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Moshinsky’s problem is formulated and solved as a convolution integral.
The initial data are discontinuous, giving the possibility of non-uniqueness.
Asymptotic properties of the solution are deduced, using variants of the
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analogous problems for the one-dimensional wave equation and the
Schrödinger equation.
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1. Introduction

We consider what appear to be ‘textbook’ examples of initial-value problems. They

arise when a wave is incident upon a perfectly absorbing shutter which opens

instantaneously at t¼ 0; the problem is to determine the transmitted wave [1]. The

wave is governed by one of three equations: the vacuum electromagnetic equation

(the ordinary one-dimensional wave equation), the free-particle Schrödinger equa-

tion or the free-particle Klein–Gordon equation. The first two of these yield

solutions for which numerical results can be obtained readily. However, the Klein–

Gordon equation, which is the focus of this study, does not yield such a simple

solution.

This Klein–Gordon problem has a long history. Its solution can be written as a

convolution integral (using Laplace transforms) [2,3] or expressed as an infinite series

(obtained from a Fourier transform inversion) [1]. Chambers’ solution [3] is unique

in that it is given in terms of wave-equation solutions to the same problem.
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A numerical approximation for Moshinsky’s infinite series solution can be obtained

for those spacetime points, beyond the shutter, which can be accessed by the

wavegroup generated from the shutter opening. However, the series diverges

between this region and the light cone. More recent work on this problem has been

reviewed [4].

The difficulty lies not in obtaining the solution in the transform domain but

rather in inverting the solution to obtain a numerical result for the parameters of

interest physically. Inversion of the Laplace transform can be approximated as a

limit of derivatives in the transform domain or as a numerical contour integral [5],

but the large value of the speed of light makes such numerical evaluations ineffectual.

Applications of these solutions are to the propagation of electromagnetic waves

in waveguides or material with dispersion relations for which the governing equation

takes a Klein–Gordon form [2]. In quantum mechanics, free-particle propagation

through a shutter is described by the Schrödinger or Klein–Gordon equations, where

the latter is appropriate for relativistic particle motion [1]. It is generally accepted

that solutions to these two equations should be very similar for particles moving at

speeds much less than that of light. However, the solution given by Moshinsky

violates that assumption on the light cone, even for Klein–Gordon and Schrödinger

particles moving much less than the speed of light [6].

The problem becomes pathological with the imposition of an instantaneous

shutter opening. This is manifested mathematically in non-unique solutions, as

shown below. Of course, no such instantaneous physical opening can be produced.

This raises the question of how the pathology in the initial condition is manifested in

the solution. Perhaps the non-zero value of the solution at the light cone is such a

manifestation, since one would expect an indication of the shutter opening to travel

only at the group velocity. Such issues about the applicability of mathematical

models to physically realizable situations remain unresolved in this ‘textbook’

example. Nevertheless, such a pathological initial condition has been used to

determine tunnelling propagation times [7]. Having described the physical motiva-

tion behind this study, let us now give mathematical formulations. Moshinsky [1]

formulates three initial-value problems for a function  (x, t) with initial conditions

 ðx, 0Þ ¼ f ðxÞ and ð@ =@tÞðx, 0Þ ¼ gðxÞ, �15 x51, ð1Þ

one for the wave equation,

@2 

@x2
¼ 1

c2
@2 

@t2
, �15 x51, t4 0, ð2Þ

one for the Klein–Gordon equation,

@2 

@x2
¼ 1

c2
@2 

@t2
þ �2 , �15 x51, t4 0, ð3Þ

and one for the Schrödinger equation,

@2 

@x2
¼ �2i

�

c

@ 

@t
, �15 x51, t4 0, ð4Þ

where c and �(¼mc/�h, using Moshinsky’s notation [1]) are constants. Equation (4) is

to be solved subject to  (x, 0)¼ f(x).
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We shall mainly be concerned with the first two of these problems, (2) and (3).

We shall return to (4) in Section 4.

