as expected, this is equivalent to the static formula, given below (10).

Then, B1/B0 = ̺ker1/(2̺ + 1) determines r1 and ̺B0 = ikeA determines the strength A.

Evidently, we cannot determine ki from the leading-order approximation to Bn, (21),

because ki does not appear. Thus, one either should use another kind of measurement, or one

could use a higher-order approximation. For example,

B0 ∼ iA
ke

̺

(

1 − κ2
e

2
+ κ2

i

6
+ κ2

i

3̺
+ 1

6
(kir1)

2

)

gives an estimate for ki.

9
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5. Discussion and conclusions

In this paper, we have considered simple inverse problems, locating sources and dipoles using

surface data. These are examples of finite-dimensional inverse problems: the goal is to find

the numerical values of a few parameters, such as the coordinates and strength of an interior

source.

We have shown that the simplest problems (locating one source or one dipole inside a

homogeneous sphere with exact data on the sphere) can be solved exactly.

Analytical solutions raise various questions. The first concerns inexact data. As our

formulas are exact, the effect of errors in the data can be studied; for a detailed study of

related methods, see [34]. Errors can come from the measurements of usurf and from numerical

integration over the unit sphere; the latter can be reduced by using accurate quadrature rules.

Note that we use integrals of the surface data over the whole sphere: this is a limitation of our

method. There are numerical algorithms that use data gathered over a piece of the sphere [16].

Next, we may consider extensions to other geometries, such as a layered sphere or an

ellipsoid (motivated by EEG applications), or to elastic media: these extensions are feasible.

We could use different data on the sphere, such as Neumann data (but note that, as we have

solved a transmission problem, Neumann and Dirichlet data are related by solving an exterior

boundary-value problem).

We have also seen (section 3.3) that increasing the number of sources leads to more

complicated results. For example, if we want to locate two static sources, we have to determine

nine numbers, namely, the coordinates and strength of each source and the interior density.

Formally, we can make progress with this problem but we lose the attractive simplicity of the

single source/dipole solution. Therefore, given that these multi-source inverse problems are

finite-dimensional, it may then be better to abandon the analytical approach and resort to a

numerical method.

For another class of problems, we could replace the point source by a spherical inclusion

and then generate a primary field at r = a. The direct problems can be solved exactly, so

the inverse problem could be tackled: it will be finite dimensional if the spherical inclusion

has constant properties. Problems of this type have been discussed by Bonnetier and Vogelius

[35]. We could also consider acoustic problems with a small scatterer embedded in the larger

sphere: recall that a small sound-soft object scatters as a source whereas a small sound-hard

object scatters as a dipole [32, section 8.2]. We plan to investigate some of these problems in

the future.
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