What makes these problems non-standard is the use of discontinuous initial data,

f and g. Specifically, Moshinsky takes

gðxÞ ¼ �f ðxÞ ð5Þ

with f given by

f ðxÞ ¼ eikx, x5 0,

0, x4 0,

(

ð6Þ

where k and � are constants. Thus, f(x) and g(x) are discontinuous (and undefined)

at x¼ 0.

For the wave equation, the textbook solution of the initial-value problem is given

by d’Alembert’s formula,

 ðx, tÞ ¼ 1

2
f ðx� ctÞ þ f ðxþ ctÞ

� �

þ 1

2c

Z xþct

x�ct

gð yÞdy, ð7Þ

see, for example, [8, p. 134] or [9, p. 41]. In particular, this formula gives

lim
t!0

 ð0, tÞ ¼ 1

2
f ð0þÞ þ f ð0�Þ

� �

ð8Þ

and

lim
t!0

@ 

@t
ð0, tÞ ¼ 1

2
c f 0ð0þÞ � f 0ð0�Þ
� �

þ 1

2
c gð0þÞ þ gð0�Þ
� �

: ð9Þ

Also, if we insert (5) and (6) in (7), and choose �¼�ikc [1, Equation (17)],

we obtain

 ðx, tÞ ¼

eikðx�ctÞ, x5 � ct,

eikðx�ctÞ � 1

2
, �ct5 x5 ct,

0, x4 ct:

8

>

>

<

>

>

:

ð10Þ

See Figure 1 for a sketch of the three regions in the xt-plane. Moshinsky gave the

solution (10) for x4 0 [1, Equation (18)], and he commented on the discontinuity

t

x

O

x = ctx = – ct

Figure 1. The xt-plane. The lines x¼�ct are characteristics.
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across x¼ ct. However, he did not notice that the problem as posed exhibits non-

uniqueness. To see this, return to the basic d’Alembert solution of (2),

 ðx, tÞ ¼ Lðxþ ctÞ þ Rðx� ctÞ, ð11Þ

where L and R are functions of one variable. The formula (11) generates a solution of

(2) provided L and R are twice differentiable. Then, applying the initial conditions,

(1), gives

f ðxÞ ¼ LðxÞ þ RðxÞ, gðxÞ ¼ cL0ðxÞ � cR0ðxÞ: ð12Þ

Hence cf 0 þ g¼ 2cL0, cf 0 � g¼ 2cR0,

LðxÞ ¼ 1

2
f ðxÞ þ 1

2c

Z x

a

gð yÞdyþ A, ð13Þ

RðxÞ ¼ 1

2
f ðxÞ � 1

2c

Z x

a

gð yÞdy� A, ð14Þ

where a and A are arbitrary. Substitution in (11) gives the d’Alembert formula (7).

For Moshinsky’s problem, f(x)¼ g(x)¼ 0 for x4 0. Then, solving (12) (or by

taking a¼ 0 in (13) and (14)) gives

LðxÞ ¼ A, RðxÞ ¼ �A, x4 0:

We also have f(x)¼ eikx and g(x)¼� ikcf(x) for x5 0. Then, solving (12) gives

LðxÞ ¼ B, RðxÞ ¼ eikx � B, x5 0,

where B is another arbitrary constant. Hence, using (11),

 ðx, tÞ ¼
eikðx�ctÞ, x5 � ct,

eikðx�ctÞ þ C, �ct5 x5 ct,

0, x4 ct,

8

>

<

>

:

ð15Þ

where C¼A�B is an arbitrary constant; cf (10). In general,  (x, t) is discontinuous

across both characteristic lines x¼ ct and x¼� ct.

The influence of the discontinuity in the initial data at x¼ 0 is the presence of the

constant C. If we insist on having

f ðxÞ ¼ eikx, x5 0,

0, x � 0,

(

ð16Þ

we obtain C¼�1, giving continuity across x¼ ct. Instead, we may require that

f ðxÞ ¼ eikx, x � 0,

0, x4 0,

(

ð17Þ

the result is C¼ 0 and continuity across x¼�ct. The d’Alembert formula gives (10),

corresponding to C ¼ � 1
2
: it picks out a particular solution, with f(0) and g(0) given

by (8) and (9). This solution is discontinuous across both x¼ ct and x¼�ct.
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In this article, we make a similar investigation for the Klein–Gordon equation.

We begin with a formal solution of the initial-value problem, analogous to the

d’Alembert formula for the wave equation. Asymptotic approximations are then

obtained, mainly using variants of the method of stationary phase. Some

comparisons with the Schrödinger equation are given in Section 4. Further

comments on non-uniqueness are made in Section 5.

2. Moshinsky’s relativistic shutter problem

The governing equation for  (x, t) is the Klein–Gordon equation, (3), with initial

conditions given by (1), (5) and (6). The parameter � in (5) is given by

� ¼ �iEc, where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ �2
p

, ð18Þ

c, k and � are constants. Again, we note that f(x) and g(x) are discontinuous and

undefined at x¼ 0, so we expect non-uniqueness.

We start by deriving a formula for solving Moshinsky’s initial-value problem.

Natural tools to use are Laplace transforms with respect to t or Fourier transforms

with respect to x. We choose the latter, and define

�ð�, tÞ ¼
Z 1

�1
 ðx, tÞe�i�x dx:

Transforming (3) gives @2�/@t2¼��2c2�, where �ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2
p

. Hence,

�ð�, tÞ ¼ Fð�Þ cos ð�ctÞ þ ð�cÞ�1Gð�Þ sin ð�ctÞ,

where F and G are the Fourier transforms of f and g, respectively; from (5) and (18),

we obtain G¼�iEcF.

Let S(�, t)¼ ��1sin(�ct). Inverting � gives

 ðx, tÞ ¼ 1

2�

Z 1

�1
fFð�Þ cos ð�ctÞ � iEFð�ÞSð�, tÞgei�x d� ¼ 1

c

@�

@t
� iE�, ð19Þ

say, where

�ðx, tÞ ¼ 1

2�

Z 1

�1
Fð�ÞSð�, tÞei�x d�:

This is a Fourier convolution because S is a Fourier transform. For, if

sðx, tÞ ¼
1

2
J0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � x2
p� �

, jxj5 ct,

0, jxj4 ct,

8

<

:

ð20Þ

where Jn is a Bessel function, then
Z 1

�1
sðx, tÞe�i�x dx ¼

Z ct

0

J0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � x2
p� �

cos �xdx ¼ Sð�, tÞ, ð21Þ

using [10, 6.677 (6)]. Hence,

�ðx, tÞ ¼
Z 1

�1
f ðx� yÞsð y, tÞdy ¼ 1

2

Z ct

�ct

f ðx� yÞJ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � y2
p

� �

dy: ð22Þ
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This is our solution for �(x, t), with �15 x51 and t4 0. Then,  (x, t) is given by

(19); with �ð y, tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � y2
p

,

 ðx, tÞ ¼ 1

2
f ðx� ctÞ þ f ðxþ ctÞ

� �

� 1

2

Z ct

�ct

�2ct

�
J1ð�Þ þ iEJ0ð�Þ

� �

f ðx� yÞdy: ð23Þ

Formulae of this kind are known; see, for example, [11, Equation (69), p. 255] or

[2, Equation (17)].

When �¼ 0, E¼ k, (3) becomes the wave equation, and (23) reduces to the

d’Alembert formula.

For Moshinsky’s specific problem, f is given by (6). Then, when evaluating (22)

or (23), there are three cases.

Solution for x4 ct. In this case, x4 y in (22), so f(x� y)¼ 0 and, therefore,

�(x, t)¼ (x, t)¼ 0 for x4 ct.

Solution for x5�ct. In this case, x5 y in (22), so f(x� y)¼ eik(x� y) and

�ðx, tÞ ¼ 1

2
eikx

Z ct

�ct

J0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � y2
p

� �

e�iky dy

¼ eikx
Z ct

0

J0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � y2
p

� �

cos kydy ¼ eikxSðk, tÞ ¼ eikx
sin ðEctÞ

E
,

using (21) and �(k)¼E. Hence, from (19),

 ðx, tÞ ¼ 1

c

@�

@t
� iE� ¼ eiðkx�EctÞ, x5 � ct:

This wave solution has frequency !ðkÞ ¼ Ec ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ �2
p

, phase speed cp¼Ec/k and

group velocity

cg ¼
d!

dk
¼ ck

E
¼ k2cp

k2 þ �2
:

Thus, cg5 c5 cp.

Solution for �ct5 x5 ct. In this case, with �ð y, tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 � y2
p

,

�ðx, tÞ ¼ 1

2
eikx

Z ct

x

J0ð�Þe�iky dy

and, using J0(0)¼ 1 and J00 ¼ �J1,

 ðx, tÞ ¼ 1

2
eikðx�ctÞ � 1

2
eikx

Z ct

x

�2ct

�
J1ð�Þ þ iEJ0ð�Þ

� �

e�iky dy: ð24Þ

The J1 term could be simplified using (2/�)J1(�)¼ J0(�)þ J2(�).

As a check, suppose that �¼ 0. Then, as E¼ k, (24) reduces to

 ðx, tÞ ¼ 1

2
eikðx�ctÞ � ik

2
eikx

Z ct

x

e�iky dy ¼ eikðx�ctÞ � 1

2
:

Thus, we find agreement with the d’Alembert solution, (10).
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We cannot evaluate (24) in general but we can find  on the characteristics,

x¼�ct (see Figure 1). Trivially, we obtain

 ðct, tÞ ¼ 1

2
, ð25Þ

which agrees with [1, Equation (32)]. We also find that

 ð�ct, tÞ ¼ e�iðkþEÞct � 1

2
: ð26Þ

To see this, note that (24) gives

2eikct ð�ct, tÞ ¼ e�ikct � 2

Z ct

0

�2ct

�
J1ð�Þ þ iEJ0ð�Þ

� �

cos ky dy

¼ e�ikct � 2i sin ðEctÞ � 2�ct

Z �=2

0

J1ð�ct sin zÞ cos ðkct cos zÞ dz:

From [10, 6.688 (1)], the remaining integral is

�

2
J1=2ðct½Eþ k�=2ÞJ1=2ðct½E� k�=2Þ ¼ 2

�ct
sin ðct½Eþ k�=2Þ sin ðct½E� k�=2Þ,

whence

2eikct ð�ct, tÞ ¼ e�ikct � 2i sin ðEctÞ � 2fcos ðkctÞ � cos ðEctÞg ¼ 2e�iEct � eikct:

This reduces to (26).

We observe that  (x, t) is discontinuous across both x¼ ct and x¼�ct. Also,

from (25) or (26), we see that the formula (24) implies that

 ð0, 0Þ ¼ 1

2
: ð27Þ

Let us mention some previous work on solving related problems for the Klein–

Gordon equation. Reiss [12, Appendix] considered (3) for x� 0 with f¼ g¼ 0 and

 (0, t)¼ h(t), see also [13, Appendix] and [14, Section 2]. Bleistein and Handelsman

[15, Section 7.5] considered an inhomogeneous form of (3), forced by 	(x)ei!t, with

f¼ g¼ 0. A similar problem but with ei!t replaced by  (0, t) and with Moshinsky’s

initial conditions is discussed in [6]. Babich [16] solved (3) subject to g(x)¼ 0, f(x)¼ 1

for x� 0 and f(x)¼ 0 for x5 0.

3. Asymptotic approximations when jxj_ ct

As we cannot evaluate (24) in general, we resort to asymptotic approximations.

We begin by introducing dimensionless quantities, using E�1 as a length scale:

X ¼ Ex, T ¼ Ect, M ¼ �=E and " ¼ k=E, ð28Þ

in applications, "� 1. Then, (24) becomes

 ðx, tÞ ¼ 1

2
eikx e�ikct ��ðX,T Þ

� �

, ð29Þ
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where

�ðX,T Þ ¼
Z T

X

MT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2 � Y 2
p J1 M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2 � Y 2
p� �

þ iJ0 M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2 � Y 2
p� �

� �

e�i"Y dY:

We consider two kinds of asymptotic approximations. First, we fix x and then let

t!1 (along a vertical line in Figure 2). Second, as an alternative, we move away

from the origin in Figure 2, along a sloping line defined by x¼ ct cos
.

We start by estimating �(X,T ) as T!1, with X fixed. Assuming that M4 0,

the integrand is small except when Y is near T, so we write

�ðX,T Þ ¼ �ð0,T Þ � f�ð0,T Þ ��ðX,T Þg,

and then

�ð0,T Þ ��ðX,T Þ ¼
Z X

0

f� � �g e�i"Y dY 	 XfMJ1ðMT Þ þ iJ0ðMT Þg,

which is Oð1=
ffiffiffiffi

T
p

Þ as T!1. Thus, we conclude that, when M4 0, �(X,T )	
�(0,T ) as T!1, with no dependence on X at leading order. On the other hand,

when M¼ 0, �ðX,T Þ ¼ i
R T

X
e�iY dY ¼ e�iX � e�iT (in agreement with d’Alembert’s

particular solution, (10)). Hence, the limits M! 0 and T!1 do not commute.

Now, in the integral defining �(0,T ), put Y¼Tcos ’, giving

�ð0,T Þ ¼ T

Z �=2

0

MJ1ðMT sin ’Þ þ iJ0ðMT sin ’Þ sin ’
� �

e�iT" cos’ d’:

We shall estimate this integral using the method of stationary phase. Before doing

that, suppose that, instead of fixing X, we move away from the origin along a line

x¼ ct cos
, that is, along X¼T cos
 with 05
5� (because jxj5 ct). We find that

�ðT cos
,T Þ ¼ T

Z 


0

MJ1ðMT sin’Þ þ iJ0ðMT sin ’Þ sin’
� �

e�iT" cos ’ d’, ð30Þ

which reduces to �(0,T ) when 
¼�/2.

t

x

O

x = ct

x = −ct

x = cgt

I

x = ct cos α

ψ ≡ 0ψ = e
i(kx −Ect )

Figure 2. The lines x¼�ct are characteristics. Asymptotic approximations are given in the
region above these two lines. The dashed line is used for fixed x and large t. Estimates along
the sloping line, x¼ ct cos 
 (05 
5�), as t!1 are also given. Region I is bounded by
x¼ cgt and x¼ ct. Region II is bounded by x¼�ct and x¼ cgt. The estimates are different in
these two regions.
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To estimate �(T cos
,T ) as T!1, we first write
R 


0
¼

R 	

0
þ
R 


	
, where 05 	5


and 	� 1. The last integral will be estimated by the method of stationary phase but

the first integral will be estimated directly. (We shall explain later why we cannot

work directly with the original integral.) Thus,

T

Z 	

0

MJ1ðMT sin’Þ þ iJ0ðMT sin ’Þ sin ’
� �

e�iT" cos ’ d’

	 T

Z 	

0

MJ1ðMT’Þ þ iJ0ðMT’Þ’
� �

e�iT" d’

¼ e�iT"

Z MT	

0

J1ð�Þ þ
i�

M2T
J0ð�Þ

� �

d� ¼ e�iT" �J0ð�Þ þ
i�

M2T
J1ð�Þ

	 
MT	

0

¼ e�iT" 1� J0ðMT	Þ þ ið	=MÞJ1ðMT	Þ
� �

	 e�iT" ¼ e�ikct as T ! 1.

This exponential cancels the exponential in (29), whence

 ðx, tÞ 	 � 1

2
eikx��=2ðT Þ, as T ! 1 with fixed x,

and

 ðct cos
, tÞ 	 � 1

2
eikx�
ðT Þ, as T ! 1,

where

�
ðT Þ ¼ T

Z 


	

MJ1ðMT sin ’Þ þ iJ0ðMT sin’Þ sin ’
� �

e�iT" cos’ d’:

To estimate �
(T ) as T!1, we replace the Bessel functions by integral

representations,

J0ðzÞ ¼
1

2�

Z

eiz cos � d�, J1ðzÞ ¼
1

2�i

Z

eiz cos � cos � d�,

where the integration is over any interval of length 2�; we choose ��/45 �5 7�/4

so that �¼ 0 and �¼� are interior points. Thus,

�
ðT Þ ¼ T

2�i

Z 


	

Z 7�=4

��=4
Kð�, ’ÞeiTHð�,’Þ d� d’, ð31Þ

where

Kð�, ’Þ ¼ M cos � � sin’, Hð�, ’Þ ¼ M cos � sin ’� " cos ’:

Next, we use the two-dimensional method of stationary phase. We have

@H

@�
¼ �M sin � sin ’ and

@H

@’
¼ M cos � cos’þ " sin ’:

Setting these to zero, we see that there are stationary-phase points at (�, ’)¼ (�, ’g)

and (0,�� ’g), where

sin ’g ¼ M and cos ’g ¼ ": ð32Þ
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Denote these points by P1 and P2, respectively. For these points to be relevant, they

have to be inside the domain of integration, and this depends on 
. However, when

P2 is relevant (which means when 
4�� ’g), its contribution is negligible because

K(0,�� ’g)¼ 0. Thus, there are two cases:

Region I. When 05
5 ’g, there are no relevant points.

Region II. When ’g5
5�,P1 is relevant.

To interpret these regions, we split the region jxj5 ct into two. As cos ’g¼ "¼
k/E¼ cg/c, we see that Region I is bounded by the lines x¼ cgt and x¼ ct (Figure 2).

As there are no relevant stationary-phase points, �
(T ) is negligible, and hence, in

Region I,

 ðx, tÞ ¼ oð1Þ as t ! 1, where x ¼ ct cos
 and 05
5 ’g: ð33Þ

We show in Section 3.1 that o(1) in (33) is actually O(T�1/2).

For Region II, we must evaluate the contribution from the stationary-phase

point, P1. At this point, �¼�, ’¼ ’g, K¼�2M and H¼�1. Also, at P1, the matrix

A ¼
H�� H�’

H�’ H’’

� �

¼ M2 0

0 1

� �

has two positive eigenvalues with detA¼M2. Then, using a known formula from the

book by Bleistein and Handelsman [15, Equation (8.4.44)],1

�
ðT Þ 	 T

2�i

2�

T

ð�2MÞ
ffiffiffiffiffiffiffi

M2
p exp f�iTþ i�=2g ¼ �2e�iT as T ! 1, ’g5
5�:

Hence, in Region II (between x¼�ct and x¼þcgt, see Figure 2)

 ðx, tÞ 	 eiðkx�EctÞ as t ! 1, where x ¼ ct cos
 and ’g5
5�: ð34Þ

Also,

 ðx, tÞ 	 eiðkx�EctÞ as t ! 1, with x fixed: ð35Þ

Let us conclude with some remarks on the introduction of 	. If the range of

integration had been 05 ’5
, we would have found boundary stationary-phase

points at (�, ’)¼ (�/2,0) and (3�/2, 0). At these points, K¼ 0 (which suggests a

negligible contribution) but H��¼ 0 (giving detA¼ 0). Rather than modify the

method of stationary phase, we gave a direct treatment; it turns out that there is a

non-negligible contribution.

3.1. Region I: more detail

Return to (31) in which 05 
5 ’g. Let D denote the rectangular integration domain

(��/45 �5 7�/4, 	5 ’5
); we shall let 	! 0 later. By assumption, jgradHj 6¼ 0 in

D or around the boundary, @D. Therefore, we can define [15, Section 8.2]

h ¼ K
gradH

jgradHj2
,
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we have div(eiTHh)¼ iTKeiTHþ eiTHdiv h. Hence, substituting in (31) and then using

the divergence theorem, we obtain

�
ðT Þ ¼ 1

2�D
eiTHdiv h d� d’� 1

2�

Z

@D
eiTH h � n ds, ð36Þ

where n is the unit normal vector on @D pointing out of D.

The first integral on the right-hand side of (36) is similar to (31): it is a factor of

T�1 smaller than �
(T ), and so we neglect it.

For the integral around the rectangle @D, we find that the contributions from the

sides at �¼��/4 and �¼ 7�/4 cancel. Next, consider the piece of @D at ’¼ 	, and let

	! 0. We have H¼�", @H/@�¼ 0, and K¼ @H/@’¼M cos �, whence h � n¼�1 and

� 1

2�

Z 7�=4

��=4
eiTH h � n

 ��

�

’¼0
d� ¼ e�iT":

This cancels the term e�ikct in (29), as expected.

So, at this stage, we have

�
ðT Þ ¼ e�iT" � 1

2�
e�iT" cos 


Z 7�=4

��=4
K1ð�ÞeiTM sin
 cos � d� þOðT�1Þ

as T!1, where the integral comes from the piece of @D at ’¼ 
 and

K1ð�Þ ¼
ðM cos � � sin
ÞðM cos � cos
þ " sin
Þ
ðM sin � sin
Þ2 þ ðM cos � cos
þ " sin
Þ2

:

The integral can be estimated (as TM sin 
!1) by the one-dimensional method of

stationary phase [15, Section 6.1]. There are stationary-phase points at �¼ 0 and

�¼�. Evaluating their contributions gives

�
ðT Þ 	 e�iT" � e�iT" cos 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�TM sin

p K1ð0ÞeiTM sin
e�i�=4 þ K1ð�Þe�iTM sin
ei�=4

� �

,

where, using M¼ sin ’g and "¼ cos ’g,

K1ð0Þ ¼
sin ð½’g � 
�=2Þ
sin ð½’g þ 
�=2Þ

and K1ð�Þ ¼
1

K1ð0Þ
:

Hence, in Region I,

 ðct cos
, tÞ 	 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�TM sin 

p K1ð0ÞeiTM sin
e�i�=4 þ K1ð�Þe�iTM sin
ei�=4

� �

: ð37Þ

As we might expect, the estimate (37) breaks down on the boundaries of Region I,

at 
¼� and 
¼’g (where K1(�) is singular). When 
’’g, (37) simplifies to

 ðct cos
, tÞ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sin’g

2��ct

s

ei�=4

ð’g � 
Þ
e�i�ct sin
: ð38Þ

Later, this estimate will be compared with an estimate coming from the Schrödinger

equation, as discussed next.
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4. Schrödinger’s equation

It is of interest to compare our results with Moshinsky’s solution of the

analogous initial-value problem for the Schrödinger equation, (4), with  (x, 0)¼
f(x) and f given by (6). Before recalling Moshinsky’s solution, we observe that

 ¼ ei(kx�!t) solves (4) provided ! ¼ 1
2
k2c=� ¼ !s, say; the corresponding group

velocity is

v ¼ ck=� ¼ cg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðk=�Þ2
q

:

Thus, v4 cg although, in applications, �
 k so that v’ cg. Under the same

approximation, we have eiðkx�EctÞ ’ e�i�cteiðkx�!stÞ; we will see the same factor of

e�i�ct when we compare our Klein–Gordon results with Moshinsky’s solution of the

Schrödinger problem. His solution [1, Equations (3) and (6)] can be written as

 ðx, tÞ ¼ 1

2
ey

2

exp
i�x2

2ct

� �

erfcð yÞ, ð39Þ

where erfc is the complementary error function [10] and

y ¼ e�i�=4 ðx� vtÞ
ffiffiffiffiffiffiffi

�

2ct

r

:

The solution is defined for all x and for all t4 0: there are no discontinuities.

Clearly, the sign of (x� vt) affects the qualitative properties of the solution. Note

that the line x¼ vt is in Region I (Figure 2), between x¼ cgt and x¼ ct, but typically

very close to x¼ cgt. On x¼ vt, y¼ 0 and  ðvt, tÞ ¼ 1
2
ei!st, which is 1

2
eiðkx�!tÞ with

x¼ vt and !¼!s. In particular,  ð0, 0Þ ¼ 1
2
.

Suppose, now, that x¼ ct cos
 and t is large. Then, we can use large-argument

estimates of erfc(y) [1, Equation (5)] in (39) to estimate  (ct cos
, t) as t!1.

Suppose first that cos
5 k/�; this is the region above x¼ vt with t4 0, including

the line x¼ cgt. We find that

 ðct cos
, tÞ 	 exp fiðkct cos
� !stÞg as t ! 1.

This is the expected wave solution, as noted by Moshinsky [1, Equation (7)].

Suppose instead that cos
4 k/�; this is the region below x¼ vt with t4 0. Then,

use of [1, Equation (5)] in (39) gives  (ct cos
, t)! 0 as t!1. In more detail, using

[17, Equation 7.1.23],

 ðct cos
, tÞ 	 ð2��ctÞ�1=2ðcos
� k=�Þ�1ei�=4 exp fið�=2Þct cos2 
g, ð40Þ

as t!1, so that  ! 0 as t�1/2. This rate of decay is what we found in Region I for

the Klein–Gordon equation. In fact, we can compare with (38) when �
 k. In that

case, "’ k/�� 1 and ’g ’ 1
2
�� " (see (32)). Then, if 
 ¼ 1

2
�� 
0, where 05
0 � 1

(so that the three lines, x¼ cgt, x¼ vt and x¼ ct cos
 are all almost vertical),

sin 
’ 1�
02/2, cos
’ 
0 and ’g� 
’ 
0 � ". It follows that (38) and (40) agree

precisely (under the assumptions made), apart from the expected multiplicative

factor of e�i�ct.
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5. Discussion

Let us summarize our results for Moshinsky’s problem. We have  (x, t)¼ ei(kx�Ect)

for x5�ct. This solution is also approached if we fix x and then let t!1 (along

the dashed line in Figure 2). We also have  (x, t)¼ 0 for x4 ct.

The behaviour of  (x, t) for �ct� x� ct is more complicated. If we examine

 (ct cos
, t) as t!1 (sloping line in Figure 2), we either approach ei(kx�Ect)

(Region II) or zero (Region I) as t!1, depending on the angle 
, with 05
5�.

In fact, in Region I,  goes to zero as t�1/2; see (37). The dividing line between

Regions I and II, x¼ cgt, involves the group velocity. The exact solution,  , cannot

be discontinuous along this line, it can only be discontinuous across the

characteristics, x¼�ct. The apparent discontinuity across x¼ cgt could be smoothed

out with a uniform asymptotic expansion: it is similar to the behaviour across a

shadow boundary [14].

We also have two exact results, corresponding to 
¼ 0 and 
¼�:  ðct, tÞ ¼ 1
2
and

 ð�ct, tÞ ¼ e�iðkþEÞctÞ � 1
2
. Thus, the formula for  , (24), exhibits unexpected

behaviour along x¼�ct. However, by analogy with the wave equation, we can

exploit the inherent non-uniqueness in the problem to eliminate one of the

discontinuities: we can add any multiple of s(x, t), defined by (20), without violating

the initial conditions. For example, if we replace  by

 ðx, tÞ þ sðx, tÞ ¼  1ðx, tÞ,

say, we obtain a solution of Moshinsky’s problem with no discontinuity along

x¼�ct; note that sð�ct, tÞ ¼ 1
2
. The function  1 solves Moshinsky’s problem with f

given by (17) instead of (6). The presence of s in  1 alters the behaviour along x¼ ct

but it does not affect the leading order asymptotics in Region II because the Bessel

function decays. In Region I, we find that the behaviour of  1 is given by (37) but

with 1 added to both K1(0) and K1(�).

As noted below (28), the parameter " is small in physical applications. This fact

has not been exploited in the asymptotic results given here (except for the

comparisons made at the end of Section 4). Therefore, there is scope for further

analysis in future.

Note

1. This formula is given incorrectly in the 1975 edition of [15].
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